1932

Abstract

Placebos have been used ubiquitously throughout the history of medicine. Expectations and associative learning processes are important psychological determinants of placebo effects, but their underlying brain mechanisms are only beginning to be understood. We examine the brain systems underlying placebo effects on pain, autonomic, and immune responses. The ventromedial prefrontal cortex (vmPFC), insula, amygdala, hypothalamus, and periaqueductal gray emerge as central brain structures underlying placebo effects. We argue that the vmPFC is a core element of a network that represents structured relationships among concepts, providing a substrate for expectations and a conception of the situation—the self in context—that is crucial for placebo effects. Such situational representations enable multidimensional predictions, or priors, that are combined with incoming sensory information to construct percepts and shape motivated behavior. They influence experience and physiology via descending pathways to physiological effector systems, including the spinal cord and other peripheral organs.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-neuro-072116-031132
2017-07-25
2024-06-20
Loading full text...

Full text loading...

/deliver/fulltext/neuro/40/1/annurev-neuro-072116-031132.html?itemId=/content/journals/10.1146/annurev-neuro-072116-031132&mimeType=html&fmt=ahah

Literature Cited

  1. Abitbol R, Lebreton M, Hollard G, Richmond BJ, Bouret S, Pessiglione M. 2015. Neural mechanisms underlying contextual dependency of subjective values: converging evidence from monkeys and humans. J. Neurosci. 35:52308–20 [Google Scholar]
  2. Ader R, Cohen N. 1975. Behaviorally conditioned immunosuppression. Psychosom. Med. 37:4333–40 [Google Scholar]
  3. Ader R, Mercurio MG, Walton J, James D, Davis M. et al. 2010. Conditioned pharmacotherapeutic effects: a preliminary study. Psychosom. Med. 72:2192–97 [Google Scholar]
  4. Albring A, Wendt L, Benson S, Nissen S, Yavuz Z. et al. 2014. Preserving learned immunosuppressive placebo response: perspectives for clinical application. Clin. Pharmacol. Ther. 96:2247–55 [Google Scholar]
  5. Albring A, Wendt L, Benson S, Witzke O, Kribben A. et al. 2012. Placebo effects on the immune response in humans: the role of learning and expectation. PLOS ONE 7:11e49477 [Google Scholar]
  6. Amanzio M, Benedetti F. 1999. Neuropharmacological dissection of placebo analgesia: expectation-activated opioid systems versus conditioning-activated specific subsystems. J. Neurosci. 19:1484–94 [Google Scholar]
  7. Amanzio M, Benedetti F, Porro CA, Palermo S, Cauda F. 2013. Activation likelihood estimation meta-analysis of brain correlates of placebo analgesia in human experimental pain. Hum. Brain Mapp. 34:3738–752 [Google Scholar]
  8. Amigo I, Cuesta V, Fernández A, González A. 1993. The effect of verbal instructions on blood pressure measurement. J. Hypertens. 11:3293–96 [Google Scholar]
  9. Andrews-Hanna JR, Reidler JS, Huang C, Buckner RL. 2010. Evidence for the default network's role in spontaneous cognition. J. Neurophysiol. 104:1322–35 [Google Scholar]
  10. Ashar YK, Chang LJ, Wager TD. 2017. Brain mechanisms of the placebo effect: an affective appraisal account. Annu. Rev. Clin. Psychol. 13:73–98 [Google Scholar]
  11. Aslaksen PM, Zwarg ML, Eilertsen H-IH, Gorecka MM, Bjørkedal E. 2015. Opposite effects of the same drug: reversal of topical analgesia by nocebo information. Pain 156:139–46 [Google Scholar]
  12. Atlas LY, Doll BB, Li J, Daw ND, Phelps EA. 2016. Instructed knowledge shapes feedback-driven aversive learning in striatum and orbitofrontal cortex, but not the amygdala. eLife 5:e15192 [Google Scholar]
  13. Atlas LY, Wager TD. 2014. A meta-analysis of brain mechanisms of placebo analgesia: consistent findings and unanswered questions. Handb. Exp. Pharmacol. 225:37–69 [Google Scholar]
  14. Au Yeung ST, Colagiuri B, Lovibond PF, Colloca L. 2014. Partial reinforcement, extinction, and placebo analgesia. Pain 155:61110–17 [Google Scholar]
  15. Barrett LF, Simmons WK. 2015. Interoceptive predictions in the brain. Nat. Rev. Neurosci. 16:7419–29 [Google Scholar]
  16. Barron HC, Dolan RJ, Behrens TEJ. 2013. Online evaluation of novel choices by simultaneous representation of multiple memories. Nat. Neurosci. 16:101492–98 [Google Scholar]
  17. Bastos AM, Usrey WM, Adams RA, Mangun GR, Fries P, Friston KJ. 2012. Canonical microcircuits for predictive coding. Neuron 76:4695–711 [Google Scholar]
  18. Bechara A, Tranel D, Damasio H, Adolphs R. 1995. Double dissociation of conditioning and declarative knowledge relative to the amygdala and hippocampus in humans. Science 269:52271115–18 [Google Scholar]
  19. Beissner F, Meissner K, Bär K-J, Napadow V. 2013. The autonomic brain: an activation likelihood estimation meta-analysis for central processing of autonomic function. J. Neurosci. 33:2510503–11 [Google Scholar]
  20. Benedetti F. 2014. Placebo effects: from the neurobiological paradigm to translational implications. Neuron 84:3623–37 [Google Scholar]
  21. Benedetti F, Amanzio M, Rosato R, Blanchard C. 2011. Nonopioid placebo analgesia is mediated by CB1 cannabinoid receptors. Nat. Med. 17:101228–30 [Google Scholar]
  22. Benedetti F, Amanzio M, Vighetti S, Asteggiano G. 2006a. The biochemical and neuroendocrine bases of the hyperalgesic nocebo effect. J. Neurosci. 26:4612014–22 [Google Scholar]
  23. Benedetti F, Arduino C, Costa S, Vighetti S, Tarenzi L. et al. 2006b. Loss of expectation-related mechanisms in Alzheimer's disease makes analgesic therapies less effective. Pain 121:1–2133–44 [Google Scholar]
  24. Benedetti F, Colloca L, Torre E, Lanotte M, Melcarne A. et al. 2004. Placebo-responsive Parkinson patients show decreased activity in single neurons of subthalamic nucleus. Nat. Neurosci. 7:6587–88 [Google Scholar]
  25. Benedetti F, Frisaldi E, Carlino E, Giudetti L, Pampallona A. et al. 2016. Teaching neurons to respond to placebos. J. Physiol. 594:195647–60 [Google Scholar]
  26. Benedetti F, Pollo A, Lopiano L, Lanotte M, Vighetti S, Rainero I. 2003. Conscious expectation and unconscious conditioning in analgesic, motor, and hormonal placebo/nocebo responses. J. Neurosci. 23:104315–23 [Google Scholar]
  27. Ben-Shaanan TL, Azulay-Debby H, Dubovik T, Starosvetsky E, Korin B. et al. 2016. Activation of the reward system boosts innate and adaptive immunity. Nat. Med. 22:940–44 [Google Scholar]
  28. Berridge KC, Kringelbach ML. 2015. Pleasure systems in the brain. Neuron 86:3646–64 [Google Scholar]
  29. Berry MJ, Brivanlou IH, Jordan TA, Meister M. 1999. Anticipation of moving stimuli by the retina. Nature 398:6725334–38 [Google Scholar]
  30. Bicket MC, Gupta A, Brown CH, Cohen SP. 2013. Epidural injections for spinal pain: a systematic review and meta-analysis evaluating the “control” injections in randomized controlled trials. Anesthesiology 119:4907–31 [Google Scholar]
  31. Biernat M, Manis M, Nelson TE. 1991. Stereotypes and standards of judgment. J. Pers. Soc. Psychol. 60:4485 [Google Scholar]
  32. Binder JR, Desai RH, Graves WW, Conant LL. 2009. Where is the semantic system? A critical review and meta-analysis of 120 functional neuroimaging studies. Cereb. Cortex 19:122767–96 [Google Scholar]
  33. Bingel U, Lorenz J, Schoell ED, Weiller C, Büchel C. 2006. Mechanisms of placebo analgesia: rACC recruitment of a subcortical antinociceptive network. Pain 120:1–28–15 [Google Scholar]
  34. Bingel U, Tracey I. 2008. Imaging CNS modulation of pain in humans. Physiology 23:371–80 [Google Scholar]
  35. Bota M, Dong H-W, Swanson LW. 2005. Brain architecture management system. Neuroinformatics 3:115–47 [Google Scholar]
  36. Brown CA, Seymour B, Boyle Y, El-Deredy W, Jones AKP. 2008. Modulation of pain ratings by expectation and uncertainty: behavioral characteristics and anticipatory neural correlates. Pain 135:3240–50 [Google Scholar]
  37. Bruner JS, Postman L, Rodrigues J. 1951. Expectation and the perception of color. Am. J. Psychol. 64:2216–27 [Google Scholar]
  38. Büchel C, Geuter S, Sprenger C, Eippert F. 2014. Placebo analgesia: a predictive coding perspective. Neuron 81:61223–39 [Google Scholar]
  39. Büchel C, Morris J, Dolan RJ, Friston KJ. 1998. Brain systems mediating aversive conditioning: an event-related fMRI study. Neuron 20:5947–57 [Google Scholar]
  40. Cano G, Sved AF, Rinaman L, Rabin BS, Card JP. 2001. Characterization of the central nervous system innervation of the rat spleen using viral transneuronal tracing. J. Comp. Neurol. 439:11–18 [Google Scholar]
  41. Colloca L, Benedetti F. 2005. Placebos and painkillers: Is mind as real as matter?. Nat. Rev. Neurosci. 6:7545–52 [Google Scholar]
  42. Colloca L, Benedetti F, Porro CA. 2007. Experimental designs and brain mapping approaches for studying the placebo analgesic effect. Eur. J. Appl. Physiol. 102:4371–80 [Google Scholar]
  43. Colloca L, Petrovic P, Wager TD, Ingvar M, Benedetti F. 2010. How the number of learning trials affects placebo and nocebo responses. Pain 151:2430–39 [Google Scholar]
  44. Constantinescu AO, O'Reilly JX, Behrens TEJ. 2016. Organizing conceptual knowledge in humans with a gridlike code. Science 352:62921464–68 [Google Scholar]
  45. Critchley HD. 2009. Psychophysiology of neural, cognitive and affective integration: fMRI and autonomic indicants. Int. J. Psychophysiol. 73:288–94 [Google Scholar]
  46. Critchley HD, Harrison NA. 2013. Visceral influences on brain and behavior. Neuron 77:4624–38 [Google Scholar]
  47. Crombez G, Eccleston C, Van Damme S, Vlaeyen JWS, Karoly P. 2012. Fear-avoidance model of chronic pain: the next generation. Clin. J. Pain 28:6475–83 [Google Scholar]
  48. Dayan P, Berridge KC. 2014. Model-based and model-free Pavlovian reward learning: revaluation, revision, and revelation. Cogn. Affect. Behav. Neurosci. 14:2473–92 [Google Scholar]
  49. de la Fuente-Fernández R, Ruth T, Sossi V, Schulzer M, Calne D, Stoessl A. 2001. Expectation and dopamine release: mechanism of the placebo effect in Parkinson's disease. Science 293:55321164–66 [Google Scholar]
  50. Denny BT, Kober H, Wager TD, Ochsner KN. 2012. A meta-analysis of functional neuroimaging studies of self- and other judgments reveals a spatial gradient for mentalizing in medial prefrontal cortex. J. Cogn. Neurosci. 24:81742–52 [Google Scholar]
  51. Doeller CF, Barry C, Burgess N. 2010. Evidence for grid cells in a human memory network. Nature 463:7281657–61 [Google Scholar]
  52. Doll BB, Jacobs WJ, Sanfey AG, Frank MJ. 2009. Instructional control of reinforcement learning: a behavioral and neurocomputational investigation. Brain Res 1299:74–94 [Google Scholar]
  53. Dorland WAN. 1951. The American Illustrated Medical Dictionary Philadelphia: Saunders [Google Scholar]
  54. Dum RP, Levinthal DJ, Strick PL. 2016. Motor, cognitive, and affective areas of the cerebral cortex influence the adrenal medulla. PNAS 113:359922–27 [Google Scholar]
  55. Edwards MJ, Adams RA, Brown H, Pareés I, Friston KJ. 2012. A Bayesian account of “hysteria.”. Brain 135:113495–512 [Google Scholar]
  56. Eippert F, Bingel U, Schoell ED, Yacubian J, Klinger R. et al. 2009a. Activation of the opioidergic descending pain control system underlies placebo analgesia. Neuron 63:4533–43 [Google Scholar]
  57. Eippert F, Finsterbusch J, Bingel U, Büchel C. 2009b. Direct evidence for spinal cord involvement in placebo analgesia. Science 326:5951404 [Google Scholar]
  58. Eisenberger NI, Cole SW. 2012. Social neuroscience and health: neurophysiological mechanisms linking social ties with physical health. Nat. Neurosci. 15:5669–74 [Google Scholar]
  59. Elenkov IJ, Wilder RL, Chrousos GP, Vizi ES. 2000. The sympathetic nerve—an integrative interface between two supersystems: the brain and the immune system. Pharmacol. Rev. 52:4595–638 [Google Scholar]
  60. Ellingsen D-M, Wessberg J, Eikemo M, Liljencrantz J, Endestad T. et al. 2013. Placebo improves pleasure and pain through opposite modulation of sensory processing. PNAS 110:4417993–98 [Google Scholar]
  61. Enck P, Benedetti F, Schedlowski M. 2008. New insights into the placebo and nocebo responses. Neuron 59:2195–206 [Google Scholar]
  62. Enck P, Bingel U, Schedlowski M, Rief W. 2013. The placebo response in medicine: minimize, maximize or personalize. ? Nat. Rev. Drug Discov. 12:3191–204 [Google Scholar]
  63. Etkin A, Büchel C, Gross JJ. 2015. The neural bases of emotion regulation. Nat. Rev. Neurosci. 16:11693–700 [Google Scholar]
  64. Etkin A, Egner T, Kalisch R. 2011. Emotional processing in anterior cingulate and medial prefrontal cortex. Trends Cogn. Sci. 15:285–93 [Google Scholar]
  65. Exton MS, Gierse C, Meier B, Mosen M, Xie Y. et al. 2002. Behaviorally conditioned immunosuppression in the rat is regulated via noradrenaline and β-adrenoceptors. J. Neuroimmunol. 131:1–221–30 [Google Scholar]
  66. Fields HL. 2006. A motivation-decision model of pain: the role of opioids. Proc. 11th World Congr. Pain H Flor, E Kalso, JO Dostrovsky 449–59 Seattle: IASP Press [Google Scholar]
  67. Finniss DG, Benedetti F. 2005. Mechanisms of the placebo response and their impact on clinical trials and clinical practice. Pain 114:13–6 [Google Scholar]
  68. Finniss DG, Kaptchuk TJ, Miller F, Benedetti F. 2010. Biological, clinical, and ethical advances of placebo effects. Lancet 375:9715686–95 [Google Scholar]
  69. Friston K. 2005. A theory of cortical responses. Phil. Trans. R. Soc. B 360:1456815–36 [Google Scholar]
  70. Friston K. 2010. The free-energy principle: a unified brain theory?. Nat. Rev. Neurosci. 11:2127–38 [Google Scholar]
  71. Gershman SJ, Norman KA, Niv Y. 2015. Discovering latent causes in reinforcement learning. Curr. Opinion Behav. Sci. 5:43–50 [Google Scholar]
  72. Geuter S, Büchel C. 2013. Facilitation of pain in the human spinal cord by nocebo treatment. J. Neurosci. 33:3413784–90 [Google Scholar]
  73. Geuter S, Eippert F, Hindi Attar C, Büchel C. 2013. Cortical and subcortical responses to high and low effective placebo treatments. NeuroImage 67:227–36 [Google Scholar]
  74. Gianaros PJ, Sheu LK. 2009. A review of neuroimaging studies of stressor-evoked blood pressure reactivity: emerging evidence for a brain-body pathway to coronary heart disease risk. NeuroImage 47:3922–36 [Google Scholar]
  75. Gianaros PJ, Wager TD. 2015. Brain-body pathways linking psychological stress and physical health. Curr. Dir. Psychol. Sci. 24:4313–21 [Google Scholar]
  76. Gläscher J, Hampton AN, O'Doherty JP. 2009. Determining a role for ventromedial prefrontal cortex in encoding action-based value signals during reward-related decision making. Cereb. Cortex 19:2483–95 [Google Scholar]
  77. Goebel MU, Trebst AE, Steiner J, Xie YF, Exton MS. et al. 2002. Behavioral conditioning of immunosuppression is possible in humans. FASEB J 16:141869–73 [Google Scholar]
  78. Golkar A, Haaker J, Selbing I, Olsson A. 2016. Neural signals of vicarious extinction learning. Soc. Cogn. Affect. Neurosci. 11:101541–49 [Google Scholar]
  79. Grenfell R, Briggs A, Holland W. 1961. A double-blind study of the treatment of hypertension. JAMA 176:2124–28 [Google Scholar]
  80. Guo J-Y, Wang J-Y, Luo F. 2010. Dissection of placebo analgesia in mice: the conditions for activation of opioid and non-opioid systems. J. Psychopharmacol. 24:101561–67 [Google Scholar]
  81. Guo J-Y, Yuan X-Y, Sui F, Zhang W-C, Wang J-Y. et al. 2011. Placebo analgesia affects the behavioral despair tests and hormonal secretions in mice. Psychopharmacology 217:1830 [Google Scholar]
  82. Hafting T, Fyhn M, Molden S, Moser M-B, Moser EI. 2005. Microstructure of a spatial map in the entorhinal cortex. Nature 436:7052801–6 [Google Scholar]
  83. Hasson U, Chen J, Honey CJ. 2015. Hierarchical process memory: memory as an integral component of information processing. Trends Cogn. Sci. 19:6304–13 [Google Scholar]
  84. Heinricher MM, Fields HL. 2013. Central nervous system mechanisms of pain modulation. Wall and Melzack's Textbook of Pain SB McMahon, M Koltzenburg, I Tracey, DC Turk 129–42 Philadelphia: Saunders, 6th ed.. [Google Scholar]
  85. Heinricher MM, Tavares I, Leith JL, Lumb BM. 2009. Descending control of nociception: specificity, recruitment and plasticity. Brain Res. Rev. 60:1214–25 [Google Scholar]
  86. Herrnstein RJ. 1962. Placebo effect in the rat. Science 138:3541677–78 [Google Scholar]
  87. Jensen KB, Kaptchuk TJ, Kirsch I, Raicek J, Lindstrom KM. et al. 2012. Nonconscious activation of placebo and nocebo pain responses. PNAS 109:3915959–64 [Google Scholar]
  88. Jepma M, Wager TD. 2015. Conceptual conditioning: mechanisms mediating conditioning effects on pain. Psychol. Sci. 26:111728–39 [Google Scholar]
  89. Kable JW, Glimcher PW. 2007. The neural correlates of subjective value during intertemporal choice. Nat. Neurosci. 10:121625–33 [Google Scholar]
  90. Kamenica E, Naclerio R, Malani A. 2013. Advertisements impact the physiological efficacy of a branded drug. PNAS 110:3212931–35 [Google Scholar]
  91. Kemeny ME, Rosenwasser LJ, Panettieri RA, Rose RM, Berg-Smith SM, Kline JN. 2007. Placebo response in asthma: a robust and objective phenomenon. J. Allergy Clin. Immunol. 119:61375–81 [Google Scholar]
  92. Kessner S, Wiech K, Forkmann K, Ploner M, Bingel U. 2013. The effect of treatment history on therapeutic outcome: an experimental approach. JAMA Intern. Med. 173:151468–69 [Google Scholar]
  93. Knill DC, Pouget A. 2004. The Bayesian brain: the role of uncertainty in neural coding and computation. Trends Neurosci 27:12712–19 [Google Scholar]
  94. Koban L, Brass M, Lynn MT, Pourtois G. 2012. Placebo analgesia affects brain correlates of error processing. PLOS ONE 7:11e49784 [Google Scholar]
  95. Koban L, Wager TD. 2016. Beyond conformity: social influences on pain reports and physiology. Emotion 16:124–32 [Google Scholar]
  96. Kong J, Gollub RL, Rosman IS, Webb JM, Vangel MG. et al. 2006. Brain activity associated with expectancy-enhanced placebo analgesia as measured by functional magnetic resonance imaging. J. Neurosci. 26:2381–88 [Google Scholar]
  97. Krienen FM, Tu P-C, Buckner RL. 2010. Clan mentality: evidence that the medial prefrontal cortex responds to close others. J. Neurosci. 30:4113906–15 [Google Scholar]
  98. Krummenacher P, Candia V, Folkers G, Schedlowski M, Schönbächler G. 2010. Prefrontal cortex modulates placebo analgesia. Pain 148:3368–74 [Google Scholar]
  99. LeDoux JE, Iwata J, Cicchetti P, Reis DJ. 1988. Different projections of the central amygdaloid nucleus mediate autonomic and behavioral correlates of conditioned fear. J. Neurosci. 8:72517–29 [Google Scholar]
  100. Lee I-S, Lee B, Park H-J, Olausson H, Enck P, Chae Y. 2015. A new animal model of placebo analgesia: involvement of the dopaminergic system in reward learning. Sci. Rep. 5:17140 [Google Scholar]
  101. Lee M, Manders TR, Eberle SE, Su C, D'amour J. et al. 2015. Activation of corticostriatal circuitry relieves chronic neuropathic pain. J. Neurosci. 35:135247–59 [Google Scholar]
  102. Levine JD, Gordon NC, Fields HL. 1978. The mechanism of placebo analgesia. Lancet 312:8091654–57 [Google Scholar]
  103. Lidstone SC, Schulzer M, Dinelle K, Mak E, Sossi V. et al. 2010. Effects of expectation on placebo-induced dopamine release in Parkinson disease. Arch. Gen. Psychiatry 67:8857–65 [Google Scholar]
  104. Linde K, Friedrichs C, Alscher A, Wagenpfeil S, Meissner K, Schneider A. 2014. The use of placebo and non-specific therapies and their relation to basic professional attitudes and the use of complementary therapies among German physicians – a cross-sectional survey. PLOS ONE 9:4e92938 [Google Scholar]
  105. Marques-Deak A, Cizza G, Sternberg E. 2005. Brain-immune interactions and disease susceptibility. Mol. Psychiatry 10:3239–50 [Google Scholar]
  106. Meissner K. 2009. Effects of placebo interventions on gastric motility and general autonomic activity. J. Psychosom. Res. 66:5391–98 [Google Scholar]
  107. Meissner K. 2011. The placebo effect and the autonomic nervous system: evidence for an intimate relationship. Philos. Trans. R. Soc. B 366:15721808–17 [Google Scholar]
  108. Meissner K, Distel H, Mitzdorf U. 2007. Evidence for placebo effects on physical but not on biochemical outcome parameters: a review of clinical trials. BMC Med 5:3 [Google Scholar]
  109. Milad MR, Quirk GJ. 2012. Fear extinction as a model for translational neuroscience: ten years of progress. Annu. Rev. Psychol. 63:129–51 [Google Scholar]
  110. Millan MJ. 2002. Descending control of pain. Progress Neurobiol 66:6355–474 [Google Scholar]
  111. Mittwoch-Jaffe T, Shalit F, Srendi B, Yehuda S. 1995. Modification of cytokine secretion following mild emotional stimuli. NeuroReport 6:5789–92 [Google Scholar]
  112. Montgomery GH, Kirsch I. 1996. Mechanisms of placebo pain reduction: an empirical investigation. Psychol. Sci. 7:3174–76 [Google Scholar]
  113. Montgomery GH, Kirsch I. 1997. Classical conditioning and the placebo effect. Pain 72:1–2107–13 [Google Scholar]
  114. Moseley JB, O'Malley K, Petersen NJ, Menke TJ, Brody BA. et al. 2002. A controlled trial of arthroscopic surgery for osteoarthritis of the knee. N. Engl. J. Med. 347:281–88 [Google Scholar]
  115. Muckli L, De Martino F, Vizioli L, Petro LS, Smith FW. et al. 2015. Contextual feedback to superficial layers of V1. Curr. Biol. 25:202690–95 [Google Scholar]
  116. Nakamura Y, Donaldson GW, Kuhn R, Bradshaw DH, Jacobson RC, Chapman CR. 2012. Investigating dose-dependent effects of placebo analgesia: a psychophysiological approach. Pain 153:1227–37 [Google Scholar]
  117. Napadow V, Sheehan JD, Kim J, LaCount LT, Park K. et al. 2013. The brain circuitry underlying the temporal evolution of nausea in humans. Cereb. Cortex 23:4806–13 [Google Scholar]
  118. Ossipov MH, Dussor GO, Porreca F. 2010. Central modulation of pain. J. Clin. Investig. 120:113779–87 [Google Scholar]
  119. Pacheco-López G, Niemi M-B, Kou W, Härting M, Fandrey J, Schedlowski M. 2005. Neural substrates for behaviorally conditioned immunosuppression in the rat. J. Neurosci. 25:92330–37 [Google Scholar]
  120. Patel NK, Javed S, Khan S, Papouchado M, Malizia AL. et al. 2011. Deep brain stimulation relieves refractory hypertension. Neurology 76:4405–7 [Google Scholar]
  121. Pereira EAC, Lu G, Wang S, Schweder PM, Hyam JA. et al. 2010. Ventral periaqueductal grey stimulation alters heart rate variability in humans with chronic pain. Exp. Neurol. 223:2574–81 [Google Scholar]
  122. Petrovic P, Dietrich T, Fransson P, Andersson J, Carlsson K, Ingvar M. 2005. Placebo in emotional processing—induced expectations of anxiety relief activate a generalized modulatory network. Neuron 46:6957–69 [Google Scholar]
  123. Petrovic P, Kalso E, Petersson KM, Andersson J, Fransson P, Ingvar M. 2010. A prefrontal non-opioid mechanism in placebo analgesia. Pain 150:159–65 [Google Scholar]
  124. Petrovic P, Kalso E, Petersson KM, Ingvar M. 2002. Placebo and opioid analgesia—imaging a shared neuronal network. Science 295:55601737–40 [Google Scholar]
  125. Price DD, Milling LS, Kirsch I, Duff A, Montgomery GH, Nicholls SS. 1999. An analysis of factors that contribute to the magnitude of placebo analgesia in an experimental paradigm. Pain 83:147–56 [Google Scholar]
  126. Price JL, Drevets WC. 2010. Neurocircuitry of mood disorders. Neuropsychopharmacology 35:1192–216 [Google Scholar]
  127. Proffitt DR, Stefanucci J, Banton T, Epstein W. 2003. The role of effort in perceiving distance. Psychol. Sci. 14:2106–12 [Google Scholar]
  128. Quinn VF, Colagiuri B. 2016. Sources of placebo-induced relief from nausea: the role of instruction and conditioning. Psychosom. Med. 78:3365–72 [Google Scholar]
  129. Robinson MJF, Berridge KC. 2013. Instant transformation of learned repulsion into motivational “wanting.”. Curr. Biol. 23:4282–89 [Google Scholar]
  130. Roy M, Shohamy D, Wager TD. 2012. Ventromedial prefrontal-subcortical systems and the generation of affective meaning. Trends Cogn. Sci. 16:3147–56 [Google Scholar]
  131. Rutherford BR, Wall MM, Brown PJ, Choo T-H, Wager TD. et al. 2016. Patient expectancy as a mediator of placebo effects in antidepressant clinical trials. Am. J. Psychiatry. 174:2135–42 [Google Scholar]
  132. Saper CB. 2002. The central autonomic nervous system: conscious visceral perception and autonomic pattern generation. Annu. Rev. Neurosci. 25:433–69 [Google Scholar]
  133. Saurer TB, Ijames SG, Carrigan KA, Lysle DT. 2008. Neuroimmune mechanisms of opioid-mediated conditioned immunomodulation. Brain Behav. Immun. 22:189–97 [Google Scholar]
  134. Saurer TB, Ijames SG, Lysle DT. 2009. Evidence for the nucleus accumbens as a neural substrate of heroin-induced immune alterations. J. Pharmacol. Exp. Ther. 329:31040–47 [Google Scholar]
  135. Schacter DL, Addis DR, Buckner RL. 2007. Remembering the past to imagine the future: the prospective brain. Nat. Rev. Neurosci. 8:9657–61 [Google Scholar]
  136. Schafer SM, Colloca L, Wager TD. 2015. Conditioned placebo analgesia persists when subjects know they are receiving a placebo. J. Pain 16:5412–20 [Google Scholar]
  137. Schedlowski M, Pacheco-López G. 2010. The learned immune response: Pavlov and beyond. Brain Behav. Immun. 24:2176–85 [Google Scholar]
  138. Schenk LA, Sprenger C, Geuter S, Büchel C. 2014. Expectation requires treatment to boost pain relief: an fMRI study. Pain 155:1150–57 [Google Scholar]
  139. Schmack K, de Castro AG-C, Rothkirch M, Sekutowicz M, Rössler H. et al. 2013. Delusions and the role of beliefs in perceptual inference. J. Neurosci. 33:3413701–12 [Google Scholar]
  140. Schmidt L, Braun EK, Wager TD, Shohamy D. 2014. Mind matters: placebo enhances reward learning in Parkinson's disease. Nat. Neurosci. 17:121793–97 [Google Scholar]
  141. Schoenbaum G, Roesch MR, Stalnaker TA, Takahashi YK. 2009. A new perspective on the role of the orbitofrontal cortex in adaptive behaviour. Nat. Rev. Neurosci. 10:12885–92 [Google Scholar]
  142. Schuck NW, Cai MB, Wilson RC, Niv Y. 2016. Human orbitofrontal cortex represents a cognitive map of state space. Neuron 91:61402–12 [Google Scholar]
  143. Scott DJ, Stohler CS, Egnatuk CM, Wang H, Koeppe RA, Zubieta J-K. 2008. Placebo and nocebo effects are defined by opposite opioid and dopaminergic responses. Arch. Gen. Psychiatry 65:2220–31 [Google Scholar]
  144. Seth AK, Suzuki K, Critchley HD. 2011. An interoceptive predictive coding model of conscious presence. Front. Psychol. 2:395 [Google Scholar]
  145. Shapiro AK. 1959. The placebo effect in the history of medical treatment implications for psychiatry. Am. J. Psychiatry 116:4298–304 [Google Scholar]
  146. Shema R, Sacktor TC, Dudai Y. 2007. Rapid erasure of long-term memory associations in the cortex by an inhibitor of PKMζ. Science 317:5840951–53 [Google Scholar]
  147. Shiv B, Carmon Z, Ariely D. 2005. Placebo effects of marketing actions: consumers may get what they pay for. J. Mark. Res. 42:4383–93 [Google Scholar]
  148. Spicer J, Shimbo D, Johnston N, Harlapur M, Purdie-Vaughns V. et al. 2016. Prevention of stress-provoked endothelial injury by values affirmation: a proof of principle study. Ann. Behav. Med. 50:3471–79 [Google Scholar]
  149. Staudinger MR, Büchel C. 2013. How initial confirmatory experience potentiates the detrimental influence of bad advice. NeuroImage 76:125–33 [Google Scholar]
  150. Stern J, Candia V, Porchet RI, Krummenacher P, Folkers G. et al. 2011. Placebo-mediated, Naloxone-sensitive suggestibility of short-term memory performance. Neurobiol. Learn. Mem. 95:3326–34 [Google Scholar]
  151. Sternberg EM. 2006. Neural regulation of innate immunity: a coordinated nonspecific host response to pathogens. Nat. Rev. Immunol. 6:4318–28 [Google Scholar]
  152. Sterzer P, Frith C, Petrovic P. 2008. Believing is seeing: Expectations alter visual awareness. Curr. Biol. 18:16R697–98 [Google Scholar]
  153. Summerfield C, de Lange FP. 2014. Expectation in perceptual decision making: neural and computational mechanisms. Nat. Rev. Neurosci. 15:11745–56 [Google Scholar]
  154. Tamir DI, Mitchell JP. 2010. Neural correlates of anchoring-and-adjustment during mentalizing. PNAS 107:2410827–32 [Google Scholar]
  155. Thayer JF, Åhs F, Fredrikson M, Sollers JJ III, Wager TD. 2012. A meta-analysis of heart rate variability and neuroimaging studies: implications for heart rate variability as a marker of stress and health. Neurosci. Biobehav. Rev. 36:2747–56 [Google Scholar]
  156. Tracey I. 2010. Getting the pain you expect: mechanisms of placebo, nocebo and reappraisal effects in humans. Nat. Med. 16:111277–83 [Google Scholar]
  157. Tracey I, Ploghaus A, Gati JS, Clare S, Smith S. et al. 2002. Imaging attentional modulation of pain in the periaqueductal gray in humans. J. Neurosci. 22:72748–52 [Google Scholar]
  158. Tracey KJ. 2009. Reflex control of immunity. Nat. Rev. Immunol. 9:6418–28 [Google Scholar]
  159. Vase L, Riley JL, Petersen GL, Price DD. 2009. Factors contributing to large analgesic effects in placebo mechanism studies conducted between 2002 and 2007. Pain 145:1–236–44 [Google Scholar]
  160. Vase L, Robinson ME, Verne GN, Price DD. 2005. Increased placebo analgesia over time in irritable bowel syndrome (IBS) patients is associated with desire and expectation but not endogenous opioid mechanisms. Pain 115:3338–47 [Google Scholar]
  161. Vits S, Cesko E, Enck P, Hillen U, Schadendorf D, Schedlowski M. 2011. Behavioural conditioning as the mediator of placebo responses in the immune system. Phil. Trans. R. Soc. B 366:15721799–807 [Google Scholar]
  162. Voudouris NJ, Peck CL, Coleman G. 1990. The role of conditioning and verbal expectancy in the placebo response. Pain 43:1121–28 [Google Scholar]
  163. Wager TD, Atlas LY. 2015. The neuroscience of placebo effects: connecting context, learning and health. Nat. Rev. Neurosci. 16:7403–18 [Google Scholar]
  164. Wager TD, Fields HL. 2013. Placebo analgesia. Wall and Melzack's Textbook of Pain SB McMahon, M Koltzenburg, I Tracey, DC Turk 362–72 Philadelphia: Saunders, 6th ed.. [Google Scholar]
  165. Wager TD, Scott DJ, Zubieta J-K. 2007. Placebo effects on human μ-opioid activity during pain. PNAS 104:2611056–61 [Google Scholar]
  166. Wager TD, Waugh CE, Lindquist M, Noll DC, Fredrickson BL, Taylor SF. 2009. Brain mediators of cardiovascular responses to social threat: Part I: Reciprocal dorsal and ventral sub-regions of the medial prefrontal cortex and heart-rate reactivity. NeuroImage 47:3821–35 [Google Scholar]
  167. Watson A, El-Deredy W, Iannetti GD, Lloyd D, Tracey I. et al. 2009. Placebo conditioning and placebo analgesia modulate a common brain network during pain anticipation and perception. Pain 145:1–224–30 [Google Scholar]
  168. Wechsler ME, Kelley JM, Boyd IOE, Dutile S, Marigowda G. et al. 2011. Active albuterol or placebo, sham acupuncture, or no intervention in asthma. N. Engl. J. Med. 365:2119–26 [Google Scholar]
  169. Whalley B, Hyland ME, Kirsch I. 2008. Consistency of the placebo effect. J. Psychosom. Res. 64:5537–41 [Google Scholar]
  170. Willis WD, Westlund KN. 1997. Neuroanatomy of the pain system and of the pathways that modulate pain. J. Clin. Neurophysiol. 14:12–31 [Google Scholar]
  171. Wolpert DM, Diedrichsen J, Flanagan JR. 2011. Principles of sensorimotor learning. Nat. Rev. Neurosci. 12:12739–51 [Google Scholar]
  172. Zubieta J-K, Bueller JA, Jackson LR, Scott DJ, Xu Y. et al. 2005. Placebo effects mediated by endogenous opioid activity on μ-opioid receptors. J. Neurosci. 25:347754–62 [Google Scholar]
/content/journals/10.1146/annurev-neuro-072116-031132
Loading
/content/journals/10.1146/annurev-neuro-072116-031132
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error