The motor cortex is far from a stable conduit for motor commands and instead undergoes significant changes during learning. An understanding of motor cortex plasticity has been advanced greatly using rodents as experimental animals. Two major focuses of this research have been on the connectivity and activity of the motor cortex. The motor cortex exhibits structural changes in response to learning, and substantial evidence has implicated the local formation and maintenance of new synapses as crucial substrates of motor learning. This synaptic reorganization translates into changes in spiking activity, which appear to result in a modification and refinement of the relationship between motor cortical activity and movement. This review presents the progress that has been made using rodents to establish the motor cortex as an adaptive structure that supports motor learning.


Article metrics loading...

Loading full text...

Full text loading...


Literature Cited

  1. Adkins DL, Boychuk J, Remple MS, Kleim JA. 2006. Motor training induces experience-specific patterns of plasticity across motor cortex and spinal cord. J. Appl. Physiol. 101:61776–82 [Google Scholar]
  2. Aflalo TN, Graziano MSA. 2006. Possible origins of the complex topographic organization of motor cortex: reduction of a multidimensional space onto a two-dimensional array. J. Neurosci. 26:236288–97 [Google Scholar]
  3. Alaverdashvili M, Whishaw IQ. 2008. Motor cortex stroke impairs individual digit movement in skilled reaching by the rat. Eur. J. Neurosci. 28:2311–22 [Google Scholar]
  4. Alstermark B, Ogawa J, Isa T. 2004. Lack of monosynaptic corticomotoneuronal EPSPs in rats: disynaptic EPSPs mediated via reticulospinal neurons and polysynaptic EPSPs via segmental interneurons. J. Neurophysiol. 91:41832–39 [Google Scholar]
  5. Alstermark B, Ohlson S. 2000. Origin of corticospinal neurones evoking disynaptic excitation in forelimb motoneurones mediated via C3-C4 propriospinal neurones in the cat. Neurosci. Res. 37:291–100 [Google Scholar]
  6. Anderson CT, Sheets PL, Kiritani T, Shepherd GMG. 2010. Sublayer-specific microcircuits of corticospinal and corticostriatal neurons in motor cortex. Nat. Neurosci. 13:6739–44 [Google Scholar]
  7. Arduin P-J, Fregnac Y, Shulz DE, Ego-Stengel V. 2013. “Master” neurons induced by operant conditioning in rat motor cortex during a brain-machine interface task. J. Neurosci. 33:198308–20 [Google Scholar]
  8. Armand J. 1982. The origin, course and terminations of corticospinal fibers in various mammals. Prog. Brain Res. 57:329–60 [Google Scholar]
  9. Aroniadou VA, Keller A. 1995. Mechanisms of LTP induction in rat motor cortex in vitro. Cereb. Cortex 5:4353–62 [Google Scholar]
  10. Asanuma H, Sakata H. 1967. Functional organization of a cortical efferent system examined with focal depth stimulation in cats. J. Neurophysiol. 30:35–54 [Google Scholar]
  11. Baranyi A, Feher O. 1978. Conditioned changes of synaptic transmission in the motor cortex of the cat. Exp. Brain Res. 33:2283–98 [Google Scholar]
  12. Beevor CE, Horsley V. 1890. A record of the results obtained by electrical excitation of the so-called motor cortex and internal capsule in an orang-outang (Simia satyrus). Philos. Trans. R. Soc. B 181:129–58 [Google Scholar]
  13. Biane JS, Takashima Y, Scanziani M, Conner JM, Tuszynski MH. 2016. Thalamocortical projections onto behaviorally relevant neurons exhibit plasticity during adult motor learning. Neuron 89:61173–79 [Google Scholar]
  14. Cao VY, Ye Y, Mastwal S, Ren M, Coon M. et al. 2015. Motor learning consolidates Arc-expressing neuronal ensembles in secondary motor cortex. Neuron 86:61385–92 [Google Scholar]
  15. Castro AJ. 1972. The effects of cortical ablations on digital usage in the rat. Brain Res 37:2173–85 [Google Scholar]
  16. Castro-Alaniancos MA, Borrell J. 1995. Functional recovery of forelimb response capacity after forelimb primary motor cortex damage in the rat is due to the reorganization of adjacent areas of cortex. Neuroscience 68:3793–805 [Google Scholar]
  17. Chapin JK, Moxon KA, Markowitz RS, Nicolelis MA. 1999. Real-time control of a robot arm using simultaneously recorded neurons in the motor cortex. Nat. Neurosci. 2:7664–70 [Google Scholar]
  18. Chen JL, Margolis DJ, Stankov A, Sumanovski LT, Schneider BL, Helmchen F. 2015. Pathway-specific reorganization of projection neurons in somatosensory cortex during learning. Nat. Neurosci. 18:81101–8 [Google Scholar]
  19. Chen JL, Voigt FF, Javadzadeh M, Krueppel R, Helmchen F. 2016. Long-range population dynamics of anatomically defined neocortical networks. eLife 5:e14679 [Google Scholar]
  20. Chen SX, Kim AN, Peters AJ, Komiyama T. 2015. Subtype-specific plasticity of inhibitory circuits in motor cortex during motor learning. Nat. Neurosci. 18:81109–15 [Google Scholar]
  21. Churchland MM, Cunningham JP, Kaufman MT, Foster JD, Nuyujukian P. et al. 2012. Neural population dynamics during reaching. Nature 487:740551–56 [Google Scholar]
  22. Clancy KB, Koralek AC, Costa RM, Feldman DE, Carmena JM. 2014. Volitional modulation of optically recorded calcium signals during neuroprosthetic learning. Nat. Neurosci. 17:6807–9 [Google Scholar]
  23. Cohen D, Nicolelis MAL. 2004. Reduction of single-neuron firing uncertainty by cortical ensembles during motor skill learning. J. Neurosci. 24:143574–82 [Google Scholar]
  24. Cohen JD, Castro-Alamancos MA. 2005. Skilled motor learning does not enhance long-term depression in the motor cortex in vivo. J. Neurophysiol. 93:31486–97 [Google Scholar]
  25. Conner JM, Chiba AA, Tuszynski MH. 2005. The basal forebrain cholinergic system is essential for cortical plasticity and functional recovery following brain injury. Neuron 46:2173–79 [Google Scholar]
  26. Conner JM, Culberson A, Packowski C, Chiba AA, Tuszynski MH. 2003. Lesions of the basal forebrain cholinergic system impair task acquisition and abolish cortical plasticity associated with motor skill learning. Neuron 38:5819–29 [Google Scholar]
  27. Costa RM, Cohen D, Nicolelis MAL. 2004. Differential corticostriatal plasticity during fast and slow motor skill learning in mice. Curr. Biol. 14:1124–34 [Google Scholar]
  28. Craggs MD, Rushton DN, Clayton DG. 1976. The stability of the electrical stimulation map of the motor cortex of the anesthetized baboon. Brain 99:3575–600 [Google Scholar]
  29. Dombeck DA, Graziano MS, Tank DW. 2009. Functional clustering of neurons in motor cortex determined by cellular resolution imaging in awake behaving mice. J. Neurosci. 29:4413751–60 [Google Scholar]
  30. Donato F, Rompani SB, Caroni P. 2013. Parvalbumin-expressing basket-cell network plasticity induced by experience regulates adult learning. Nature 504:7479272–76 [Google Scholar]
  31. Donoghue JP, Kerman KL, Ebner FF. 1979. Evidence for two organizational plans within the somatic sensory-motor cortex of the rat. J. Comp. Neurol. 183:3647–63 [Google Scholar]
  32. Doya K. 1999. What are the computations of the cerebellum, the basal ganglia and the cerebral cortex. ? Neural Netw 12:7–8961–74 [Google Scholar]
  33. Dum RP, Strick PL. 2002. Motor areas in the frontal lobe of the primate. Physiol. Behav. 77:4–5677–82 [Google Scholar]
  34. Esposito MS, Capelli P, Arber S. 2014. Brainstem nucleus MdV mediates skilled forelimb motor tasks. Nature 508:351–56 [Google Scholar]
  35. Evarts EV. 1965. Relation of discharge frequency to conduction velocity in pyramidal tract neurons. J. Neurophysiol. 28:6216–28 [Google Scholar]
  36. Fritsch G, Hitzig E. 1870. Über die electrische Erregbarkeit des Grosshirns. Arch. Anat. Physiol. 37:300–32 [Google Scholar]
  37. Fu M, Yu X, Lu J, Zuo Y. 2012. Repetitive motor learning induces coordinated formation of clustered dendritic spines in vivo. Nature 483:92–95 [Google Scholar]
  38. Fulton JF. 1935. A note on the definition of the “motor” and “premotor” areas. Brain 58:2311–16 [Google Scholar]
  39. Georgopoulos AP, Grillner S. 1989. Visuomotor coordination in reaching and locomotion. Science 245:49231209–10 [Google Scholar]
  40. Gloor C, Luft AR, Hosp JA. 2015. Biphasic plasticity of dendritic fields in layer V motor neurons in response to motor learning. Neurobiol. Learn. Mem. 125:198–94 [Google Scholar]
  41. Goard MJ, Pho GN, Woodson J, Sur M. 2016. Distinct roles of visual, parietal, and frontal motor cortices in memory-guided sensorimotor decisions. eLife 5:e13764 [Google Scholar]
  42. Goldberg JH, Farries MA, Fee MS. 2013. Basal ganglia output to the thalamus: still a paradox. Trends Neurosci 36:12695–705 [Google Scholar]
  43. Greenough WT, Larson JR, Withers GS. 1985. Effects of unilateral and bilateral training in a reaching task on dendritic branching of neurons in the rat motor-sensory forelimb cortex. Behav. Neural Biol. 44:2301–14 [Google Scholar]
  44. Guo J-Z, Graves AR, Guo WW, Zheng J, Lee A. et al. 2015. Cortex commands the performance of skilled movement. eLife 4:e10774 [Google Scholar]
  45. Guo L, Xiong H, Kim J-I, Wu Y-W, Lalchandani RR. et al. 2015. Dynamic rewiring of neural circuits in the motor cortex in mouse models of Parkinson's disease. Nat Neurosci 18:91299–309 [Google Scholar]
  46. Guo ZV, Li N, Huber D, Ophir E, Gutnisky D. et al. 2014. Flow of cortical activity underlying a tactile decision in mice. Neuron 81:1179–94 [Google Scholar]
  47. Hamaguchi K, Tanaka M, Mooney R. 2016. A distributed recurrent network contributes to temporally precise vocalizations. Neuron 91:3680–93 [Google Scholar]
  48. Harms KJ, Rioult-Pedotti M-S, Carter DR, Dunaevsky A. 2008. Transient spine expansion and learning-induced plasticity in layer 1 primary motor cortex. J. Neurosci. 28:225686–90 [Google Scholar]
  49. Harris KD, Shepherd GMG. 2015. The neocortical circuit: themes and variations. Nat. Neurosci. 18:2170–81 [Google Scholar]
  50. Harrison TC, Ayling OGS, Murphy TH. 2012. Distinct cortical circuit mechanisms for complex forelimb movement and motor map topography. Neuron 74:2397–409 [Google Scholar]
  51. Hayashi-Takagi A, Yagishita S, Nakamura M, Shirai F, Wu YI. et al. 2015. Labelling and optical erasure of synaptic memory traces in the motor cortex. Nature 525:7569333–38 [Google Scholar]
  52. Heffner R, Masterton B. 1975. Variation in form of the pyramidal tract and its relationship to digital dexterity. Brain. Behav. Evol. 12:3161–200 [Google Scholar]
  53. Hess G, Aizenman CD, Donoghue JP. 1996. Conditions for the induction of long-term potentiation in layer II/III horizontal connections of the rat motor cortex. J. Neurophysiol. 75:51765–78 [Google Scholar]
  54. Hess G, Donoghue JP. 1994. Long-term potentiation of horizontal connections provides a mechanism to reorganize cortical motor maps. J. Neurophysiol. 71:62543–47 [Google Scholar]
  55. Hess G, Donoghue JP. 1996. Long-term depression of horizontal connections in rat motor cortex. Eur. J. Neurosci. 8:4658–65 [Google Scholar]
  56. Hikosaka O, Nakamura K, Sakai K, Nakahara H. 2002. Central mechanisms of motor skill learning. Curr. Opin. Neurobiol. 12:2217–22 [Google Scholar]
  57. Hira R, Ohkubo F, Masamizu Y, Ohkura M, Nakai J. et al. 2014. Reward-timing-dependent bidirectional modulation of cortical microcircuits during optical single-neuron operant conditioning. Nat. Commun. 5:5551 [Google Scholar]
  58. Hira R, Ohkubo F, Ozawa K, Isomura Y, Kitamura K. et al. 2013a. Spatiotemporal dynamics of functional clusters of neurons in the mouse motor cortex during a voluntary movement. J. Neurosci. 33:41377–90 [Google Scholar]
  59. Hira R, Ohkubo F, Tanaka YR, Masamizu Y, Augustine GJ. et al. 2013b. In vivo optogenetic tracing of functional corticocortical connections between motor forelimb areas. Front. Neural Circuits 7:55 [Google Scholar]
  60. Hira R, Terada S-I, Kondo M, Matsuzaki M. 2015. Distinct functional modules for discrete and rhythmic forelimb movements in the mouse motor cortex. J. Neurosci. 35:3913311–22 [Google Scholar]
  61. Histed MH, Bonin V, Reid RC. 2009. Direct activation of sparse, distributed populations of cortical neurons by electrical microstimulation. Neuron 63:4508–22 [Google Scholar]
  62. Hooks BM, Mao T, Gutnisky DA, Yamawaki N, Svoboda K, Shepherd GMG. 2013. Organization of cortical and thalamic input to pyramidal neurons in mouse motor cortex. J. Neurosci. 33:2748–60 [Google Scholar]
  63. Hosp JA, Molina-Luna K, Hertler B, Atiemo CO, Luft AR. 2009. Dopaminergic modulation of motor maps in rat motor cortex: an in vivo study. Neuroscience 159:2692–700 [Google Scholar]
  64. Hosp JA, Pekanovic A, Rioult-Pedotti MS, Luft AR. 2011. Dopaminergic projections from midbrain to primary motor cortex mediate motor skill learning. J. Neurosci. 31:72481–87 [Google Scholar]
  65. Houk JC, Wise SP. 1995. Distributed modular architectures linking basal ganglia, cerebellum, and cerebral cortex their role in planning and controlling action. Cereb. Cortex 5:295–110 [Google Scholar]
  66. Huber D, Gutnisky DA, Peron S, O'Connor DH, Wiegert JS. et al. 2012. Multiple dynamic representations in the motor cortex during sensorimotor learning. Nature 484:7395473–78 [Google Scholar]
  67. Huntley GW. 1997. Correlation between patterns of horizontal connectivity and the extent of short-term representational plasticity in rat motor cortex. Cereb. Cortex 7:2143–56 [Google Scholar]
  68. Hyland B. 1998. Neural activity related to reaching and grasping in rostral and caudal regions of rat motor cortex. Behav. Brain Res. 94:2255–69 [Google Scholar]
  69. Iriki A, Keller A, Pavlides C, Asanuma H. 1990. Long-lasting facilitation of pyramidal tract input to spinal interneurons. NeuroReport 1:2157–60 [Google Scholar]
  70. Iriki A, Pavlides C, Keller A, Asanuma H. 1989. Long-term potentiation in the motor cortex. Science 245:49241385–87 [Google Scholar]
  71. Iriki A, Pavlides C, Keller A, Asanuma H. 1991. Long-term potentiation of thalamic input to the motor cortex induced by coactivation of thalamocortical and corticocortical afferents. J. Neurophysiol. 65:61435–41 [Google Scholar]
  72. Isomura Y, Harukuni R, Takekawa T, Aizawa H, Fukai T. 2009. Microcircuitry coordination of cortical motor information in self-initiation of voluntary movements. Nat. Neurosci. 12:121586–93 [Google Scholar]
  73. Kaneko T. 2013. Local connections of excitatory neurons in motor-associated cortical areas of the rat. Front. Neural Circuits 7:75 [Google Scholar]
  74. Kargo WJ, Nitz DA. 2003. Early skill learning is expressed through selection and tuning of cortically represented muscle synergies. J. Neurosci. 23:3511255–69 [Google Scholar]
  75. Kargo WJ, Nitz DA. 2004. Improvements in the signal-to-noise ratio of motor cortex cells distinguish early versus late phases of motor skill learning. J. Neurosci. 24:245560–69 [Google Scholar]
  76. Kawai R, Markman T, Poddar R, Ko R, Fantana AL. et al. 2015. Motor cortex is required for learning but not for executing a motor skill. 863800–12
  77. Kimura A, Caria MA, Melis F, Asanuma H. 1994. Long-term potentiation within the cat motor cortex. NeuroReport 5:172372–76 [Google Scholar]
  78. Kiritani T, Wickersham IR, Seung HS, Shepherd GMG. 2012. Hierarchical connectivity and connection-specific dynamics in the corticospinal-corticostriatal microcircuit in mouse motor cortex. J. Neurosci. 32:144992–5001 [Google Scholar]
  79. Kita T, Kita H. 2012. The subthalamic nucleus is one of multiple innervation sites for long-range corticofugal axons: a single-axon tracing study in the rat. J. Neurosci. 32:175990–99 [Google Scholar]
  80. Kleim JA, Barbay S, Cooper NR, Hogg TM, Reidel CN. et al. 2002. Motor learning-dependent synaptogenesis is localized to functionally reorganized motor cortex. Neurobiol. Learn. Mem. 77:163–77 [Google Scholar]
  81. Kleim JA, Barbay S, Nudo RJ. 1998. Functional reorganization of the rat motor cortex following motor skill learning. J. Neurophysiol. 80:63321–25 [Google Scholar]
  82. Kleim JA, Bruneau R, Calder K, Pocock D, VandenBerg PM. et al. 2003. Functional organization of adult motor cortex is dependent upon continued protein synthesis. Neuron 40:1167–76 [Google Scholar]
  83. Kleim JA, Hogg TM, VandenBerg PM, Cooper NR, Bruneau R, Remple M. 2004. Cortical synaptogenesis and motor map reorganization occur during late, but not early, phase of motor skill learning. J. Neurosci. 24:3628–33 [Google Scholar]
  84. Kleim JA, Lussnig E, Schwarz ER, Comery TA, Greenough WT. 1996. Synaptogenesis and Fos expression in the motor cortex of the adult rat after motor skill learning. J. Neurosci. 16:144529–35 [Google Scholar]
  85. Komiyama T, Sato TR, O'Connor DH, Zhang Y-X, Huber D. et al. 2010. Learning-related fine-scale specificity imaged in motor cortex circuits of behaving mice. Nature 464:72921182–86 [Google Scholar]
  86. Koralek AC, Costa RM, Carmena JM. 2013. Temporally precise cell-specific coherence develops in cortico-striatal networks during learning. Neuron 79:5865–72 [Google Scholar]
  87. Koralek AC, Jin X, Long II JD, Costa RM, Carmena JM. 2012. Corticostriatal plasticity is necessary for learning intentional neuroprosthetic skills. Nature 483:7389331–35 [Google Scholar]
  88. Kuramoto E, Furuta T, Nakamura KC, Unzai T, Hioki H, Kaneko T. 2009. Two types of thalamocortical projections from the motor thalamic nuclei of the rat: a single neuron-tracing study using viral vectors. Cereb. Cortex 19:92065–77 [Google Scholar]
  89. Kuramoto E, Ohno S, Furuta T, Unzai T, Tanaka YR. et al. 2013. Ventral medial nucleus neurons send thalamocortical afferents more widely and more preferentially to layer 1 than neurons of the ventral anterior–ventral lateral nuclear complex in the rat. Cereb. Cortex 25:1221–35 [Google Scholar]
  90. Laubach M, Wessberg J, Nicolelis MAL. 2000. Cortical ensemble activity increasingly predicts behaviour outcomes during learning of a motor task. Nature 405:6786567–71 [Google Scholar]
  91. Lecoq J, Savall J, Vučinić D, Grewe BF, Kim H. et al. 2014. Visualizing mammalian brain area interactions by dual-axis two-photon calcium imaging. Nat. Neurosci. 17:121825–29 [Google Scholar]
  92. Lemon RN. 2008. Descending pathways in motor control. Annu. Rev. Neurosci. 31:195–218 [Google Scholar]
  93. Leyton A, Sherrington C. 1917. Observations on the excitable cortex of the chimpanzee, orang-utan, and gorilla. Exp. Physiol. 11:2135–222 [Google Scholar]
  94. Li N, Chen T, Guo ZV, Gerfen CR, Svoboda K. 2015. A motor cortex circuit for motor planning and movement. Nature 519:754151–56 [Google Scholar]
  95. Liberti WA, Markowitz JE, Perkins LN, Liberti DC, Leman DP. et al. 2016. Unstable neurons underlie a stable learned behavior. Nat. Neurosci. 19:121665–71 [Google Scholar]
  96. Long MA, Jin DZ, Fee MS. 2010. Support for a synaptic chain model of neuronal sequence generation. Nature 468:7322394–99 [Google Scholar]
  97. Luft AR, Buitrago MM, Ringer T, Dichgans J, Schulz JB. 2004. Motor skill learning depends on protein synthesis in motor cortex after training. J. Neurosci. 24:296515–20 [Google Scholar]
  98. Maeda H, Fukuda S, Kameda H, Murabe N, Isoo N. et al. 2016. Corticospinal axons make direct synaptic connections with spinal motoneurons innervating forearm muscles early during postnatal development in the rat. J. Physiol. 594:1189–205 [Google Scholar]
  99. Mao T, Kusefoglu D, Hooks BM, Huber D, Petreanu L, Svoboda K. 2011. Long-range neuronal circuits underlying the interaction between sensory and motor cortex. Neuron 72:1111–23 [Google Scholar]
  100. Masamizu Y, Tanaka YR, Tanaka YH, Hira R, Ohkubo F. et al. 2014. Two distinct layer-specific dynamics of cortical ensembles during learning of a motor task. Nat. Neurosci. 17:7987–94 [Google Scholar]
  101. Molina-Luna K, Hertler B, Buitrago MM, Luft AR. 2008. Motor learning transiently changes cortical somatotopy. NeuroImage 40:41748–54 [Google Scholar]
  102. Molina-Luna K, Pekanovic A, Röhrich S, Hertler B, Schubring-Giese M. et al. 2009. Dopamine in motor cortex is necessary for skill learning and synaptic plasticity. PLOS ONE 4:9e7082 [Google Scholar]
  103. Murakami M, Vicente MI, Costa GM, Mainen ZF. 2014. Neural antecedents of self-initiated actions in secondary motor cortex. Nat. Neurosci. 17:111574–82 [Google Scholar]
  104. Murata Y, Higo N, Hayashi T, Nishimura Y, Sugiyama Y. et al. 2015. Temporal plasticity involved in recovery from manual dexterity deficit after motor cortex lesion in macaque monkeys. J. Neurosci. 35:184–95 [Google Scholar]
  105. Neafsey E, Sievert C. 1982. A second forelimb motor area exists in rat frontal cortex. Brain Res 232:151–56 [Google Scholar]
  106. Nishimura Y, Perlmutter SI, Eaton RW, Fetz EE. 2013. Spike-timing-dependent plasticity in primate corticospinal connections induced during free behavior. Neuron 80:51301–9 [Google Scholar]
  107. Noback CR, Shriver JE. 1969. Encephalization and the lemniscal systems during phylogeny. Ann. N. Y. Acad. Sci. 167:1118–28 [Google Scholar]
  108. Nudo RJ, Frost SB. 2007. The evolution of motor cortex and motor systems. Evolution of Nervous Systems 3 JH Kaas, LA Krubitzer 373–95 London: Elsevier [Google Scholar]
  109. Nudo RJ, Masterton RB. 1990. Descending pathways to the spinal cord, III: Sites of origin of the corticospinal tract. J. Comp. Neurol. 296:4559–83 [Google Scholar]
  110. Nudo RJ, Milliken GW, Jenkins WM, Merzenich MM. 1996. Use-dependent alterations of movement representations in primary motor cortex of adult squirrel monkeys. J. Neurosci. 16:2785–807 [Google Scholar]
  111. Okubo TS, Mackevicius EL, Payne HL, Lynch GF, Fee MS. 2015. Growth and splitting of neural sequences in songbird vocal development. Nature 528:7582352–57 [Google Scholar]
  112. Ölveczky BP. 2011. Motoring ahead with rodents. Curr. Opin. Neurobiol. 21:4571–78 [Google Scholar]
  113. Otchy TM, Wolff SBE, Rhee JY, Pehlevan C, Kawai R. et al. 2015. Acute off-target effects of neural circuit manipulations. Nature 528:7582358–63 [Google Scholar]
  114. Passingham RE, Perry VH, Wilkinson F. 1983. The long-term effects of removal of sensorimotor cortex in infant and adult rhesus monkeys. Brain 106:Pt. 3675–705 [Google Scholar]
  115. Penhune VB, Steele CJ. 2012. Parallel contributions of cerebellar, striatal and M1 mechanisms to motor sequence learning. Behav. Brain Res. 226:2579–91 [Google Scholar]
  116. Peters AJ, Chen SX, Komiyama T. 2014. Emergence of reproducible spatiotemporal activity during motor learning. Nature 510:7504263–67 [Google Scholar]
  117. Peters AJ, Lee J, Komiyama T. 2015. Corticospinal population activity during motor learning Presented at Soc. Neurosci Chicago: Abstr 712.16 [Google Scholar]
  118. Porter R, Lemon R. 1993. Corticospinal Function and Voluntary Movement New York: Oxford Univ. Press [Google Scholar]
  119. Ramanathan D, Conner JM, Tuszynski MH. 2006. A form of motor cortical plasticity that correlates with recovery of function after brain injury. PNAS 103:3011370–75 [Google Scholar]
  120. Rioult-Pedotti M-S, Donoghue JP, Dunaevsky A. 2007. Plasticity of the synaptic modification range. J. Neurophysiol. 98:63688–95 [Google Scholar]
  121. Rioult-Pedotti M-S, Friedman D, Hess G, Donoghue JP. 1998. Strengthening of horizontal cortical connections following skill learning. Nat. Neurosci. 1:3230–34 [Google Scholar]
  122. Rothwell PE, Hayton SJ, Sun GL, Fuccillo MV, Lim BK, Malenka RC. 2015. Input- and output-specific regulation of serial order performance by corticostriatal circuits. Neuron 88:2345–56 [Google Scholar]
  123. Rouiller EM, Moret V, Liang F. 1993. Comparison of the connectional properties of the two forelimb areas of the rat sensorimotor cortex: support for the presence of a premotor or supplementary motor cortical area. Somatosens. Mot. Res. 10:3269–89 [Google Scholar]
  124. Sakamoto T, Porter LL, Asanuma H. 1987. Long-lasting potentiation of synaptic potentials in the motor cortex produced by stimulation of the sensory cortex in the cat: a basis of motor learning. Brain Res 413:2360–64 [Google Scholar]
  125. Sanes JN, Donoghue JP. 2000. Plasticity and primary motor cortex. Annu. Rev. Neurosci. 23:393–415 [Google Scholar]
  126. Sanes JN, Suner S, Lando JF, Donoghue JP. 1988. Rapid reorganization of adult rat motor cortex somatic representation patterns after motor nerve injury. PNAS 85:62003–7 [Google Scholar]
  127. Santos FJ, Oliveira RF, Jin X, Costa RM. 2015. Corticostriatal dynamics encode the refinement of specific behavioral variability during skill learning. eLife 4:e09423 [Google Scholar]
  128. Schneider DM, Nelson A, Mooney R. 2014. A synaptic and circuit basis for corollary discharge in the auditory cortex. Nature 513:7517189–94 [Google Scholar]
  129. Shepherd GMG. 2013. Corticostriatal connectivity and its role in disease. Nat. Rev. Neurosci. 14:4278–91 [Google Scholar]
  130. Shmuelof L, Krakauer JW. 2011. Are we ready for a natural history of motor learning. ? Neuron 72:3469–76 [Google Scholar]
  131. Siniscalchi MJ, Phoumthipphavong V, Ali F, Lozano M, Kwan AC. 2016. Fast and slow transitions in frontal ensemble activity during flexible sensorimotor behavior. Nat. Neurosci. 19:91234–42 [Google Scholar]
  132. Sommer MA. 2003. The role of the thalamus in motor control. Curr. Opin. Neurobiol. 13:6663–70 [Google Scholar]
  133. Storozhuk VM, Bracha V, Brozek G, Bures J. 1984. Unit activity of motor cortex during acoustically signalled reaching in rats. Behav. Brain Res. 12:3317–26 [Google Scholar]
  134. Tennant KA, Adkins DL, Donlan NA, Asay AL, Thomas N. et al. 2011. The organization of the forelimb representation of the C57BL/6 mouse motor cortex as defined by intracortical microstimulation and cytoarchitecture. Cereb. Cortex 21:4865–76 [Google Scholar]
  135. Travis AM, Woolsey CN. 1956. Motor performance of monkeys after bilateral partial and total cerebral decortications. Am. J. Phys. Med. Rehabil 35:5273–310 [Google Scholar]
  136. Tsubo Y, Isomura Y, Fukai T. 2013. Neural dynamics and information representation in microcircuits of motor cortex. Front. Neural Circuits. 7:85 [Google Scholar]
  137. Walker AE, Fulton JF. 1938. Hemidecortication in chimpanzee, baboon, macaque, potto, cat, and coati: a study in encephalization. J. Nerv. Ment. Dis. 87:677–700 [Google Scholar]
  138. Wang L, Conner JM, Rickert J, Tuszynski MH. 2011. Structural plasticity within highly specific neuronal populations identifies a unique parcellation of motor learning in the adult brain. PNAS 108:62545–50 [Google Scholar]
  139. Weidner N, Ner A, Salimi N, Tuszynski MH. 2001. Spontaneous corticospinal axonal plasticity and functional recovery after adult central nervous system injury. PNAS 98:63513–18 [Google Scholar]
  140. Weiler N, Wood L, Yu J, Solla SA, Shepherd GMG. 2008. Top-down laminar organization of the excitatory network in motor cortex. Nat. Neurosci. 11:3360–66 [Google Scholar]
  141. Whishaw IQ, Pellis SM, Gorny B, Kolb B, Tetzlaff W. 1993. Proximal and distal impairments in rat forelimb use in reaching follow unilateral pyramidal tract lesions. Behav. Brain Res. 56:159–76 [Google Scholar]
  142. Withers GS, Greenough WT. 1989. Reach training selectively alters dendritic branching in subpopulations of layer II-III pyramids in rat motor-somatosensory forelimb cortex. Neuropsychologia 27:161–69 [Google Scholar]
  143. Woolley SC, Rajan R, Joshua M, Doupe AJ. 2014. Emergence of context-dependent variability across a basal ganglia network. Neuron 82:1208–23 [Google Scholar]
  144. Xie Y, Chan AW, McGirr A, Xue S, Xiao D. et al. 2016. Resolution of high-frequency mesoscale intracortical maps using the genetically encoded glutamate sensor iGluSnFR. J. Neurosci. 36:41261–72 [Google Scholar]
  145. Xu T, Yu X, Perlik AJ, Tobin WF, Zweig JA. et al. 2009. Rapid formation and selective stabilization of synapses for enduring motor memories. Nature 462:7275915–19 [Google Scholar]
  146. Yamawaki N, Borges K, Suter BA, Harris KD, Shepherd GMG. 2014. A genuine layer 4 in motor cortex with prototypical synaptic circuit connectivity. eLife 4:e05422 [Google Scholar]
  147. Yamawaki N, Shepherd GMG. 2015. Synaptic circuit organization of motor corticothalamic neurons. J. Neurosci. 35:52293–307 [Google Scholar]
  148. Yang G, Lai CSW, Cichon J, Ma L, Li W, Gan W-B. 2014. Sleep promotes branch-specific formation of dendritic spines after learning. Science 344:61881173–78 [Google Scholar]
  149. Yang G, Pan F, Gan W-B. 2009. Stably maintained dendritic spines are associated with lifelong memories. Nature 462:7275920–24 [Google Scholar]
  150. Zhuravin IV, Bures J. 1989. Activity of cortical and caudatal neurons accompanying instrumental prolongation of the extension phase of reaching in rats. Int. J. Neurosci. 49:3–4213–20 [Google Scholar]

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error