1932

Abstract

The mammalian brain is a densely interconnected network that consists of millions to billions of neurons. Decoding how information is represented and processed by this neural circuitry requires the ability to capture and manipulate the dynamics of large populations at high speed and high resolution over a large area of the brain. Although the use of optical approaches by the neuroscience community has rapidly increased over the past two decades, most microscopy approaches are unable to record the activity of all neurons comprising a functional network across the mammalian brain at relevant temporal and spatial resolutions. In this review, we survey the recent development in optical technologies for Ca2+ imaging in this regard and provide an overview of the strengths and limitations of each modality and its potential for scalability. We provide guidance from the perspective of a biological user driven by the typical biological applications and sample conditions. We also discuss the potential for future advances and synergies that could be obtained through hybrid approaches or other modalities.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-neuro-072116-031458
2018-07-08
2024-10-09
Loading full text...

Full text loading...

/deliver/fulltext/neuro/41/1/annurev-neuro-072116-031458.html?itemId=/content/journals/10.1146/annurev-neuro-072116-031458&mimeType=html&fmt=ahah

Literature Cited

  1. Abrahamsson S, Ilic R, Wisniewski J, Mehl B, Yu L et al. 2016. Multifocus microscopy with precise color multi-phase diffractive optics applied in functional neuronal imaging. Biomed. Opt. Express 7:855–15
    [Google Scholar]
  2. Agard D 1984. Optical sectioning microscopy: cellular architecture in three dimensions. Annu. Rev. Biophys. Biomol. Struct. 13:191–219
    [Google Scholar]
  3. Ahrens MB, Orger MB, Robson DN, Li JM, Keller PJ 2013. Whole-brain functional imaging at cellular resolution using light-sheet microscopy. Nat. Methods 10:413–20
    [Google Scholar]
  4. Aimon S, Katsuki T, Grosenick L, Broxton M, Deisseroth K et al. 2017. Fast whole brain imaging in adult Drosophila during response to stimuli and behavior. bioRxiv 033803. http://dx.doi.org/10.1101/033803
    [Crossref]
  5. Akerboom J, Chen TW, Wardill TJ, Tian L, Marvin JS et al. 2012. Optimization of a GCaMP calcium indicator for neural activity imaging. J. Neurosci. 32:13819–40
    [Google Scholar]
  6. Amir W, Carriles R, Hoover EE, Planchon TA, Durfee CG, Squier JA 2007. Simultaneous imaging of multiple focal planes using a two-photon scanning microscope. Opt. Lett. 32:1731–34
    [Google Scholar]
  7. Averbeck BB, Latham PE, Pouget A 2006. Neural correlations, population coding and computation. Nat. Rev. Neurosci. 7:358–66
    [Google Scholar]
  8. Baumgart E, Kubitscheck U 2012. Scanned light sheet microscopy with confocal slit detection. Opt. Express 20:21805–10
    [Google Scholar]
  9. Berenyi A, Somogyvari Z, Nagy AJ, Roux L, Long JD et al. 2014. Large-scale, high-density (up to 512 channels) recording of local circuits in behaving animals. J. Neurophysiol. 111:1132–49
    [Google Scholar]
  10. Botcherby EJ, Juškaitis R, Booth MJ, Wilson T 2008. An optical technique for remote focusing in microscopy. Opt. Commun. 281:880–87
    [Google Scholar]
  11. Botcherby EJ, Juškaitis R, Wilson T 2006. Scanning two photon fluorescence microscopy with extended depth of field. Opt. Commun. 268:253–60
    [Google Scholar]
  12. Bouchard MB, Voleti V, Mendes CS, Lacefield C, Grueber WB et al. 2015. Swept confocally-aligned planar excitation (SCAPE) microscopy for high-speed volumetric imaging of behaving organisms. Nat. Photonics 9:113–19
    [Google Scholar]
  13. Boyden ES, Zhang F, Bamberg E, Nagel G, Deisseroth K 2005. Millisecond-timescale, genetically targeted optical control of neural activity. Nat. Neurosci. 8:1263–68
    [Google Scholar]
  14. Braitenberg V, Schüz A 1998. Cortex: Statistics and Geometry of Neuronal Connectivity Berlin: Springer
    [Google Scholar]
  15. Broxton M, Grosenick L, Yang S, Cohen N, Andalman A et al. 2013. Wave optics theory and 3-D deconvolution for the light field microscope. Opt. Express 21:25418–22
    [Google Scholar]
  16. Buzsaki G 2004. Large-scale recording of neuronal ensembles. Nat. Neurosci. 7:446–51
    [Google Scholar]
  17. Buzsaki G, Mizuseki K 2014. The log-dynamic brain: how skewed distributions affect network operations. Nat. Methods 15:264–78
    [Google Scholar]
  18. Chamberland S, Yang HH, Pan MM, Evans SW, Guan S et al. 2017. Fast two-photon imaging of subcellular voltage dynamics in neuronal tissue with genetically encoded indicators. eLife 6:e25690
    [Google Scholar]
  19. Chan KY, Jang MJ, Yoo BB, Greenbaum A, Ravi N et al. 2017. Engineered AAVs for efficient noninvasive gene delivery to the central and peripheral nervous systems. Nat. Neurosci. 20:1172–79
    [Google Scholar]
  20. Chen JL, Voigt FF, Javadzadeh M, Krueppel R, Helmchen F 2016. Long-range population dynamics of anatomically defined neocortical networks. eLife 5:e14679
    [Google Scholar]
  21. Chen T-W, Wardill TJ, Sun Y, Pulver SR, Renninger SL et al. 2013. Ultrasensitive fluorescent proteins for imaging neuronal activity. Nature 499:295–300
    [Google Scholar]
  22. Cheng A, Gonçalves JT, Golshani P, Arisaka K, Portera-Cailliau C 2011. Simultaneous two-photon calcium imaging at different depths with spatiotemporal multiplexing. Nat. Methods 8:139–42
    [Google Scholar]
  23. Cong L, Wang Z, Chai Y, Hang W, Shang C et al. 2017. Rapid whole brain imaging of neural activity in freely behaving larval zebrafish (Danio rerio). eLife 6:e28158
    [Google Scholar]
  24. Conkey DB, Caravaca-Aguirre AM, Piestun R 2012. High-speed scattering medium characterization with application to focusing light through turbid media. Opt. Express 20:1733–38
    [Google Scholar]
  25. Denk W, Strickler JH, Webb WW 1990. Two-photon laser scanning fluorescence microscopy. Science 248:73–76
    [Google Scholar]
  26. Dittgen T, Nimmerjahn A, Komai S, Licznerski P, Waters J et al. 2004. Lentivirus-based genetic manipulations of cortical neurons and their optical and electrophysiological monitoring in vivo. PNAS 101:18206–11
    [Google Scholar]
  27. Fernández-Alfonso T, Nadella KMNS, Iacaruso MF, Pichler B, Roš H et al. 2014. Monitoring synaptic and neuronal activity in 3D with synthetic and genetic indicators using a compact acousto-optic lens two-photon microscope. J. Neurosci. Methods 222:69–81
    [Google Scholar]
  28. Foust KD, Nurre E, Montgomery CL, Hernandez A, Chan CM, Kaspar BK 2008. Intravascular AAV9 preferentially targets neonatal neurons and adult astrocytes. Nat. Biotechnol. 27:59–65
    [Google Scholar]
  29. Friedrich J, Yang W, Soudry D, Mu Y, Ahrens MB et al. 2017. Multi-scale approaches for high-speed imaging and analysis of large neural populations. PLOS Comput. Biol. 13:e1005685–24
    [Google Scholar]
  30. Gouwens NW, Wilson RI 2009. Signal propagation in Drosophila central neurons. J. Neurosci. 29:6239–49
    [Google Scholar]
  31. Grewe BF, Langer D, Kasper H, Kampa BM, Helmchen F 2010. High-speed in vivo calcium imaging reveals neuronal network activity with near-millisecond precision. Nat. Methods 7:399–405
    [Google Scholar]
  32. Grewe BF, Voigt FF, van Hoff M, Helmchen F 2011. Fast two-layer two-photon imaging of neuronal cell populations using an electrically tunable lens. Biomed. Opt. Express 2:2035–46
    [Google Scholar]
  33. Grienberger C, Konnerth A 2012. Imaging calcium in neurons. Neuron 73:862–85
    [Google Scholar]
  34. Grinvald A, Salzberg BM, Lev-Ram V, Hildesheim R 1987. Optical recording of synaptic potentials from processes of single neurons using intracellular potentiometric dyes. Biophys. J. 51:643–51
    [Google Scholar]
  35. Gruner-Nielsen L, Jakobsen D, Jespersen KG, Pálsdóttir B 2010. A stretcher fiber for use in fs chirped pulse Yb amplifiers. Opt. Express 18:3768–66
    [Google Scholar]
  36. Grynkiewicz G, Poenie M, Tsien RY 1985. New generation of Ca2+ indicators with greatly improved fluorescence properties. J. Biol. Chem. 260:3440–50
    [Google Scholar]
  37. Harris KD, Quiroga RQ, Freeman J, Smith SL 2016. Improving data quality in neuronal population recordings. Nat. Neurosci. 19:1165–74
    [Google Scholar]
  38. Herculano-Houzel S, Collins CE, Wong P, Kaas JH 2007. Cellular scaling rules for primate brains. PNAS 104:3562–67
    [Google Scholar]
  39. Herculano-Houzel S, Mota B, Lent R 2006. Cellular scaling rules for rodent brains. PNAS 103:12138–43
    [Google Scholar]
  40. Hilgen G, Sorbaro M, Pirmoradian S, Muthmann J-O, Kepiro IE et al. 2017. Unsupervised spike sorting for large-scale, high-density multielectrode arrays. Cell Rep 18:2521–32
    [Google Scholar]
  41. Hochbaum DR, Zhao Y, Farhi SL, Klapoetke N, Werley CA et al. 2014. All-optical electrophysiology in mammalian neurons using engineered microbial rhodopsins. Nat. Methods 11:825–33
    [Google Scholar]
  42. Hopt A, Neher E 2001. Highly nonlinear photodamage in two-photon fluorescence microscopy. Biophys. J. 80:2029–36
    [Google Scholar]
  43. Horstmeyer R, Ruan H, Yang C 2015. Guidestar-assisted wavefront-shaping methods for focusing light into biological tissue. Nat. Photonics 9:563–71
    [Google Scholar]
  44. Horton NG, Wang K, Kobat D, Clark CG, Wise FW et al. 2013. In vivo three-photon microscopy of subcortical structures within an intact mouse brain. Nat. Photonics 7:205–9
    [Google Scholar]
  45. Horton NG, Xu C 2015. Dispersion compensation in three-photon fluorescence microscopy at 1,700 nm. Biomed. Opt. Express 6:1392–96
    [Google Scholar]
  46. Howarth C, Gleeson P, Attwell D 2012. Updated energy budgets for neural computation in the neocortex and cerebellum. J. Cereb. Blood Flow Metab. 32:1222–32
    [Google Scholar]
  47. Huettel SA, Song AW, McCarthy GJ 2008. Functional Magnetic Resonance Imaging Sunderland, MA: Sinauer Associates, 2nd ed..
    [Google Scholar]
  48. Huisken J, Swoger J, Del Bene F, Wittbrodt J, Stelzer EHK 2004. Optical sectioning deep inside live embryos by selective plane illumination microscopy. Science 305:1–18
    [Google Scholar]
  49. Insel TR, Landis SC, Collins FS 2013. The NIH BRAIN Initiative. Science 340:687
    [Google Scholar]
  50. Ji G, Feldman ME, Deng K-Y, Greene KS, Wilson J et al. 2004. Ca2+-sensing transgenic mice. J. Biol. Chem. 279:21461–68
    [Google Scholar]
  51. Kalmbach AS, Waters J 2012. Brain surface temperature under a craniotomy. J. Neurophysiol. 108:3138–46
    [Google Scholar]
  52. Kato S, Kaplan HS, Schrödel T, Skora S, Lindsay TH et al. 2015. Global brain dynamics embed the motor command sequence of Caenorhabditis elegans. Cell 163:656–69
    [Google Scholar]
  53. Katona G, Szalay G, Maák P, Kaszas A, Veress M et al. 2012. Fast two-photon in vivo imaging with three-dimensional random-access scanning in large tissue volumes. Nat. Methods 9:201–8
    [Google Scholar]
  54. Katz O, Small E, Guan Y, Silberberg Y 2014. Noninvasive nonlinear focusing and imaging through strongly scattering turbid layers. Optica 1:170–75
    [Google Scholar]
  55. Kerr JND, Denk W 2008. Imaging in vivo: watching the brain in action. Nat. Rev. Neurosci. 9:195–205
    [Google Scholar]
  56. Koester HJ, Baur D, Uhl R, Hell SW 1999. Fluorescence imaging with pico- and femtosecond two-photon excitation: signal and photodamage. Biophys. J. 77:2226–36
    [Google Scholar]
  57. Kong L, Tang J, Little JP, Yu Y, Lämmermann T et al. 2015. Continuous volumetric imaging via an optical phase-locked ultrasound lens. Nat. Methods 12:759–62
    [Google Scholar]
  58. Kovacevic N 2004. A three-dimensional MRI atlas of the mouse brain with estimates of the average and variability. Cereb. Cortex 15:639–45
    [Google Scholar]
  59. Krüger J 2005. Simultaneous individual recordings from many cerebral neurons: techniques and results. Rev. Physiol. Biochem. Pharmacol. 98:177–233
    [Google Scholar]
  60. Kumar S, Wilding D, Sikkel MB, Lyon AR, MacLeod KT, Dunsby C 2011. High-speed 2D and 3D fluorescence microscopy of cardiac myocytes. Opt. Express 19:13839–47
    [Google Scholar]
  61. Lai P, Wang L, Tay JW, Wang LV 2015. Photoacoustically guided wavefront shaping for enhanced optical focusing in scattering media. Nat. Photonics 9:126–32
    [Google Scholar]
  62. Lemon WC, Ckendorf BHO, McDole K, Branson K, Freeman J et al. 2015. Whole-central nervous system functional imaging in larval Drosophila. Nat. Commun 6:1–16
    [Google Scholar]
  63. Levoy M, Ng R, Adams A, Footer M, Horowitz M 2006. Light field microscopy. ACM Trans. Graph. 25:924–34
    [Google Scholar]
  64. Li YX, Gautam V, Brüstle A, Cockburn IA, Daria VR et al. 2017. Flexible polygon-mirror based laser scanning microscope platform for multiphoton in-vivo imaging. J. Biophotonics 10:1526–37
    [Google Scholar]
  65. Lin MZ, Schnitzer MJ 2016. Genetically encoded indicators of neuronal activity. Nat. Neurosci. 19:1142–53
    [Google Scholar]
  66. Lippmann MG 1908. Épreuves réversibles. Photographies intégrales. C. R. Acad. Sci. 146:446–51
    [Google Scholar]
  67. Liu H-Y, Jonas E, Tian L, Zhong J, Recht B, Waller L 2015. 3D imaging in volumetric scattering media using phase-space measurements. Opt. Express 23:14461–11
    [Google Scholar]
  68. Lu R, Sun W, Liang Y, Kerlin A, Bierfeld J et al. 2017. Video-rate volumetric functional imaging of the brain at synaptic resolution. Nat. Neurosci. 20:620–28
    [Google Scholar]
  69. Mao T, O'Connor DH, Scheuss V, Nakai J, Svoboda K 2008. Characterization and subcellular targeting of GCaMP-type genetically-encoded calcium indicators. PLOS ONE 3:e1796
    [Google Scholar]
  70. Marblestone AH, Zamft BM, Maguire YG, Shapiro MG, Cybulski TR et al. 2013. Physical principles for scalable neural recording. Front. Comput. Neurosci. 7:137
    [Google Scholar]
  71. Miyawaki A, Llopis J, Heim R, McCaffery JM, Adams JA et al. 1997. Fluorescent indicators for Ca2+ based on green fluorescent proteins and calmodulin. Nature 388:882–87
    [Google Scholar]
  72. Mukamel EA, Nimmerjahn A, Schnitzer MJ 2009. Automated analysis of cellular signals from large-scale calcium imaging data. Neuron 63:747–60
    [Google Scholar]
  73. Nagai T, Yamada S, Tominaga T, Ichikawa M, Miyawaki A 2004. Expanded dynamic range of fluorescent indicators for Ca2+ by circularly permuted yellow fluorescent proteins. PNAS 101:10554–59
    [Google Scholar]
  74. Nagel G, Ollig D, Fuhrmann M, Kateriya S, Musti AM et al. 2002. Channelrhodopsin-1: a light-gated proton channel in green algae. Science 296:2395–98
    [Google Scholar]
  75. Nakai J, Ohkura M, Imoto K 2001. A high signal-to-noise Ca2+ probe composed of a single green fluorescent protein. Nat. Biotechnol. 19:137
    [Google Scholar]
  76. Naumann EA, Kampff AR, Prober DA, Schier AF, Engert F 2010. Monitoring neural activity with bioluminescence during natural behavior. Nat. Methods 13:513–20
    [Google Scholar]
  77. Newman JA, Sullivan SZ, Muir RD, Sreehari S, Bouman CA, Simpson GJ 2015. Multi-channel beam-scanning imaging at kHz frame rates by Lissajous trajectory microscopy. SPIE BiOS 9330:933009
    [Google Scholar]
  78. Nöbauer T, Skocek O, Pernía-Andrade AJ, Weilguny L, Traub FM et al. 2017. Video rate volumetric Ca2+ imaging across cortex using seeded iterative demixing (SID) microscopy. Nat. Methods 14:811–18
    [Google Scholar]
  79. Ntziachristos V 2010. Going deeper than microscopy: the optical imaging frontier in biology. Nat. Methods 7:603–14
    [Google Scholar]
  80. Ogawa S, Lee TM, Kay AR, Tank DW 1990. Brain magnetic resonance imaging with contrast dependent on blood oxygenation. PNAS 87:9868–72
    [Google Scholar]
  81. Oron D, Tal E, Silberberg Y 2005. Scanningless depth-resolved microscopy. Opt. Express 13:1468–76
    [Google Scholar]
  82. Ouzounov DG, Wang T, Wang M, Feng DD, Horton NG et al. 2017. In vivo three-photon imaging of activity of GCaMP6-labeled neurons deep in intact mouse brain. Nat. Methods 14:388–90
    [Google Scholar]
  83. Papadopoulos IN, Jouhanneau J-S, Poulet JFA, Judkewitz B 2017. Scattering compensation by focus scanning holographic aberration probing (F-SHARP). Nat. Photonics 11:116–23
    [Google Scholar]
  84. Pawley JB 2006. Handbook of Biological Confocal Microscopy New York: Springer. , 3rd ed..
    [Google Scholar]
  85. Pnevmatikakis EA, Soudry D, Gao Y, Machado TA, Merel J et al. 2016. Simultaneous denoising, deconvolution, and demixing of calcium imaging data. Neuron 89:285–99
    [Google Scholar]
  86. Podgorski K, Ranganathan GN 2016. Brain heating induced by near-infrared lasers during multi-photon microscopy. J. Neurophysiol. 116:1012–23
    [Google Scholar]
  87. Prevedel R, Verhoef AJ, Weisenburger S, Pernía-Andrade AJ, Huang BS et al. 2016. Fast volumetric calcium imaging across multiple cortical layers using sculpted light. Nat. Methods 13:1021–28
    [Google Scholar]
  88. Prevedel R, Yoon Y-G, Hoffmann M, Pak N, Wetzstein G et al. 2014. Simultaneous whole-animal 3D imaging of neuronal activity using light-field microscopy. Nat. Methods 11:727–30
    [Google Scholar]
  89. Quirin S, Jackson J, Peterka DS, Yuste R 2014. Simultaneous imaging of neural activity in three dimensions. Front. Neural. Circuits 8:29
    [Google Scholar]
  90. Quirin S, Vladimirov N, Yang C-T, Peterka DS, Yuste R, Ahrens MB 2016. Calcium imaging of neural circuits with extended depth-of-field light-sheet microscopy. Opt. Lett. 41:855–58
    [Google Scholar]
  91. Reddy GD, Kelleher K, Fink R, Saggau P 2008. Three-dimensional random access multiphoton microscopy for functional imaging of neuronal activity. Nat. Neurosci. 11:713–20
    [Google Scholar]
  92. Rein K, Zöckler M, Mader MT, Grübel C, Heisenberg M 2002. The Drosophila standard brain. Curr. Biol. 12:227–31
    [Google Scholar]
  93. Rey HG, Pedreira C, Quiroga RQ 2015. Past, present and future of spike sorting techniques. Brain Res. Bull. 119:Pt. B106–17
    [Google Scholar]
  94. Rupprecht P, Prendergast A, Wyart C, Friedrich RW 2016. Remote z-scanning with a macroscopic voice coil motor for fast 3D multiphoton laser scanning microscopy. Biomed. Opt. Express 7:1656–16
    [Google Scholar]
  95. Rupprecht P, Prevedel R, Groessl F, Haubensak WE, Vaziri A 2015. Optimizing and extending light-sculpting microscopy for fast functional imaging in neuroscience. Biomed. Opt. Express 6:353–16
    [Google Scholar]
  96. Sahin B, Aslan H, Unal B, Canan S, Bilgic S et al. 2001. Brain volumes of the lamb, rat and bird do not show hemispheric asymmetry: a stereological study. Image Anal. Stereol. 20:1–5
    [Google Scholar]
  97. Salzberg BM, Grinvald A, Cohen LB, Davila HV, Ross WN 1977. Optical recording of neuronal activity in an invertebrate central nervous system: simultaneous monitoring of several neurons. J. Neurophysiol. 40:1281–91
    [Google Scholar]
  98. Santi PA 2011. Light sheet fluorescence microscopy. J. Histochem. Cytochem. 59:129–38
    [Google Scholar]
  99. Schneider J, Zahn J, Maglione M, Sigrist SJ, Marquard J et al. 2015. Ultrafast, temporally stochastic STED nanoscopy of millisecond dynamics. Nat. Methods 12:827–30
    [Google Scholar]
  100. Schrödel T, Prevedel R, Aumayr K, Zimmer M, Vaziri A 2013. Brain-wide 3D imaging of neuronal activity in Caenorhabditis elegans with sculpted light. Nat. Methods 10:1013–20
    [Google Scholar]
  101. Shimogori T, Ogawa M 2008. Gene application with in utero electroporation in mouse embryonic brain. Dev. Growth Differ. 50:499–506
    [Google Scholar]
  102. Shimomura O, Johnson FH, Saiga Y 1962. Extraction, purification and properties of aequorin, a bioluminescent protein from the luminous hydromedusan. Aequorea. J. Cell. Comp. Physiol. 59:223–39
    [Google Scholar]
  103. Simpson JH 2009. Mapping and manipulating neural circuits in the fly brain. Adv. Genet. 65:79–143
    [Google Scholar]
  104. So P, Dong CY, Masters B, Berland K 2000. Two-photon excitation fluorescence microscopy. Annu. Rev. Biomed. Eng. 2:399–429
    [Google Scholar]
  105. Sofroniew NJ, Flickinger D, King J, Svoboda K 2016. A large field of view two-photon mesoscope with subcellular resolution for in vivo imaging. eLife 5:e14472
    [Google Scholar]
  106. Song A, Charles AS, Koay SA, Gauthier JL, Thiberge SY et al. 2017. Volumetric two-photon imaging of neurons using stereoscopy (vTwINS). Nat. Methods 14:420–26
    [Google Scholar]
  107. Spiecker H 2011. Verfahren und Anordnung zur Mikroskopie Ger. Patent No. DE102010013223A1
    [Google Scholar]
  108. Stirman JN, Smith IT, Kudenov MW, Smith SL 2016. Wide field-of-view, multi-region, two-photon imaging of neuronal activity in the mammalian brain. Nat. Biotechnol. 34:865–70
    [Google Scholar]
  109. Tallini YN, Ohkura M, Choi BR, Ji G, Imoto K et al. 2006. Imaging cellular signals in the heart in vivo: cardiac expression of the high-signal Ca2+ indicator GCaMP2. PNAS 103:4753–58
    [Google Scholar]
  110. Thériault G, Cottet M, Castonguay A, McCarthy N, De Koninck Y 2014. Extended two-photon microscopy in live samples with Bessel beams: steadier focus, faster volume scans, and simpler stereoscopic imaging. Front. Cell. Neurosci. 8:139
    [Google Scholar]
  111. Tian L, Hires SA, Mao T, Huber D, Chiappe ME et al. 2009. Imaging neural activity in worms, flies and mice with improved GCaMP calcium indicators. Nat. Methods 6:875–81
    [Google Scholar]
  112. Trebino R, Zeek E 2000. Ultrashort laser pulses. Frequency-Resolved Optical Gating: The Measurement of Ultrashort Laser Pulses R Trebino 11–35 Boston: Springer
    [Google Scholar]
  113. Truong TV, Supatto W, Koos DS, Choi JM, Fraser SE 2011. Deep and fast live imaging with two-photon scanned light-sheet microscopy. Nat. Methods 8:757–60
    [Google Scholar]
  114. Vaziri A, Emiliani V 2012. Reshaping the optical dimension in optogenetics. Curr. Opin. Neurobiol. 22:128–37
    [Google Scholar]
  115. Vellekoop IM, Mosk AP 2007. Focusing coherent light through opaque strongly scattering media. Opt. Lett. 32:2309–11
    [Google Scholar]
  116. Vincent TJ, Thiessen JD, Kurjewicz LM, Germscheid SL, Turner AJ et al. 2010. Longitudinal brain size measurements in APP/PS1 transgenic mice. Magn. Reson. Insights 4:19–26
    [Google Scholar]
  117. Voie AH, Burns DH, Spelman FA 1993. Orthogonal-plane fluorescence optical sectioning: three-dimensional imaging of macroscopic biological specimens. J. Microsc. 170:229–36
    [Google Scholar]
  118. Wang T, Ouzounov D, Wang M, Xu C 2017. Quantitative comparison of two-photon and three-photon activity imaging of GCaMP6s-labeled neurons in vivo in the mouse brain OSA Tech. Digest Pap. BrM4B.4, Optics Life Sci. Congr., Optical Soc. Am. https://www.osapublishing.org/abstract.cfm?uri=BRAIN-2017-BrM4B.4
    [Google Scholar]
  119. Weisenburger S, Sandoghdar V 2015. Light microscopy: an ongoing contemporary revolution. Contemp. Phys. 56:123–43
    [Google Scholar]
  120. White JG, Southgate E, Thomson JN, Brenner S 1986. The structure of the nervous system of the nematode Caenorhabditis elegans. Philos. Trans. R. Soc. B 314:1–340
    [Google Scholar]
  121. Wolf S, Supatto W, Debrégeas G, Mahou P, Kruglik SG et al. 2015. Whole-brain functional imaging with two-photon light-sheet microscopy. Nat. Methods 12:379–80
    [Google Scholar]
  122. Wu J, Tang AHL, Mok ATY, Yan W, Chan GCF et al. 2017. Multi-MHz laser-scanning single-cell fluorescence microscopy by spatiotemporally encoded virtual source array. Biomed. Opt. Express 8:4160–12
    [Google Scholar]
  123. Xu Y, Zou P, Cohen AE 2017. Voltage imaging with genetically encoded indicators. Curr. Opin. Chem. Biol. 39:1–10
    [Google Scholar]
  124. Yang W, Miller J-EK, Carrillo-Reid L, Pnevmatikakis E, Paninski L et al. 2016. Simultaneous multi-plane imaging of neural circuits. Neuron 89:269–84
    [Google Scholar]
  125. Yuste R, Bargmann C 2017. Toward a Global BRAIN Initiative. Cell 168:956–59
    [Google Scholar]
  126. Zariwala HA, Borghuis BG, Hoogland TM, Madisen L, Tian L et al. 2012. A Cre-dependent GCaMP3 reporter mouse for neuronal imaging in vivo. J. Neurosci. 32:3131–41
    [Google Scholar]
  127. Zhang F, Aravanis AM, Adamantidis A, de Lecea L, Deisseroth K 2007. Circuit-breakers: optical technologies for probing neural signals and systems. Nat. Rev. Neurosci. 8:577–81
    [Google Scholar]
  128. Zhao M, Zhang H, Li Y, Ashok A, Liang R et al. 2014. Cellular imaging of deep organ using two-photon Bessel light-sheet nonlinear structured illumination microscopy. Biomed. Opt. Express 5:1296–13
    [Google Scholar]
  129. Zhu G, van Howe J, Durst M, Zipfel W, Xu C 2005. Simultaneous spatial and temporal focusing of femtosecond pulses. Opt. Express 13:2153–59
    [Google Scholar]
  130. Zhu L, Verhoef AJ, Jespersen KG, Kalashnikov VL, Grüner-Nielsen L et al. 2013. Generation of high fidelity 62-fs, 7-nJ pulses at 1035 nm from a net normal-dispersion Yb-fiber laser with anomalous dispersion higher-order-mode fiber. Opt. Express 21:16255–58
    [Google Scholar]
  131. Dana H, Kruger N, Ellman A, Shoham S 2013. Line temporal focusing characteristics in transparent and scattering media. Opt. Express 21:5677–87
    [Google Scholar]
  132. Dana H, Shoham S 2011. Numerical evaluation of temporal focusing characteristics in transparent and scattering media. Opt. Express 19:4937–48
    [Google Scholar]
  133. Holekamp TF, Turaga D, Holy TE 2008. Fast three-dimensional fluorescence imaging of activity in neural populations by objective-coupled planar illumination microscopy. Neuron 57:661–72
    [Google Scholar]
  134. Papagiakoumou E, Anselmi F, Bègue A, de Sars V, Glückstad J et al. 2010. Scanless two-photon excitation of channelrhodopsin-2. Nat. Meth. 7:848–54
    [Google Scholar]
/content/journals/10.1146/annurev-neuro-072116-031458
Loading
/content/journals/10.1146/annurev-neuro-072116-031458
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error