Images projected onto the retina of an animal eye are rarely still. Instead, they usually contain motion signals originating either from moving objects or from retinal slip caused by self-motion. Accordingly, motion signals tell the animal in which direction a predator, prey, or the animal itself is moving. At the neural level, visual motion detection has been proposed to extract directional information by a delay-and-compare mechanism, representing a classic example of neural computation. Neurons responding selectively to motion in one but not in the other direction have been identified in many systems, most prominently in the mammalian retina and the fly optic lobe. Technological advances have now allowed researchers to characterize these neurons’ upstream circuits in exquisite detail. Focusing on these upstream circuits, we review and compare recent progress in understanding the mechanisms that generate direction selectivity in the early visual system of mammals and flies.


Article metrics loading...

Loading full text...

Full text loading...


Literature Cited

  1. Ammer G, Leonhardt A, Bahl A, Dickson BJ, Borst A. 2015. Functional specialization of neural input elements to the Drosophila ON motion detector. Curr. Biol. 25:172247–53 [Google Scholar]
  2. Amthor FR, Keyser KT, Dmitrieva NA. 2002. Effects of the destruction of starburst-cholinergic amacrine cells by the toxin AF64A on rabbit retinal directional selectivity. Vis. Neurosci. 19:4495–509 [Google Scholar]
  3. Arenz A, Drews MS, Richter FG, Ammer G, Borst A. 2017. The temporal tuning of the Drosophila motion detectors is determined by the dynamics of their input elements. Curr. Biol. 27:7929–44 [Google Scholar]
  4. Baden T, Berens P, Bethge M, Euler T. 2013. Spikes in mammalian bipolar cells support temporal layering of the inner retina. Curr. Biol. 23:148–52 [Google Scholar]
  5. Bahl A, Ammer G, Schilling T, Borst A. 2013. Object tracking in motion-blind flies. Nat. Neurosci. 16:6730–38 [Google Scholar]
  6. Baines RA, Uhler JP, Thompson A, Sweeney ST, Bate M. 2001. Altered electrical properties in Drosophila neurons developing without synaptic transmission. J. Neurosci. 21:51523–31 [Google Scholar]
  7. Barlow HB, Hill RM. 1963. Selective sensitivity to direction of movement in ganglion cells of the rabbit retina. Science 139:3553412–14 [Google Scholar]
  8. Barlow HB, Levick WR. 1965. The mechanism of directionally selective units in rabbit's retina. J. Physiol. 178:3477–504 [Google Scholar]
  9. Bausenwein B, Dittrich AP, Fischbach KF. 1992. The optic lobe of Drosophila melanogaster. II. Sorting of retinotopic pathways in the medulla. Cell Tissue Res 267:117–28 [Google Scholar]
  10. Behnia R, Clark DA, Carter AG, Clandinin TR, Desplan C. 2014. Processing properties of ON and OFF pathways for Drosophila motion detection. Nature 512:7515427–30 [Google Scholar]
  11. Borg-Graham LJ. 2001. The computation of directional selectivity in the retina occurs presynaptic to the ganglion cell. Nat. Neurosci. 4:2176–83 [Google Scholar]
  12. Borghuis BG, Marvin JS, Looger LL, Demb JB. 2013. Two-photon imaging of nonlinear glutamate release dynamics at bipolar cell synapses in the mouse retina. J. Neurosci. 33:2710972–85 [Google Scholar]
  13. Borst A, Helmstaedter M. 2015. Common circuit design in fly and mammalian motion vision. Nat. Neurosci. 18:81067–76 [Google Scholar]
  14. Briggman KL, Helmstaedter M, Denk W. 2011. Wiring specificity in the direction-selectivity circuit of the retina. Nature 471:7337183–88 [Google Scholar]
  15. Buchner E, Buchner S, Bülthoff I. 1984. Deoxyglucose mapping of nervous activity induced in Drosophila brain by visual movement. J. Comp. Physiol. A. 155:4471–83 [Google Scholar]
  16. Chen M, Lee S, Park SJH, Looger LL, Zhou ZJ. 2014. Receptive field properties of bipolar cell axon terminals in direction-selective sublaminas of the mouse retina. J. Neurophysiol. 112:81950–62 [Google Scholar]
  17. Chen Q, Pei Z, Koren D, Wei W. 2016. Stimulus-dependent recruitment of lateral inhibition underlies retinal direction selectivity. eLife 5:e21053 [Google Scholar]
  18. Chiappe ME, Seelig JD, Reiser MB, Jayaraman V. 2010. Walking modulates speed sensitivity in Drosophila motion vision. Curr. Biol. 20:161470–75 [Google Scholar]
  19. Cruz-Martín A, El-Danaf RN, Osakada F, Sriram B, Dhande OS. et al. 2014. A dedicated circuit links direction-selective retinal ganglion cells to the primary visual cortex. Nature 507:7492358–61 [Google Scholar]
  20. Ding H, Smith RG, Poleg-Polsky A, Diamond JS, Briggman KL. 2016. Species-specific wiring for direction selectivity in the mammalian retina. Nature 535:7610105–10 [Google Scholar]
  21. Dmitriev AV, Gavrikov KE, Mangel SC. 2012. GABA-mediated spatial and temporal asymmetries that contribute to the directionally selective light responses of starburst amacrine cells in retina. J. Physiol. 590:71699–720 [Google Scholar]
  22. Duffy CJ, Wurtz RH. 1991. Sensitivity of MST neurons to optic flow stimuli. I. A continuum of response selectivity to large-field stimuli. J. Neurophysiol. 65:61329–45 [Google Scholar]
  23. Dvorak DR, Bishop LG, Eckert HE. 1975. On the identification of movement detectors in the fly optic lobe. J. Comp. Physiol. A. 100:15–23 [Google Scholar]
  24. Eichner H, Joesch M, Schnell B, Reiff DF, Borst A. 2011. Internal structure of the fly elementary motion detector. Neuron 70:61155–64 [Google Scholar]
  25. Euler T, Detwiler PB, Denk W. 2002. Directionally selective calcium signals in dendrites of starburst amacrine cells. Nature 418:6900845–52 [Google Scholar]
  26. Exner S. 1894. Primäre und secundäre Empfindungen. Entwurf zu einer physiologischen Erklärung der psychischen Erscheinungen. I. Theil179–202 Vienna: Deuticke, Leipzig & Wien [Google Scholar]
  27. Famiglietti EV. 1991. Synaptic organization of starburst amacrine cells in rabbit retina: analysis of serial thin sections by electron microscopy and graphic reconstruction. J. Comp. Neurol. 309:140–70 [Google Scholar]
  28. Fischbach KF, Dittrich APM. 1989. The optic lobe of Drosophila melanogaster. I. A Golgi analysis of wild-type structure. Cell Tissue Res 258:3441–75 [Google Scholar]
  29. Fisher YE, Leong JCS, Sporar K, Ketkar MD, Gohl DM. et al. 2015a. A class of visual neurons with wide-field properties is required for local motion detection. Curr. Biol. 25:243178–89 [Google Scholar]
  30. Fisher YE, Silies M, Clandinin TR. 2015b. Orientation selectivity sharpens motion detection in Drosophila. Neuron 88:2390–402 [Google Scholar]
  31. Fransen JW, Borghuis BG. 2017. Temporally diverse excitation generates direction-selective responses in ON- and OFF-type retinal starburst amacrine cells. Cell Rep. 18:61356–65 [Google Scholar]
  32. Gavrikov KE, Nilson JE, Dmitriev AV, Zucker CL, Mangel SC. 2006. Dendritic compartmentalization of chloride cotransporters underlies directional responses of starburst amacrine cells in retina. PNAS 103:4918793–98 [Google Scholar]
  33. Götz KG. 1964. Optomotorische Untersuchung des visuellen Systems einiger Augenmutanten der Fruchtfliege Drosophila. Kybernetik 2:277–92 [Google Scholar]
  34. Greene MJ, Kim JS, Seung HS, EyeWirers. 2016. Analogous convergence of sustained and transient inputs in parallel On and Off pathways for retinal motion computation. Cell Rep 14:81892–900 [Google Scholar]
  35. Haag J, Arenz A, Serbe E, Gabbiani F, Borst A. 2016. Complementary mechanisms create direction selectivity in the fly. eLife 5:e17421 [Google Scholar]
  36. Haag J, Denk W, Borst A. 2004. Fly motion vision is based on Reichardt detectors regardless of the signal-to-noise ratio. PNAS 101:4616333–38 [Google Scholar]
  37. Hasegawa E, Kitada Y, Kaido M, Takayama R, Awasaki T. et al. 2011. Concentric zones, cell migration and neuronal circuits in the Drosophila visual center. Development 138:5983–93 [Google Scholar]
  38. Hassenstein B, Reichardt W. 1956. Systemtheoretische Analyse der Zeit-, Reihenfolgen- und Vorzeichenauswertung bei der Bewegungsperzeption des Rüsselkäfers Chlorophanus. Z. Naturforsch. B. 11:9–10513–24 [Google Scholar]
  39. Hausen K. 1984. The lobula-complex of the fly: structure, function and significance in visual behaviour. Photoreception and Vision in Invertebrates MA Ali 523–59 New York/London: Plenum [Google Scholar]
  40. Hausselt SE, Euler T, Detwiler PB, Denk W. 2007. A dendrite-autonomous mechanism for direction selectivity in retinal starburst amacrine cells. PLOS Biol 5:7e185 [Google Scholar]
  41. Hengstenberg R, Hausen K, Hengstenberg B. 1982. The number and structure of giant vertical cells (VS) in the lobula plate of the blowfly Calliphora erythrocephala. J. Comp. Physiol. A 149:2163–77 [Google Scholar]
  42. Hopp E, Borst A, Haag J. 2014. Subcellular mapping of dendritic activity in optic flow processing neurons. J. Comp. Physiol. A 200:5359–70 [Google Scholar]
  43. Hubel DH. 1959. Single unit activity in striate cortex of unrestrained cats. J. Physiol. 147:2226–38 [Google Scholar]
  44. Joesch M, Plett J, Borst A, Reiff DF. 2008. Response properties of motion-sensitive visual interneurons in the lobula plate of Drosophila melanogaster. Curr. Biol. 18:5368–74 [Google Scholar]
  45. Joesch M, Schnell B, Raghu SV, Reiff DF, Borst A. 2010. ON and OFF pathways in Drosophila motion vision. Nature 468:7321300–4 [Google Scholar]
  46. Joesch M, Weber F, Eichner H, Borst A. 2013. Functional specialization of parallel motion detection circuits in the fly. J. Neurosci. 33:3902–5 [Google Scholar]
  47. Jung SN, Borst A, Haag J. 2011. Flight activity alters velocity tuning of fly motion-sensitive neurons. J. Neurosci. 31:259231–37 [Google Scholar]
  48. Kim JS, Greene MJ, Zlateski A, Lee K, Richardson M. et al. 2014. Space-time wiring specificity supports direction selectivity in the retina. Nature 509:7500331–36 [Google Scholar]
  49. Kitamoto T. 2001. Conditional modification of behavior in Drosophila by targeted expression of a temperature-sensitive shibire allele in defined neurons. J. Neurobiol 47:281–92 [Google Scholar]
  50. Koizumi A, Jakobs TC, Masland RH. 2011. Regular mosaic of synaptic contacts among three retinal neurons. J. Comp. Neurol. 519:2341–57 [Google Scholar]
  51. Kostadinov D, Sanes JR. 2015. Protocadherin-dependent dendritic self-avoidance regulates neural connectivity and circuit function. eLife 4:e08964 [Google Scholar]
  52. Krapp HG, Hengstenberg R. 1996. Estimation of self-motion by optic flow processing in single visual interneurons. Nature 384:6608463–66 [Google Scholar]
  53. Lee S, Kim K, Zhou ZJ. 2010. Role of ACh-GABA cotransmission in detecting image motion and motion direction. Neuron 68:61159–72 [Google Scholar]
  54. Lee S, Zhou ZJ. 2006. The synaptic mechanism of direction selectivity in distal processes of starburst amacrine cells. Neuron 51:6787–99 [Google Scholar]
  55. Leong JCS, Esch JJ, Poole B, Ganguli S, Clandinin TR. 2016. Direction selectivity in Drosophila emerges from preferred-direction enhancement and null-direction suppression. J. Neurosci. 36:318078–92 [Google Scholar]
  56. Leonhardt A, Ammer G, Meier M, Serbe E, Bahl A, Borst A. 2016. Asymmetry of Drosophila ON and OFF motion detectors enhances real-world velocity estimation. Nat. Neurosci. 19:5706–15 [Google Scholar]
  57. Lipin MY, Taylor WR, Smith RG. 2015. Inhibitory input to the direction-selective ganglion cell is saturated at low contrast. J. Neurophysiol. 114:2927–41 [Google Scholar]
  58. Livingstone M, Hubel D. 1988. Segregation of form, color, movement, and depth: anatomy, physiology, and perception. Science 240:4853740–49 [Google Scholar]
  59. Longden KD, Krapp HG. 2010. Octopaminergic modulation of temporal frequency coding in an identified optic flow-processing interneuron. Front. Syst. Neurosci. 4:153 [Google Scholar]
  60. Maisak MS, Haag J, Ammer G, Serbe E, Meier M. et al. 2013. A directional tuning map of Drosophila elementary motion detectors. Nature 500:7461212–16 [Google Scholar]
  61. Masland RH. 1969. Visual motion perception: experimental modification. Science 165:3895819–21 [Google Scholar]
  62. Mauss AS, Meier M, Serbe E, Borst A. 2014. Optogenetic and pharmacologic dissection of feedforward inhibition in Drosophila motion vision. J. Neurosci. 34:62254–63 [Google Scholar]
  63. Mauss AS, Pankova K, Arenz A, Nern A, Rubin GM, Borst A. 2015. Neural circuit to integrate opposing motions in the visual field. Cell 162:2351–62 [Google Scholar]
  64. Meier M, Serbe E, Maisak MS, Haag J, Dickson BJ, Borst A. 2014. Neural circuit components of the Drosophila OFF motion vision pathway. Curr. Biol. 24:4385–92 [Google Scholar]
  65. Münch TA, Werblin FS. 2006. Symmetric interactions within a homogeneous starburst cell network can lead to robust asymmetries in dendrites of starburst amacrine cells. J. Neurophysiol. 96:1471–77 [Google Scholar]
  66. Oesch N, Euler T, Taylor WR. 2005. Direction-selective dendritic action potentials in rabbit retina. Neuron 47:5739–50 [Google Scholar]
  67. Pankova K, Borst A. 2017. Transgenic line for the identification of cholinergic release sites in Drosophila melanogaster. J. Exp. Biol. 220:1405–10 [Google Scholar]
  68. Park SJH, Kim I-J, Looger LL, Demb JB, Borghuis BG. 2014. Excitatory synaptic inputs to mouse on-off direction-selective retinal ganglion cells lack direction tuning. J. Neurosci. 34:113976–81 [Google Scholar]
  69. Pei Z, Chen Q, Koren D, Giammarinaro B, Acaron LH, Wei W. 2015. Conditional knock-out of vesicular GABA transporter gene from starburst amacrine cells reveals the contributions of multiple synaptic mechanisms underlying direction selectivity in the retina. J. Neurosci. 35:3813219–32 [Google Scholar]
  70. Pierantoni R. 1976. A look into the cock-pit of the fly: the architecture of the lobular plate. Cell Tissue Res 171:1101–22 [Google Scholar]
  71. Poleg-Polsky A, Diamond JS. 2011. Imperfect space clamp permits electrotonic interactions between inhibitory and excitatory synaptic conductances, distorting voltage clamp recordings. PLOS ONE 6:4e19463 [Google Scholar]
  72. Poleg-Polsky A, Diamond JS. 2016a. NMDA receptors multiplicatively scale visual signals and enhance directional motion discrimination in retinal ganglion cells. Neuron 89:61277–90 [Google Scholar]
  73. Poleg-Polsky A, Diamond JS. 2016b. Retinal circuitry balances contrast tuning of excitation and inhibition to enable reliable computation of direction selectivity. J. Neurosci. 36:215861–76 [Google Scholar]
  74. Priebe NJ, Ferster D. 2008. Inhibition, spike threshold, and stimulus selectivity in primary visual cortex. Neuron 57:4482–97 [Google Scholar]
  75. Pulver SR, Pashkovski SL, Hornstein NJ, Garrity PA, Griffith LC. 2009. Temporal dynamics of neuronal activation by Channelrhodopsin-2 and TRPA1 determine behavioral output in Drosophila larvae. J. Neurophysiol. 101:63075–88 [Google Scholar]
  76. Raghu SV, Reiff DF, Borst A. 2011. Neurons with cholinergic phenotype in the visual system of Drosophila. J. Comp. Neurol. 519:1162–76 [Google Scholar]
  77. Rivlin-Etzion M, Wei W, Feller MB. 2012. Visual stimulation reverses the directional preference of direction-selective retinal ganglion cells. Neuron 76:3518–25 [Google Scholar]
  78. Sanes JR, Zipursky SL. 2010. Design principles of insect and vertebrate visual systems. Neuron 66:115–36 [Google Scholar]
  79. Schilling T, Borst A. 2015. Local motion detectors are required for the computation of expansion flow-fields. Biol. Open. 4:91105–8 [Google Scholar]
  80. Schnell B, Joesch M, Forstner F, Raghu SV, Otsuna H. et al. 2010. Processing of horizontal optic flow in three visual interneurons of the Drosophila brain. J. Neurophysiol. 103:31646–57 [Google Scholar]
  81. Schnell B, Raghu SV, Nern A, Borst A. 2012. Columnar cells necessary for motion responses of wide-field visual interneurons in Drosophila. J. Comp. Physiol. A 198:5389–95 [Google Scholar]
  82. Scott EK, Raabe T, Luo L. 2002. Structure of the vertical and horizontal system neurons of the lobula plate in Drosophila. J. Comp. Neurol. 454:4470–81 [Google Scholar]
  83. Serbe E, Meier M, Leonhardt A, Borst A. 2016. Comprehensive characterization of the major presynaptic elements to the Drosophila OFF motion detector. Neuron 89:4829–41 [Google Scholar]
  84. Sethuramanujam S, McLaughlin AJ, deRosenroll G, Hoggarth A, Schwab DJ, Awatramani GB. 2016. A central role for mixed acetylcholine/GABA transmission in direction coding in the retina. Neuron 90:61243–56 [Google Scholar]
  85. Shinomiya K, Karuppudurai T, Lin T-Y, Lu Z, Lee C-H, Meinertzhagen IA. 2014. Candidate neural substrates for off-edge motion detection in Drosophila. Curr. Biol. 24:101062–70 [Google Scholar]
  86. Silies M, Gohl DM, Fisher YE, Freifeld L, Clark DA, Clandinin TR. 2013. Modular use of peripheral input channels tunes motion-detecting circuitry. Neuron 79:1111–27 [Google Scholar]
  87. Single S, Borst A. 1998. Dendritic integration and its role in computing image velocity. Science 281:53841848–50 [Google Scholar]
  88. Sivyer B, Williams SR. 2013. Direction selectivity is computed by active dendritic integration in retinal ganglion cells. Nat. Neurosci. 16:121848–56 [Google Scholar]
  89. Stincic T, Smith RG, Taylor WR. 2016. Time course of EPSCs in ON-type starburst amacrine cells is independent of dendritic location. J. Physiol. 594:195685–94 [Google Scholar]
  90. Strother JA, Wu S-T, Wong AM, Nern A, Rogers EM. et al. 2017. The emergence of directional selectivity in the visual motion pathway of Drosophila. Neuron 94:1168–82 [Google Scholar]
  91. Sun LO, Jiang Z, Rivlin-Etzion M, Hand R, Brady CM. et al. 2013. On and Off retinal circuit assembly by divergent molecular mechanisms. Science 342:61581241974 [Google Scholar]
  92. Suver MP, Mamiya A, Dickinson MH. 2012. Octopamine neurons mediate flight-induced modulation of visual processing in Drosophila. Curr. Biol. 22:242294–302 [Google Scholar]
  93. Sweeney ST, Broadie K, Keane J, Niemann H, O'Kane CJ. 1995. Targeted expression of tetanus toxin light chain in Drosophila specifically eliminates synaptic transmission and causes behavioral defects. Neuron 14:2341–51 [Google Scholar]
  94. Takemura S-Y, Bharioke A, Lu Z, Nern A, Vitaladevuni S. et al. 2013. A visual motion detection circuit suggested by Drosophila connectomics. Nature 500:7461175–81 [Google Scholar]
  95. Takemura S-Y, Karuppudurai T, Ting C-Y, Lu Z, Lee C-H, Meinertzhagen IA. 2011. Cholinergic circuits integrate neighboring visual signals in a Drosophila motion detection pathway. Curr. Biol. 21:242077–84 [Google Scholar]
  96. Takemura S-Y, Nern A, Chklovskii DB, Scheffer LK, Rubin GM, Meinertzhagen IA. 2017. The comprehensive connectome of a neural substrate for ‘ON’ motion detection in Drosophila. eLife 6:e24394 [Google Scholar]
  97. Taylor WR, He S, Levick WR, Vaney DI. 2000. Dendritic computation of direction selectivity by retinal ganglion cells. Science 289:54882347–50 [Google Scholar]
  98. Taylor WR, Vaney DI. 2002. Diverse synaptic mechanisms generate direction selectivity in the rabbit retina. J. Neurosci. 22:177712–20 [Google Scholar]
  99. Tjepkes DS, Amthor FR. 2000. The role of NMDA channels in rabbit retinal directional selectivity. Vis. Neurosci. 17:2291–302 [Google Scholar]
  100. Trenholm S, McLaughlin AJ, Schwab DJ, Turner MH, Smith RG. et al. 2014. Nonlinear dendritic integration of electrical and chemical synaptic inputs drives fine-scale correlations. Nat. Neurosci. 17:121759–66 [Google Scholar]
  101. Tukker JJ, Taylor WR, Smith RG. 2004. Direction selectivity in a model of the starburst amacrine cell. Vis. Neurosci. 21:4611–25 [Google Scholar]
  102. Vlasits AL, Bos R, Morrie RD, Fortuny C, Flannery JG. et al. 2014. Visual stimulation switches the polarity of excitatory input to starburst amacrine cells. Neuron 83:51172–84 [Google Scholar]
  103. Vlasits AL, Morrie RD, Tran-Van-Minh A, Bleckert A, Gainer CF. et al. 2016. A role for synaptic input distribution in a dendritic computation of motion direction in the retina. Neuron 89:61317–30 [Google Scholar]
  104. Wylie DR, Bischof WF, Frost BJ. 1998. Common reference frame for neural coding of translational and rotational optic flow. Nature 392:6673278–82 [Google Scholar]
  105. Yang HH, St-Pierre F, Sun X, Ding X, Lin MZ, Clandinin TR. 2016. Subcellular imaging of voltage and calcium signals reveals neural processing in vivo. Cell 166:1245–57 [Google Scholar]
  106. Yonehara K, Farrow K, Ghanem A, Hillier D, Balint K. et al. 2013. The first stage of cardinal direction selectivity is localized to the dendrites of retinal ganglion cells. Neuron 79:61078–85 [Google Scholar]
  107. Yoshida K, Watanabe D, Ishikane H, Tachibana M, Pastan I, Nakanishi S. 2001. A key role of starburst amacrine cells in originating retinal directional selectivity and optokinetic eye movement. Neuron 30:3771–80 [Google Scholar]

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error