Diverse animals ranging from worms and insects to birds and turtles perform impressive journeys using the magnetic field of the earth as a cue. Although major cellular and molecular mechanisms for sensing mechanical and chemical cues have been elucidated over the past three decades, the mechanisms that animals use to sense magnetic fields remain largely mysterious. Here we survey progress on the search for magnetosensory neurons and magnetosensitive molecules important for animal behaviors. Emphasis is placed on magnetosensation in insects and birds, as well as on the magnetosensitive neuron pair AFD in the nematode . We also review conventional criteria used to define animal magnetoreceptors and suggest how approaches used to identify receptors for other sensory modalities may be adapted for magnetoreceptors. Finally, we discuss prospects for underutilized and novel approaches to identify the elusive magnetoreceptors in animals.


Article metrics loading...

Loading full text...

Full text loading...


Literature Cited

  1. Baker RR. 1989. Human Navigation and Magnetoreception Manchester, UK/New York: Manchester Univ. Press [Google Scholar]
  2. Blakemore RP. 1975. Magnetotactic bacteria. Science 190:4212377–79 [Google Scholar]
  3. Blakemore RP, Frankel RB, Kalmijn AJ. 1980. South-seeking magnetotactic bacteria in the Southern Hemisphere. Nature 286:384–85 [Google Scholar]
  4. Block SM. 1992. Biophysical principles of sensory transduction. Sensory Transduction DP Corey, SD Roper 1–18 New York: Rockefeller Univ. Press [Google Scholar]
  5. Bretscher AJ, Kodama-Namba E, Busch KE, Murphy RJ, Soltesz Z. et al. 2011. Temperature, oxygen, and salt-sensing neurons in C.elegans are carbon dioxide sensors that control avoidance behavior. Neuron 69:61099–113 [Google Scholar]
  6. Cashmore AR, Jarillo JA, Wu Y-J, Liu D. 1999. Cryptochromes: blue light receptors for plants and animals. Science 284:760–65 [Google Scholar]
  7. Chhetri RK, Amat F, Wan Y, Höckendorf B, Lemon WC, Keller PJ. 2015. Whole-animal functional and developmental imaging with isotropic spatial resolution. Nat. Methods 12:121171–78 [Google Scholar]
  8. Clark DA, Biron D, Sengupta P, Samuel AD. 2006. The AFD sensory neurons encode multiple functions underlying thermotactic behavior in Caenorhabditis elegans. J. Neurosci. 26:287444–51 [Google Scholar]
  9. Corey D, Howard J. 1994. Models for ion channel gating with compliant states. Biophys. J. 66:1254–57 [Google Scholar]
  10. Demaine C, Semm P. 1985. The avian pineal gland as an independent magnetic sensor. Neurosci. Lett. 62:1119–22 [Google Scholar]
  11. Diaz-Ricci JC, Woodford BJ, Kirschvink JL, Hoffman MR. 1991. Alteration of the magnetic properties of Aquaspirillum magnetotacticum by a pulse magnetization technique. Appl. Environ. Microbiol. 57:3248–54 [Google Scholar]
  12. Diebel CE, Proksch R, Green CR, Nielson P, Walker MM. 2000. Magnetite defines a vertebrate magnetoreceptor. Nature 406:299–302 [Google Scholar]
  13. Deutschlander ME, Borland SC, Phillips JB. 1999. Extraocular magnetic compass in newts. Nature 400:6742324–25 [Google Scholar]
  14. Dodson CA, Hore PJ, Wallace MI. 2013. A radical sense of direction: signalling and mechanism in cryptochrome magnetoreception. Trends Biochem. Sci. 38:9435–46 [Google Scholar]
  15. Doroquez DB, Berciu C, Anderson JR, Sengupta P, Nicastro D. 2014. A high-resolution morphological and ultrastructural map of anterior sensory cilia and glia in Caenorhabditis elegans. eLife 3:e01948 [Google Scholar]
  16. Edelman NB, Fritz T, Nimpf S, Pichler P, Lauwers M. et al. 2015. No evidence for intracellular magnetite in putative vertebrate magnetoreceptors identified by magnetic screening. PNAS 112:1262–67 [Google Scholar]
  17. Eder SH, Cadiou H, Muhamad A, McNaughton PA, Kirschvink JL, Winklhofer M. 2012. Magnetic characterization of isolated candidate vertebrate magnetoreceptor cells. PNAS 109:3012022–27 [Google Scholar]
  18. Engels S, Schneider NL, Lefeldt N, Hein CM, Zapka M. et al. 2014. Anthropogenic electromagnetic noise disrupts magnetic compass orientation in a migratory bird. Nature 509:7500353–56 [Google Scholar]
  19. Falkenberg G, Fleissner G, Schuchardt K, Kuehbacher M, Thalau P. et al. 2009. Avian magnetoreception: elaborate iron mineral containing dendrites in the upper beak seem to be a common feature of birds. PLOS ONE 5:2e9231 [Google Scholar]
  20. Fleissner G, Fleissner G. 2010. Magnetoreception. Encyclopedia of Animal Behavior 1324–35 Cambridge, MA: Academic [Google Scholar]
  21. Fleissner G, Holtkamp-Rötzler E, Hanzlik M, Winklhofer M, Fleissner G. et al. 2003. Ultrastructural analysis of a putative magnetoreceptor in the beak of homing pigeons. J. Comp. Neurol. 458:350–60 [Google Scholar]
  22. Foley LE, Gegear RJ, Reppert SM. 2011. Human cryptochrome exhibits light-dependent magnetosensitivity. Nat. Commun. 2:356 [Google Scholar]
  23. Gegear RJ, Casselman A, Waddell S, Reppert SM. 2008. Cryptochrome mediates light-dependent magnetosensitivity in Drosophila. Nature 454:72071014–18 [Google Scholar]
  24. Gegear RJ, Foley LE, Casselman A, Reppert SM. 2010. Animal cryptochromes mediate magnetoreception by an unconventional photochemical mechanism. Nature 463:7282804–7 [Google Scholar]
  25. Gould JL. 2010. Magnetoreception. Curr. Biol. 20:10R431–35 [Google Scholar]
  26. Greene SE, Komeili A. 2012. Biogenesis and subcellular organization of the magnetosome organelles of magnetotactic bacteria. Curr. Opin. Cell Biol. 24:4490–95 [Google Scholar]
  27. Guez-Barber D, Fanous S, Golden SA, Schrama R, Koya E. et al. 2011. FACS identifies unique cocaine-induced gene regulation in selectively activated adult striatal neurons. J. Neurosci. 31:114251–59 [Google Scholar]
  28. Hand E. 2016. What and where are the body's magnetometers?. Science 352:62931510–11 [Google Scholar]
  29. Harada Y, Taniguchi M, Namatame H, Iida A. 2001. Magnetic materials in otoliths of bird and fish lagena and their function. Acta Otolaryngol 121:5590–95 [Google Scholar]
  30. Holland RA. 2010. Differential effects of magnetic pulses on the orientation of naturally migrating birds. J. R. Soc. Interface 7:521617–25 [Google Scholar]
  31. Holland RA, Helm B. 2013. A strong magnetic pulse affects the precision of departure direction of naturally migrating adult but not juvenile birds. J. R. Soc. Interface 10:8120121047 [Google Scholar]
  32. Holland RA, Kirschvink JL, Doak TG, Wikelski M. 2008. Bats use magnetite to detect the earth's magnetic field. PLOS ONE 3:2e1676 [Google Scholar]
  33. Ikeda R, Cha M, Ling J, Jia Z, Coyle D, Gu JG. 2014. Merkel cells transduce and encode tactile stimuli to drive Aβ-afferent impulses. Cell 157:3664–75 [Google Scholar]
  34. Irwin WP, Lohmann KJ. 2005. Disruption of magnetic orientation in hatchling loggerhead sea turtles by pulsed magnetic fields. J. Comp. Physiol. A 191:5475–80 [Google Scholar]
  35. Johnsen S, Lohmann KJ. 2008. Magnetoreception in animals. Phys. Today 61:329–35 [Google Scholar]
  36. Kalmijn AJ, Blakemore RP. 1978. The magnetic behavior of mud bacteria. Animal Migration, Navigation, and Homing K Schmidt-Koenig, WT Keeton 354–55 Berlin: Springer [Google Scholar]
  37. Keeton WT, Larkin TS, Windsor DM. 1974. Normal fluctuations in the earth's magnetic field influence pigeon orientation. J. Comp. Physiol. 95:95–103 [Google Scholar]
  38. Kimura KD, Miyawaki A, Matsumoto K, Mori I. 2004. The C. elegans thermosensory neuron AFD responds to warming. Curr. Biol. 14:141291–95 [Google Scholar]
  39. Kirschvink JL. 1989. Magnetite biomineralization and geomagnetic sensitivity in higher animals: an update and recommendations for future study. Bioelectromagnetics 10:3239–59 [Google Scholar]
  40. Kirschvink JL. 2014. Sensory biology: Radio waves zap the biomagnetic compass.. Nature 509:296–97 [Google Scholar]
  41. Kirschvink JL, Gould JL. 1981. Biogenic magnetite as a basis for magnetic field detection in animals. Biosystems 13:3181–201 [Google Scholar]
  42. Kirschvink JL, Kirschvink AK. 1991. Is geomagnetic sensitivity real? Replication of the Walker-Bitterman magnetic conditioning experiment in honey bees. Am. Zool. 31:169–85 [Google Scholar]
  43. Kirschvink JL, Walker MM, Diebel CE. 2001. Magnetite-based magnetoreception. Curr. Opin. Neurobiol. 11:4462–67 [Google Scholar]
  44. Kobayashi K, Nakano S, Amano M, Tsuboi D, Nishioka T. et al. 2016. Single-cell memory regulates a neural circuit for sensory behavior. Cell Rep 14:111–21 [Google Scholar]
  45. Lauwers M, Pichler P, Edelman NB, Resch GP, Ushakova L. et al. 2013. An iron-rich organelle in the cuticular plate of avian hair cells. Curr. Biol. 23:10924–29 [Google Scholar]
  46. Leask MJM. 1977. A physicochemical mechanism for magnetic field detection by migratory birds and homing pigeons. Nature 267:144–45 [Google Scholar]
  47. Lefèvre CT, Bazylinski DA. 2013. Ecology, diversity, and evolution of magnetotactic bacteria. Microbiol. Mol. Biol. Rev. 77:3497–526 [Google Scholar]
  48. Lin W, Bazylinski DA, Xiao T, Wu LF, Pan Y. 2014. Life with compass: diversity and biogeography of magnetotactic bacteria. Environ. Microbiol. 16:92646–58 [Google Scholar]
  49. Lohmann KJ, Cain SD, Dodge SA, Lohmann CMF. 2001. Regional magnetic fields as navigational markers for sea turtles. Science 294:5541364–66 [Google Scholar]
  50. Lohmann KJ, Lohmann CM, Ehrhart LM, Bagley DA, Swing T. 2004. Animal behaviour: geomagnetic map used in sea-turtle navigation. Nature 428:6986909–10 [Google Scholar]
  51. Lohmann KJ, Willows AO. 1987. Lunar-modulated geomagnetic orientation by a marine mollusk. Science 235:4786331–34 [Google Scholar]
  52. Lohmann KJ, Willows AO, Pinter RB. 1991. An identifiable molluscan neuron responds to changes in earth-strength magnetic fields. J. Exp. Biol. 161:1–24 [Google Scholar]
  53. Long X, Ye J, Zhao D, Zhang SJ. 2015. Magnetogenetics: remote non-invasive magnetic activation of neuronal activity with a magnetoreceptor. Sci. Bull. 60:2107–19 [Google Scholar]
  54. Mann S, Sparks NH, Walker MM, Kirschvink JL. 1988. Ultrastructure, morphology and organization of biogenic magnetite from sockeye salmon, Oncorhynchus nerka: implications for magnetoreception. J. Exp. Biol. 140:35–49 [Google Scholar]
  55. Martin P, Hudspeth AJ. 1999. Active hair-bundle movements can amplify a hair cell's response to oscillatory mechanical stimuli. PNAS 96:2514306–11 [Google Scholar]
  56. Meister M. 2016. Physical limits to magnetogenetics. eLife 5:e17210 [Google Scholar]
  57. Möller A, Sagasser S, Wiltschko W, Schierwater B. 2004. Retinal cryptochrome in a migratory passerine bird: a possible transducer for the avian magnetic compass. Naturwissenschaften 91:12585–88 [Google Scholar]
  58. Mora CV, Davison M, Wild JM, Walker MM. 2004. Magnetoreception and its trigeminal mediation in the homing pigeon. Nature 432:7016508–11 [Google Scholar]
  59. Mori I, Ohshima Y. 1995. Neural regulation of thermotaxis in Caenorhabditis elegans. Nature 376:6538344–48 [Google Scholar]
  60. Mouritsen H, Janssen-Bienhold U, Liedvogel M, Feenders G, Stalleicken J. et al. 2004. Cryptochromes and neuronal-activity markers colocalize in the retina of migratory birds during magnetic orientation. PNAS 101:14294–99 [Google Scholar]
  61. Němec P, Altmann J, Marhold S, Burda H, Oelschläger HHA. 2001. Neuroanatomy of magnetoreception: the superior colliculus involved in magnetic orientation in a mammal. Science 294:5541366–68 [Google Scholar]
  62. Phillips JB, Borland C. 1992. Behavioural evidence for use of a light-dependent magnetoreception mechanism by a vertebrate. Nature 359:142–44 [Google Scholar]
  63. Phillips JB, Sayeed O. 1993. Wavelength-dependent effects of light on magnetic compass orientation in Drosophila melanogaster. J. Comp. Physiol. 172:303–8 [Google Scholar]
  64. Qin S, Yin H, Yang C, Dou Y, Liu Z. et al. 2016. A magnetic protein biocompass. Nat. Mater. 15:2217–26 [Google Scholar]
  65. Ramot D, MacInnis BL, Goodman MB. 2008. Bidirectional temperature-sensing by a single thermosensory neuron in C. elegans. Nat. Neurosci. 11:8908–15 [Google Scholar]
  66. Ranade SS, Woo SH, Dubin AE, Moshourab RA, Wetzel C. et al. 2014. Piezo2 is the major transducer of mechanical forces for touch sensation in mice. Nature 516:7529121–25 [Google Scholar]
  67. Renier N, Adams EL, Kirst C, Wu Z, Azevedo R. et al. 2016. Mapping of brain activity by automated volume analysis of immediate early genes. Cell 165:71789–802 [Google Scholar]
  68. Reppert SM, Gegear RJ, Merlin C. 2010. Navigational mechanisms of migrating monarch butterflies. Trends Neurosci 33:9399–406 [Google Scholar]
  69. Reppert SM, Guerra PA, Merlin C. 2016. Neurobiology of monarch butterfly migration. Annu. Rev. Entomol. 61:25–42 [Google Scholar]
  70. Ritz T, Adem S, Schulten K. 2000. A model for photoreceptor-based magnetoreception in birds. Biophys. J. 78:2707–18 [Google Scholar]
  71. Ritz T, Dommer DH, Phillips JB. 2002. Shedding light on vertebrate magnetoreception. Neuron 34:503–6 [Google Scholar]
  72. Ritz T, Wiltschko R, Hore PJ, Rodgers CT, Stapput K. et al. 2009. Magnetic compass of birds is based on a molecule with optimal directional sensitivity. Biophys. J. 96:83451–57 [Google Scholar]
  73. Ritz T, Yoshii T, Helfrich-Foerster C, Ahmad M. 2010. Cryptochrome: a photoreceptor with the properties of a magnetoreceptor?. Commun. Integr. Biol. 3:124–27 [Google Scholar]
  74. Schulten K, Swenberg CE, Weller A. 1978. A biomagnetic sensory mechanism based on magnetic field modulated coherent electron spin motion. Z. Phys. Chem. 111:11–5 [Google Scholar]
  75. Semm P, Demaine C. 1986. Neurophysiological properties of magnetic cells in the pigeon's visual system. J. Comp. Physiol. A 159:5619–25 [Google Scholar]
  76. Shaw J, Boyd A, House M, Woodward R, Mathes F. et al. 2015. Magnetic particle-mediated magnetoreception. J. R. Soc. Interface 12:1100499 [Google Scholar]
  77. Shcherbakov D, Winklhofer M, Petersen N, Steidle J, Hilbig R, Blum M. 2005. Magnetosensation in zebrafish. Curr. Biol. 15:5R161–62 [Google Scholar]
  78. Singhvi A, Liu B, Friedman CJ, Fong J, Lu Y. et al. 2016. A glial K/Cl transporter controls neuronal receptive ending shape by chloride inhibition of an rGC. Cell 165:4936–48 [Google Scholar]
  79. Solov'yov I, Greiner W. 2007. Theoretical analysis of an iron mineral-based magnetoreceptor in birds. Biophys. J. 93:1493–509 [Google Scholar]
  80. Stapput K, Güntürkün O, Hoffmann KP, Wiltschko R, Wiltschko W. 2010. Magnetoreception of directional information in birds requires nondegraded vision. Curr. Biol. 20:141259–62 [Google Scholar]
  81. Stapput K, Thalau P, Wiltschko R, Wiltschko W. 2008. Orientation of birds in total darkness. Curr. Biol. 18:8602–6 [Google Scholar]
  82. Takeishi A, Yu YV, Hapiak VM, Bell HW, O'Leary T, Sengupta P. 2016. Receptor-type guanylyl cyclases confer thermosensory responses in C. elegans. Neuron 90:2235–44 [Google Scholar]
  83. Tinsley JN, Molodtsov MI, Prevedel R, Wartmann D, Espigulé-Pons J. et al. 2016. Direct detection of a single photon by humans. Nat. Commun. 7:12172 [Google Scholar]
  84. Vidal-Gadea A, Ward K, Beron C, Ghorashian N, Gokce S. et al. 2015. Magnetosensitive neurons mediate geomagnetic orientation in Caenorhabditis elegans. eLife 4:e07493 [Google Scholar]
  85. Walcott C, Green RP. 1974. Orientation of homing pigeons altered by a change in the direction of an applied magnet field. Science 184:180–82 [Google Scholar]
  86. Walker MM, Dennis TE, Kirschvink JL. 2002. The magnetic sense and its use in long-distance navigation by animals. Curr. Opin. Neurobiol. 12:735–44 [Google Scholar]
  87. Wang JH, Cain SD, Lohmann KJ. 2004. Identifiable neurons inhibited by Earth-strength magnetic stimuli in the mollusc Tritonia diomedea. J. Exp. Biol. 207:Pt. 61043–49 [Google Scholar]
  88. White JG, Southgate E, Thomson JN, Brenner S. 1986. The structure of the nervous system of the nematode Caenorhabditis elegans. Philos. Trans. R. Soc. B 314:11651–340 [Google Scholar]
  89. Wiltschko R, Wiltschko W. 2012. Magnetoreception. Adv. Exp. Med. Biol 739:126–41 [Google Scholar]
  90. Wiltschko W, Munro U, Ford H, Wiltschko R. 1993. Red light disrupts magnetic orientation of migratory birds. Nature 364:525–27 [Google Scholar]
  91. Wiltschko W, Munro U, Ford H, Wiltschko R. 1998. Effect of a magnetic pulse on the orientation of silvereyes, Zosterops l. lateralis, during spring migration. J. Exp. Biol. 201:Pt. 233257–61 [Google Scholar]
  92. Wiltschko W, Munro U, Wiltschko R, Kirschvink J. 2002. Magnetite-based magnetoreception in birds: the effect of a biasing field and a pulse on migratory behavior. J. Exp. Biol. 205:3031–37 [Google Scholar]
  93. Wiltschko W, Wiltschko R. 1995. Migratory orientation of European robins is affected by the wavelength of light as well as by a magnetic pulse. J. Comp. Physiol. 177:363–69 [Google Scholar]
  94. Wiltschko W, Wiltschko R. 1996. Magnetic orientation in birds. J. Exp. Biol. 199:Pt. 129–38 [Google Scholar]
  95. Wiltschko W, Wiltschko R. 2005. Magnetic orientation and magnetoreception in birds and other animals. J. Comp. Physiol. A 191:8675–93 [Google Scholar]
  96. Winklhofer M, Kirschvink JL. 2010. A quantitative assessment of torque-transducer models for magneto-reception. J. R. Soc. Interface. 7:Suppl. 2S273–89 [Google Scholar]
  97. Woo SH, Ranade S, Weyer AD, Dubin AE, Baba Y. et al. 2014. Piezo2 is required for Merkel-cell mechano-transduction. Nature 509:7502622–26 [Google Scholar]
  98. Wu LQ, Dickman JD. 2011. Magnetoreception in an avian brain in part mediated by inner ear lagena. Curr. Biol. 21:5418–23 [Google Scholar]
  99. Wu LQ, Dickman JD. 2012. Neural correlates of a magnetic sense. Science 336:60841054–57 [Google Scholar]
  100. Ye L, Allen WE, Thompson KR, Tian Q, Hsueh B. et al. 2016. Wiring and molecular features of prefrontal ensembles representing distinct experiences. Cell 165:71776–88 [Google Scholar]
  101. Zapka M, Heyers D, Hein CM, Engels S, Schneider N. et al. 2009. Visual but not trigeminal mediation of magnetic compass information in a migratory bird. Nature 461:1274–77 [Google Scholar]

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error