1932

Abstract

In spite of its familiar phenomenology, the mechanistic basis for mental effort remains poorly understood. Although most researchers agree that mental effort is aversive and stems from limitations in our capacity to exercise cognitive control, it is unclear what gives rise to those limitations and why they result in an experience of control as costly. The presence of these control costs also raises further questions regarding how best to allocate mental effort to minimize those costs and maximize the attendant benefits. This review explores recent advances in computational modeling and empirical research aimed at addressing these questions at the level of psychological process and neural mechanism, examining both the limitations to mental effort exertion and how we manage those limited cognitive resources. We conclude by identifying remaining challenges for theoretical accounts of mental effort as well as possible applications of the available findings to understanding the causes of and potential solutions for apparent failures to exert the mental effort required of us.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-neuro-072116-031526
2017-07-25
2024-06-25
Loading full text...

Full text loading...

/deliver/fulltext/neuro/40/1/annurev-neuro-072116-031526.html?itemId=/content/journals/10.1146/annurev-neuro-072116-031526&mimeType=html&fmt=ahah

Literature Cited

  1. Aarts E, Roelofs A, Franke B, Rijpkema M, Fernández G. et al. 2010. Striatal dopamine mediates the interface between motivational and cognitive control in humans: evidence from genetic imaging. Neuropsychopharmacology 35:1943–51 [Google Scholar]
  2. Alexander WH, Brown JW. 2015. Hierarchical error representation: a computational model of anterior cingulate and dorsolateral prefrontal cortex. Neural Comput 27:2354–410 [Google Scholar]
  3. Allport DA. 1980. Attention and performance. Cognitive Psychology: New Directions GI Claxton 112–53 London: Routledge [Google Scholar]
  4. Allport DA, Antonis B, Reynolds P. 1972. On the division of attention: a disproof of the single channel hypothesis. Q. J. Exp. Psychol. 24:225–35 [Google Scholar]
  5. Allport DA, Styles EA, Hsieh S. 1994. Shifting intentional set: exploring the dynamic control of tasks. Attention and Performance XV: Conscious and Nonconscious Information Processing C Umiltà, M Moscovitch 421–52 Cambridge, MA: MIT Press [Google Scholar]
  6. Allport DA, Wylie G. 1999. Task-switching: positive and negative priming of task-set. Attention, Space, and Action: Studies in Cognitive Neuroscience GW Humphreys, J Duncan, A Treisman 273–96 New York: Oxford Univ. Press [Google Scholar]
  7. Anderson JR. 1983. The Architecture of Cognition Cambridge, MA: Harvard Univ. Press [Google Scholar]
  8. Anderson JR. 1996. ACT: a simple theory of complex cognition. Am. Psychol. 51:355–65 [Google Scholar]
  9. Aston-Jones G, Cohen JD. 2005. An integrative theory of locus coeruleus-norepinephrine function: adaptive gain and optimal performance. Annu. Rev. Neurosci. 28:403–50 [Google Scholar]
  10. Baumeister RF, Bratslavsky E, Muraven M, Tice DM. 1998. Ego depletion: Is the active self a limited resource?. J. Pers. Soc. Psychol. 74:1252–65 [Google Scholar]
  11. Baumeister RF, Heatherton TF. 1996. Self-regulation failure: an overview. Psychol. Inq. 7:1–15 [Google Scholar]
  12. Beach LR, Mitchell TR. 1978. A contingency model for the selection of decision strategies. Acad. Manag. Rev. 3:439–49 [Google Scholar]
  13. Bengio Y, Courville A, Vincent P. 2013. Representation learning: a review and new perspectives. IEEE Trans. Pattern Anal. Mach. Intell. 35:1798–828 [Google Scholar]
  14. Blain B, Hollard G, Pessiglione M. 2016. Neural mechanisms underlying the impact of daylong cognitive work on economic decisions. PNAS 113:6967–72 [Google Scholar]
  15. Bogacz R, Brown E, Moehlis J, Holmes P, Cohen JD. 2006. The physics of optimal decision making: a formal analysis of models of performance in two-alternative forced-choice tasks. Psychol. Rev. 113:700–65 [Google Scholar]
  16. Bonnelle V, Manohar S, Behrens T, Husain M. 2015. Individual differences in premotor brain systems underlie behavioral apathy. Cereb. Cortex 26:807–19 [Google Scholar]
  17. Bonner SE, Sprinkle GB. 2002. The effects of monetary incentives on effort and task performance: theories, evidence, and a framework for research. Account. Organ. Soc. 27:303–45 [Google Scholar]
  18. Botvinick MM, Braver T. 2015. Motivation and cognitive control: from behavior to neural mechanism. Annu. Rev. Psychol. 66:83–113 [Google Scholar]
  19. Botvinick MM, Braver TS, Barch DM, Carter CS, Cohen JD. 2001. Conflict monitoring and cognitive control. Psychol. Rev. 108:624–52 [Google Scholar]
  20. Botvinick MM, Cohen JD. 2015. The computational and neural basis of cognitive control: charted territory and new frontiers. Cogn. Sci. 38:1249–85 [Google Scholar]
  21. Botvinick MM, Huffstetler S, McGuire J. 2009a. Effort discounting in human nucleus accumbens. Cogn. Affect. Behav. Neurosci. 9:16–27 [Google Scholar]
  22. Botvinick MM, Niv Y, Barto AC. 2009b. Hierarchically organized behavior and its neural foundations: a reinforcement learning perspective. Cognition 113:262–80 [Google Scholar]
  23. Braver TS. 2012. The variable nature of cognitive control: a dual mechanisms framework. Trends Cogn. Sci. 16:105–12 [Google Scholar]
  24. Brown JW, Braver TS. 2005. Learned predictions of error likelihood in the anterior cingulate cortex. Science 307:1118–21 [Google Scholar]
  25. Bush G, Luu P, Posner M. 2000. Cognitive and emotional influences in anterior cingulate cortex. Trends Cogn. Sci. 4:215–22 [Google Scholar]
  26. Cabanac M. 2006. Exertion and pleasure from an evolutionary perspective. Psychobiology of Physical Activity EO Acevedo, P Ekkekakis 79–89 Champaign, IL: Hum. Kinet. [Google Scholar]
  27. Cacioppo JT, Petty RE. 1982. The need for cognition. J. Pers. Soc. Psychol. 42:116–31 [Google Scholar]
  28. Cai W, Chen T, Ryali S, Kochalka J, Li C-SR, Menon V. 2016. Causal interactions within a frontal-cingulate-parietal network during cognitive control: convergent evidence from a multisite–multitask investigation. Cereb. Cortex 26:2140–53 [Google Scholar]
  29. Camerer C, Hogarth R. 1999. The effects of financial incentives in experiments: a review and capital-labor-production framework. J. Risk Uncertain. 19:7–42 [Google Scholar]
  30. Carter EC, Kofler LM, Forster DE. 2015. A series of meta-analytic tests of the depletion effect: Self-control does not seem to rely on a limited resource. J. Exp. Psychol. Gen. 144:796–815 [Google Scholar]
  31. Caruana R. 1998. Multitask learning. Learning to Learn S Thrun, L Pratt 95–133 New York: Springer [Google Scholar]
  32. Casey BJ, Somerville LH, Gotlib IH, Ayduk O, Franklin NT. et al. 2011. Behavioral and neural correlates of delay of gratification 40 years later. PNAS 108:14998–5003 [Google Scholar]
  33. Cavanagh JF, Frank MJ. 2014. Frontal theta as a mechanism for cognitive control. Trends Cogn. Sci. 18:414–21 [Google Scholar]
  34. Cavanagh JF, Masters SE, Bath K, Frank MJ. 2014. Conflict acts as an implicit cost in reinforcement learning. Nat. Commun. 5:5394 [Google Scholar]
  35. Cavanagh JF, Wiecki TV, Cohen MX, Figueroa CM, Samanta J. et al. 2011. Subthalamic nucleus stimulation reverses mediofrontal influence over decision threshold. Nat. Neurosci. 14:1462–67 [Google Scholar]
  36. Christie ST, Schrater P. 2015. Cognitive cost as dynamic allocation of energetic resources. Front. Neurosci. 9:289 [Google Scholar]
  37. Cohen JD. 2005. The vulcanization of the human brain: a neural perspective on interactions between cognition and emotion. J. Econ. Perspect. 19:3–24 [Google Scholar]
  38. Cohen JD, Dunbar K, McClelland JL. 1990. On the control of automatic processes: a parallel distributed processing account of the Stroop effect. Psychol. Rev. 97:332–61 [Google Scholar]
  39. Cools R. 2016. The costs and benefits of brain dopamine for cognitive control. Wiley Interdiscip. Rev. Cogn. Sci. 7:317–29 [Google Scholar]
  40. Cowan N. 2012. Working Memory Capacity New York: Psychology Press [Google Scholar]
  41. Cowan N, Rouder JN, Blume CL, Saults JS. 2012. Models of verbal working memory capacity: What does it take to make them work?. Psychol. Rev. 119:480–99 [Google Scholar]
  42. Craig AD. 2009. How do you feel—now? The anterior insula and human awareness. Nat. Rev. Neurosci. 10:59–70 [Google Scholar]
  43. Critchley HD, Mathias CJ, Josephs O, O'Doherty JP, Zanini S. et al. 2003. Human cingulate cortex and autonomic control: converging neuroimaging and clinical evidence. Brain 126:2139–52 [Google Scholar]
  44. Croxson PL, Walton ME, O'Reilly JX, Behrens TEJ, Rushworth MFS. 2009. Effort-based cost–benefit valuation and the human brain. J. Neurosci. 29:4531–41 [Google Scholar]
  45. Desender K, Van Opstal F, Van den Bussche E. 2014. Feeling the conflict: the crucial role of conflict experience in adaptation. Psychol. Sci. 25:675–83 [Google Scholar]
  46. Dixon ML, Christoff K. 2012. The decision to engage cognitive control is driven by expected reward-value: neural and behavioral evidence. PLOS ONE 7:e51637 [Google Scholar]
  47. Dosenbach NUF, Fair DA, Cohen AL, Schlaggar BL, Petersen SE. 2008. A dual-networks architecture of top-down control. Trends Cogn. Sci. 12:99–105 [Google Scholar]
  48. Dosenbach NUF, Visscher KM, Palmer ED, Miezin FM, Wenger KK. et al. 2006. A core system for the implementation of task sets. Neuron 50:799–812 [Google Scholar]
  49. Dreisbach G, Fischer R. 2015. Conflicts as aversive signals for control adaptation. Curr. Dir. Psychol. Sci. 24:255–60 [Google Scholar]
  50. Duckworth AL, Peterson C, Matthews MD, Kelly DR. 2007. Grit: perseverance and passion for long-term goals. J. Pers. Soc. Psychol. 92:1087–101 [Google Scholar]
  51. Duckworth AL, Quinn PD, Lynam DR, Loeber R, Stouthamer-Loeber M. 2011. Role of test motivation in intelligence testing. PNAS 108:7716–20 [Google Scholar]
  52. Duncan J. 2010. The multiple-demand (MD) system of the primate brain: mental programs for intelligent behaviour. Trends Cogn. Sci. 14:172–79 [Google Scholar]
  53. Dunn TL, Lutes DJ, Risko EF. 2016. Metacognitive evaluation in the avoidance of demand. J. Exp. Psychol. 42:1372–87 [Google Scholar]
  54. Eastwood JD, Frischen A, Fenske MJ, Smilek D. 2012. The unengaged mind: defining boredom in terms of attention. Perspect. Psychol. Sci. 7:482–95 [Google Scholar]
  55. Eigsti I, Zayas V, Mischel W, Shoda Y, Ayduk O. et al. 2006. Predicting cognitive control from preschool to late adolescence and young adulthood. Psychol. Sci. 17:478–84 [Google Scholar]
  56. Eisenberger R. 1992. Learned industriousness. Psychol. Rev. 99:248–67 [Google Scholar]
  57. Eldar E, Cohen JD, Niv Y. 2013. The effects of neural gain on attention and learning. Nat. Neurosci. 16:1146–53 [Google Scholar]
  58. Elkins-Brown N, Saunders B, Inzlicht M. 2015. Error-related electromyographic activity over the corrugator supercilii is associated with neural performance monitoring. Psychophysiology 53:159–70 [Google Scholar]
  59. Elman JL. 1993. Learning and development in neural networks: the importance of starting small. Cognition 48:171–99 [Google Scholar]
  60. Elmore LC, Ma WJ, Magnotti JF, Leising KJ, Passaro AD. et al. 2011. Visual short-term memory compared in rhesus monkeys and humans. Curr. Biol. 21:975–79 [Google Scholar]
  61. Engelmann JB, Damaraju E, Padmala S, Pessoa L. 2009. Combined effects of attention and motivation on visual task performance: transient and sustained motivational effects. Front. Hum. Neurosci. 3:4 [Google Scholar]
  62. Feng SF, Schwemmer M, Gershman SJ, Cohen JD. 2014. Multitasking versus multiplexing: toward a normative account of limitations in the simultaneous execution of control-demanding behaviors. Cogn. Affect. Behav. Neurosci. 14:129–46 [Google Scholar]
  63. Frank MJ, Badre D. 2012. Mechanisms of hierarchical reinforcement learning in corticostriatal circuits 1: computational analysis. Cereb. Cortex 22:509–26 [Google Scholar]
  64. Gailliot MT, Baumeister RF, DeWall CN, Maner JK, Plant EA. et al. 2007. Self-control relies on glucose as a limited energy source: Willpower is more than a metaphor. J. Pers. Soc. Psychol. 92:325–36 [Google Scholar]
  65. Gan JO, Walton ME, Phillips PEM. 2010. Dissociable cost and benefit encoding of future rewards by mesolimbic dopamine. Nat. Neurosci. 13:25–27 [Google Scholar]
  66. Garner KG, Dux PE. 2015. Training conquers multitasking costs by dividing task representations in the frontoparietal-subcortical system. PNAS 112:14372–77 [Google Scholar]
  67. Geana A, Wilson RC, Daw ND, Cohen JD. 2016a. Boredom, information-seeking and exploration. Proc. 38th Annu. Conf. Cogn. Sci. Soc., Philadelphia A Papafragou, D Grodner, D Mirman, JC Trueswell 1751–56 Austin, TX: Cogn. Sci. Soc. [Google Scholar]
  68. Geana A, Wilson RC, Daw ND, Cohen JD. 2016b. Information-seeking, learning and the marginal value theorem: a normative approach to adaptive exploration. Proc. 38th Annu. Conf. Cogn. Sci. Soc., Philadelphia A Papafragou, D Grodner, D Mirman, JC Trueswell, pp. 1793–98. Austin, TX: Cogn. Sci. Soc. [Google Scholar]
  69. Gershman SJ, Horvitz EJ, Tenenbaum JB. 2015. Computational rationality: a converging paradigm for intelligence in brains, minds, and machines. Science 349:273–78 [Google Scholar]
  70. Gigerenzer G. 2008. Rationality for Mortals: How People Cope with Uncertainty Oxford, UK: Oxford Univ. Press [Google Scholar]
  71. Gold JM, Kool W, Botvinick MM, Hubzin L, August S, Waltz JA. 2014. Cognitive effort avoidance and detection in people with schizophrenia. Cogn. Affect. Behav. Neurosci. 15:145–54 [Google Scholar]
  72. Graybiel AM. 2008. Habits, rituals, and the evaluative brain. Annu. Rev. Neurosci. 31:359–87 [Google Scholar]
  73. Griffiths TL, Lieder F, Goodman ND. 2015. Rational use of cognitive resources: levels of analysis between the computational and the algorithmic. Top. Cogn. Sci. 7:217–29 [Google Scholar]
  74. Hagger MS, Chatzisarantis NLD. 2016. A multilab preregistered replication of the ego-depletion effect. Perspect. Psychol. Sci. 11:546–73 [Google Scholar]
  75. Hagger MS, Wood C, Stiff C, Chatzisarantis NLD. 2010. Ego depletion and the strength model of self-control: a meta-analysis. Psychol. Bull. 136:495–525 [Google Scholar]
  76. Hay N, Russell S, Tolpin D, Shimony SE. 2012. Selecting computations: theory and applications. Uncertain. Artif. Intell. Proc. Twenty-Eighth Conf., Catalina Isl., Aug. 15–17 N de Freitas, K Murphy, pp. 346–55. Arlington, VA: AUAI Press [Google Scholar]
  77. Heatherton TF, Wagner DD. 2011. Cognitive neuroscience of self-regulation failure. Trends Cogn. Sci. 15:132–39 [Google Scholar]
  78. Heilbronner SR, Hayden BY. 2016. Dorsal anterior cingulate cortex: a bottom-up view. Annu. Rev. Neurosci. 39:149–70 [Google Scholar]
  79. Hillman KL, Bilkey DK. 2010. Neurons in the rat anterior cingulate cortex dynamically encode cost-benefit in a spatial decision-making task. J. Neurosci. 30:7705–13 [Google Scholar]
  80. Hockey GRJ. 1997. Compensatory control in the regulation of human performance under stress and high workload: a cognitive-energetical framework. Biol. Psychol. 45:73–93 [Google Scholar]
  81. Hockey GRJ. 2011. A motivational control theory of cognitive fatigue. Cognitive Fatigue: Multidisciplinary Perspectives on Current Research and Future Applications PL Ackerman 167–87 Washington, DC: Am. Psychol. Assoc. [Google Scholar]
  82. Holroyd CB. 2015. The waste disposal problem of effortful control. Motivation and Cognitive Control TS Braver 235–60 New York: Routledge [Google Scholar]
  83. Holroyd CB, Coles MGH. 2002. The neural basis of human error processing: reinforcement learning, dopamine, and the error-related negativity. Psychol. Rev. 109:679–709 [Google Scholar]
  84. Holroyd CB, McClure SM. 2015. Hierarchical control over effortful behavior by rodent medial frontal cortex: a computational model. Psychol. Rev. 122:54–83 [Google Scholar]
  85. Holroyd CB, Umemoto A. 2016. The research domain criteria framework: the case for anterior cingulate cortex. Neurosci. Behav. Rev. 71:418–43 [Google Scholar]
  86. Holroyd CB, Yeung N. 2012. Motivation of extended behaviors by anterior cingulate cortex. Trends Cogn. Sci. 16:121–27 [Google Scholar]
  87. Hosking JG, Floresco SB, Winstanley CA. 2014. Dopamine antagonism decreases willingness to expend physical, but not cognitive, effort: a comparison of two rodent cost/benefit decision-making tasks. Neuropsychopharmacology 40:1005–15 [Google Scholar]
  88. Huang HJ, Kram R, Ahmed AA. 2012. Reduction of metabolic cost during motor learning of arm reaching dynamics. J. Neurosci. 32:2182–90 [Google Scholar]
  89. Inzlicht M, Bartholow BD, Hirsh JB. 2015. Emotional foundations of cognitive control. Trends Cogn. Sci. 19:126–32 [Google Scholar]
  90. Inzlicht M, Schmeichel BJ. 2012. What is ego depletion? Toward a mechanistic revision of the resource model of self-control. Perspect. Psychol. Sci. 7:450–63 [Google Scholar]
  91. James W. 1891. The Principles of Psychology 2 London: Macmillan [Google Scholar]
  92. Jensen AR. 1988. Speed of information processing and population differences. Human Abilities in Cultural Context SH Irvine, JW Berry 105–45 Cambridge, UK: Cambridge Univ. Press [Google Scholar]
  93. Jepma M, Nieuwenhuis S. 2011. Pupil diameter predicts changes in the exploration–exploitation trade-off: evidence for the adaptive gain theory. J. Cogn. Neurosci. 23:1587–96 [Google Scholar]
  94. Kahneman D. 1973. Attention and Effort Englewood Cliffs, NJ: Prentice-Hall [Google Scholar]
  95. Kahneman D. 2003. A perspective on judgment and choice: mapping bounded rationality. Am. Psychol. 58:697–720 [Google Scholar]
  96. Kahneman D, Beatty J. 1966. Pupil diameter and load on memory. Science 154:1583–85 [Google Scholar]
  97. Kaping D, Vinck M, Hutchison RM, Everling S, Womelsdorf T. 2011. Specific contributions of ventromedial, anterior cingulate, and lateral prefrontal cortex for attentional selection and stimulus valuation. PLOS Biol 9:e1001224 [Google Scholar]
  98. Kerns JG, Cohen JD, MacDonald AW, Cho RY, Stenger VA, Carter CS. 2004. Anterior cingulate conflict monitoring and adjustments in control. Science 303:1023–26 [Google Scholar]
  99. Keuken MC, van Maanen L, Bogacz R, Schäfer A, Neumann J. et al. 2015. The subthalamic nucleus during decision-making with multiple alternatives. Hum. Brain Mapp. 36:4041–52 [Google Scholar]
  100. Kool W, McGuire JT, Rosen ZB, Botvinick MM. 2010. Decision making and the avoidance of cognitive demand. J. Exp. Psychol.: Gen. 139:665–82 [Google Scholar]
  101. Kouneiher F, Charron S, Koechlin E. 2009. Motivation and cognitive control in the human prefrontal cortex. Nat. Neurosci. 12:939–45 [Google Scholar]
  102. Krebs RM, Boehler CN, Woldorff MG. 2010. The influence of reward associations on conflict processing in the Stroop task. Cognition 117:341–47 [Google Scholar]
  103. Kurzban R, Duckworth A, Kable JW, Myers J. 2013. An opportunity cost model of subjective effort and task performance. Behav. Brain Sci. 36:661–79 [Google Scholar]
  104. LeCun Y, Bengio Y, Hinton G. 2015. Deep learning. Nature 521:436–44 [Google Scholar]
  105. Lewis RL, Howes A, Singh S. 2014. Computational rationality: linking mechanism and behavior through bounded utility maximization. Top. Cogn. Sci. 6:279–311 [Google Scholar]
  106. Lieder F, Griffiths TL. 2015. When to use which heuristic: a rational solution to the strategy selection problem. Proc. 37th Annu. Conf. Cogn. Sci. Soc. DC Noelle, R Dale, AS Warlaumont, J Yoshimi, T Matlock, et al., pp. 1362–67. Austin, TX: Cogn. Sci. Soc. [Google Scholar]
  107. Lieder F, Griffiths TL. 2016. Helping people make better decisions using optimal gamification. Proc. 38th Annu. Conf. Cogn. Sci. Soc., Philadelphia A Papafragou, D Grodner, D Mirman, JC Trueswell, pp. 2075–80. Austin, TX: Cogn. Sci. Soc. [Google Scholar]
  108. Lieder F, Griffiths TL, Goodman ND. 2012. Burn-in, bias, and the rationality of anchoring. Adv. Neural Inf. Process. Syst. 25 (NIPS 2012), Lake Tahoe, NV F Pereira, CJC Burgess, L Bottou, KQ Weinberger, pp. 2690–798. La Jolla, CA: Neural Inf. Process. Syst. [Google Scholar]
  109. Lieder F, Plunkett D, Hamrick JB, Russell SJ, Hay NJ, Griffiths TL. 2014. Algorithm selection by rational metareasoning as a model of human strategy selection. Adv. Neural Inf. Process. Syst. 27 (NIPS 2014), Montreal Z Ghahramani, M Welling, C Cortes, ND Lawrence, KQ Weinberger, pp. 2870–78. La Jolla, CA: Neural Inf. Process. Syst. [Google Scholar]
  110. Logan GD. 1985. Skill and automaticity: relations, implications, and future directions. Can. J. Psychol. 39:367–86 [Google Scholar]
  111. Luck SJ, Vogel EK. 1997. The capacity of visual working memory for features and conjunctions. Nature 390:279–81 [Google Scholar]
  112. Ma WJ, Husain M, Bays PM. 2014. Changing concepts of working memory. Nat. Neurosci. 17:347–56 [Google Scholar]
  113. Magno E, Foxe JJ, Molholm S, Robertson IH, Garavan H. 2006. The anterior cingulate and error avoidance. J. Neurosci. 26:4769–73 [Google Scholar]
  114. Mansouri FA, Egner T, Buckley MJ. 2017. Monitoring demands for executive control: shared functions between human and nonhuman primates. Trends Neurosci 40:15–27 [Google Scholar]
  115. Marcora SM. 2009. Perception of effort during exercise is independent of afferent feedback from skeletal muscles, heart, and lungs. J. Appl. Physiol. 106:2060–62 [Google Scholar]
  116. Marcora SM, Staiano W. 2010. The limit to exercise tolerance in humans: mind over muscle?. Eur. J. Appl. Physiol. 109:763–70 [Google Scholar]
  117. Marcora SM, Staiano W, Manning V. 2009. Mental fatigue impairs physical performance in humans. J. Appl. Physiol. 106:857–64 [Google Scholar]
  118. McGuire JT, Botvinick MM. 2010. Prefrontal cortex, cognitive control, and the registration of decision costs. PNAS 107:7922–26 [Google Scholar]
  119. Medford N, Critchley HD. 2010. Conjoint activity of anterior insular and anterior cingulate cortex: awareness and response. Brain Struct. Funct. 214:535–49 [Google Scholar]
  120. Menon V, Uddin LQ. 2010. Saliency, switching, attention and control: a network model of insula function. Brain Struct. Funct. 214:655–67 [Google Scholar]
  121. Miller EK, Cohen JD. 2001. An integrative theory of prefrontal cortex function. Annu. Rev. Neurosci. 24:167–202 [Google Scholar]
  122. Miller GA. 1956. The magical number seven, plus or minus two: some limits on our capacity for processing information. Psychol. Rev. 63:81–97 [Google Scholar]
  123. Mischel W, Shoda Y, Rodriguez ML. 1989. Delay of gratification in children. Science 244:933–38 [Google Scholar]
  124. Molden DC, Hui CM, Scholer AA, Meier BP, Noreen EE. et al. 2012. Motivational versus metabolic effects of carbohydrates on self-control. Psychol. Sci. 10:1137–44 [Google Scholar]
  125. Monsell S. 2003. Task switching. Trends Cogn. Sci. 7:134–40 [Google Scholar]
  126. Mulert C, Menzinger E, Leicht G, Pogarell O, Hegerl U. 2005. Evidence for a close relationship between conscious effort and anterior cingulate cortex activity. Int. J. Psychophysiol. 56:65–80 [Google Scholar]
  127. Muraven M, Tice DM, Baumeister RF. 1998. Self-control as limited resource: regulatory depletion patterns. J. Pers. Soc. Psychol. 74:774–89 [Google Scholar]
  128. Musslick S, Dey B, Özcimder K, Patwary MMA, Willke TL, Cohen JD. 2016a. Controlled vs. automatic processing: a graph-theoretic approach to the analysis of serial vs. parallel processing in neural network architectures. Proc. 38th Annu. Conf. Cogn. Sci. Soc., Philadelphia A Papafragou, D Grodner, D Mirman, JC Trueswell, pp. 1547–52. Austin, TX: Cogn. Sci. Soc. [Google Scholar]
  129. Musslick S, Dey B, Özcimder K, Patwary MMA, Willke TL, Cohen JD. 2016b. Parallel processing capability versus efficiency of representation in neural networks Presented at 15th Neural Comput. Psychol. Workshop, Aug. 8–9 Philadelphia: [Google Scholar]
  130. Musslick S, Shenhav A, Botvinick MM, Cohen JD. 2015. A computational model of control allocation based on the expected value of control Presented at 2nd Multidiscip. Conf. Reinf. Learn. Decis. Mak., June 7–10 Edmonton, Can.: [Google Scholar]
  131. Naccache L, Dehaene S, Cohen L, Habert M-O, Guichart-Gomez E. et al. 2005. Effortless control: executive attention and conscious feeling of mental effort are dissociable. Neuropsychologia 43:1318–28 [Google Scholar]
  132. Nairne JS. 1990. A feature model of immediate memory. Mem. Cogn. 18:251–69 [Google Scholar]
  133. Nakamura J, Csikszentmihalyi M. 2002. The concept of flow. Handbook of Positive Psychology CR Snyder, SJ Lopez 89–105 Oxford, UK: Oxford Univ. Press [Google Scholar]
  134. Navon D, Gopher D. 1979. On the economy of the human-processing system. Psychol. Rev. 86:214–55 [Google Scholar]
  135. Nicola SM. 2010. The flexible approach hypothesis: unification of effort and cue-responding hypotheses for the role of nucleus accumbens dopamine in the activation of reward-seeking behavior. J. Neurosci. 30:16585–600 [Google Scholar]
  136. Nieuwenhuis S, Schweizer TS, Mars RB, Botvinick MM, Hajcak G. 2007. Error-likelihood prediction in the medial frontal cortex: a critical evaluation. Cereb. Cortex 17:1570–81 [Google Scholar]
  137. Niv Y, Daw ND, Joel D, Dayan P. 2007. Tonic dopamine: opportunity costs and the control of response vigor. Psychopharmacology 191:507–20 [Google Scholar]
  138. Oberauer K, Farrell S, Jarrold C, Lewandowsky S. 2016. What limits working memory capacity?. Psychol. Bull. 142:758–99 [Google Scholar]
  139. Oberauer K, Kliegl R. 2006. A formal model of capacity limits in working memory. J. Mem. Lang. 55:601–26 [Google Scholar]
  140. Oehrn CR, Hanslmayr S, Fell J, Deuker L, Kremers NA. et al. 2014. Neural communication patterns underlying conflict detection, resolution, and adaptation. J. Neurosci. 34:10438–52 [Google Scholar]
  141. O'Reilly RC, Frank MJ. 2006. Making working memory work: a computational model of learning in the prefrontal cortex and basal ganglia. Neural Comput 18:283–328 [Google Scholar]
  142. Ortega PA, Braun DA. 2011. Information, utility and bounded rationality. Proc. 4th Int. Conf. Artif. Gen. Intell., Mountain View, CA, Aug. 3–6269–74 Berlin: Springer-Verlag [Google Scholar]
  143. Ortega PA, Braun DA. 2013. Thermodynamics as a theory of decision-making with information-processing costs. Proc. R. Soc. A 469:20120683 [Google Scholar]
  144. Oud B, Krajbich I, Miller K, Cheong JH, Botvinick M, Fehr E. 2016. Irrational time allocation in decision-making. Proc. R. Soc. B 283:20151439 [Google Scholar]
  145. Padmala S, Pessoa L. 2011. Reward reduces conflict by enhancing attentional control and biasing visual cortical processing. J. Cogn. Neurosci. 23:3419–32 [Google Scholar]
  146. Page M, Norris D. 1998. The primacy model: a new model of immediate serial recall. Psychol. Rev. 105:761–81 [Google Scholar]
  147. Parvizi J, Rangarajan V, Shirer WR, Desai N, Greicius MD. 2013. The will to persevere induced by electrical stimulation of the human cingulate gyrus. Neuron 80:1359–67 [Google Scholar]
  148. Pasquereau B, Turner RS. 2013. Limited encoding of effort by dopamine neurons in a cost-benefit trade-off task. J. Neurosci. 33:8288–300 [Google Scholar]
  149. Payne JW, Bettman JR, Johnson EL. 1988. Adaptive strategy selection in decision making. J. Exp. Psychol. Learn. Mem. Cogn. 14:534–52 [Google Scholar]
  150. Posner MI, Snyder CRR. 1975. Attention and cognitive control. Information Processing and Cognition: The Loyola Symposium RL Solso Hillsdale, NJ: Erlbaum Assoc. [Google Scholar]
  151. Power JD, Petersen SE. 2013. Control-related systems in the human brain. Curr. Opin. Neurobiol. 23:223–28 [Google Scholar]
  152. Prévost C, Pessiglione M, Météreau E, Cléry-Melin M, Dreher J. 2010. Separate valuation subsystems for delay and effort decision costs. J. Neurosci. 30:14080–90 [Google Scholar]
  153. Ratcliff R. 1978. A theory of memory retrieval. Psychol. Rev. 85:59–108 [Google Scholar]
  154. Reinhart RMG, Woodman GF. 2014. Causal control of medial-frontal cortex governs electrophysiological and behavioral indices of performance monitoring and learning. J. Neurosci. 34:4214–27 [Google Scholar]
  155. Ridderinkhof KR, Ullsperger M, Crone EA, Nieuwenhuis S. 2004. The role of the medial frontal cortex in cognitive control. Science 306:443–47 [Google Scholar]
  156. Rumelhart DE, McClelland JL. 1986. PDP models and general issues in cognitive science. Parallel Distributed Processing: Explorations in the Microstructure of Cognition 1 DE Rumelhart, JL McClelland 110–46 Cambridge, MA: MIT Press [Google Scholar]
  157. Rushworth MFS, Noonan MP, Boorman ED, Walton ME, Behrens TE. 2011. Frontal cortex and reward-guided learning and decision-making. Neuron 70:1054–69 [Google Scholar]
  158. Rushworth MFS, Walton ME, Kennerley SW, Bannerman D. 2004. Action sets and decisions in the medial frontal cortex. Trends Cogn. Sci. 8:410–17 [Google Scholar]
  159. Russell SJ, Subramanian D. 1995. Provably bounded-optimal agents. J. Artif. Intell. Res. 2:575–609 [Google Scholar]
  160. Russell SJ, Wefald E. 1991. Principles of metareasoning. Artif. Intell. 49:361–95 [Google Scholar]
  161. Salamone JD, Correa M, Farrar AM, Nunes EJ, Pardo M. 2009. Dopamine, behavioral economics, and effort. Front. Behav. Neurosci. 3:13 [Google Scholar]
  162. Salamone JD, Yohn SE, López-Cruz L, San Miguel N, Correa M. 2016. Activational and effort-related aspects of motivation: neural mechanisms and implications for psychopathology. Brain 139:1325–47 [Google Scholar]
  163. Saunders B, Milyavskaya M, Inzlicht M. 2015. What does cognitive control feel like? Effective and ineffective cognitive control is associated with divergent phenomenology. Psychophysiology 52:1205–17 [Google Scholar]
  164. Schmidt L, Lebreton M, Cléry-Melin M-L, Daunizeau J, Pessiglione M. 2012. Neural mechanisms underlying motivation of mental versus physical effort. PLOS Biol 10:e1001266 [Google Scholar]
  165. Shackman AJ, Salomons TV, Slagter HA, Fox AS, Winter JJ, Davidson RJ. 2011. The integration of negative affect, pain and cognitive control in the cingulate cortex. Nat. Rev. Neurosci. 12:154–67 [Google Scholar]
  166. Shaffer LH. 1975. Multiple attention in continuous verbal tasks. Attention and Performance V PMA Rabbitt, S Dornic 157–67 London: Academic [Google Scholar]
  167. Shen C, Ardid S, Kaping D, Westendorff S, Everling S, Womelsdorf T. 2014. Anterior cingulate cortex cells identify process-specific errors of attentional control prior to transient prefrontal-cingulate inhibition. Cereb. Cortex 25:2213–28 [Google Scholar]
  168. Shenhav A, Botvinick MM, Cohen JD. 2013. The expected value of control: an integrative theory of anterior cingulate cortex function. Neuron 79:217–40 [Google Scholar]
  169. Shenhav A, Cohen JD, Botvinick MM. 2016. Dorsal anterior cingulate cortex and the value of control. Nat. Neurosci. 19:1286–91 [Google Scholar]
  170. Sheth SA, Mian MK, Patel SR, Asaad WF, Williams ZM. et al. 2012. Human dorsal anterior cingulate cortex neurons mediate ongoing behavioural adaptation. Nature 488:218–21 [Google Scholar]
  171. Shiffrin RM, Schneider W. 1977. Controlled and automatic information processing: II. Perceptual learning, automatic attending, and a general theory. Psychol. Rev. 84:127–90 [Google Scholar]
  172. Simon HA. 1956. Rational choice and the structure of the environment. Psychol. Rev. 63:129–38 [Google Scholar]
  173. Simon HA. 1982. Models of Bounded Rationality 3 Empirically Grounded Economic Reason Cambridge, MA: MIT Press [Google Scholar]
  174. Spunt RP, Lieberman MD, Cohen JR, Eisenberger NI. 2012. The phenomenology of error processing: the dorsal ACC response to stop-signal errors tracks reports of negative affect. J. Cogn. Neurosci. 24:1753–65 [Google Scholar]
  175. Sternberg S. 1969. Memory-scanning: mental processes revealed by reaction-time experiments. Am. Sci. 57:421–57 [Google Scholar]
  176. Stuss DT. 2011. Functions of the frontal lobes: relation to executive functions. J. Int. Neuropsychol. Soc. 17:759–65 [Google Scholar]
  177. Sutton RS, Barto AG. 1998. Reinforcement Learning: An Introduction Cambridge, MA: MIT Press [Google Scholar]
  178. Tanaka M, Ishii A, Watanabe Y. 2014. Neural effects of mental fatigue caused by continuous attention load: a magnetoencephalography study. Brain Res 1561:60–66 [Google Scholar]
  179. Tang H, Yu H-Y, Chou C-C, Crone NE, Madsen JR. et al. 2016. Cascade of neural processing orchestrates cognitive control in human frontal cortex. eLife 5:4671 [Google Scholar]
  180. Tangney JP, Baumeister RF, Boone AL. 2004. High self‐control predicts good adjustment, less pathology, better grades, and interpersonal success. J. Personal. 72:271–324 [Google Scholar]
  181. Thaler RH, Sunstein CR. 2008. Nudge: Improving Decisions about Health, Wealth, and Happiness New Haven, CT: Yale Univ. Press [Google Scholar]
  182. Todd MT, Niv Y, Cohen JD. 2009. Learning to use working memory in partially observable environments through dopaminergic reinforcement. Adv. Neural Inf. Process. Syst. 21:1689–96 [Google Scholar]
  183. Todd PM, Gigerenzer G. 2012. Ecological Rationality: Intelligence in the World Oxford, UK: Oxford Univ. Press [Google Scholar]
  184. Tomlin D, Rand DG, Ludvig EA, Cohen JD. 2015. The evolution and devolution of cognitive control: the costs of deliberation in a competitive world. Sci. Rep. 5:11002 [Google Scholar]
  185. Tversky A, Kahneman D. 1974. Judgment under uncertainty: heuristics and biases. Science 185:1124–31 [Google Scholar]
  186. Ullsperger M, Danielmeier C, Jocham G. 2014. Neurophysiology of performance monitoring and adaptive behavior. Physiol. Rev. 94:35–79 [Google Scholar]
  187. Ullsperger M, Harsay HA, Wessel JR, Ridderinkhof KR. 2010. Conscious perception of errors and its relation to the anterior insula. Brain Struct. Funct. 214:629–43 [Google Scholar]
  188. Umemoto A, Holroyd CB. 2014. Task-specific effects of reward on task switching. Psychol. Res.698–707 [Google Scholar]
  189. Vadillo MA, Gold N, Osman M. 2016. The bitter truth about sugar and willpower: the limited evidential value of the glucose model of ego depletion. Psychol. Sci. 27:1207–14 [Google Scholar]
  190. Varazzani C, San-Galli A, Gilardeau S, Bouret S. 2015. Noradrenaline and dopamine neurons in the reward/effort trade-off: a direct electrophysiological comparison in behaving monkeys. J. Neurosci. 35:7866–77 [Google Scholar]
  191. Verguts T, Vassena E, Silvetti M. 2015. Adaptive effort investment in cognitive and physical tasks: a neurocomputational model. Front. Behav. Neurosci. 9:57 [Google Scholar]
  192. Vogt BA. 2016. Midcingulate cortex: Structure, connections, homologies, functions and diseases. J. Chem. Neuroanat. 74:28–46 [Google Scholar]
  193. Vul E, Goodman ND, Griffiths TL, Tenenbaum JB. 2014. One and done? Optimal decisions from very few samples. Cogn. Sci. 38:599–637 [Google Scholar]
  194. Walton M, Rudebeck PH, Bannerman D, Rushworth MFS. 2007. Calculating the cost of acting in frontal cortex. Ann. N. Y. Acad. Sci. 1104:340–56 [Google Scholar]
  195. Wang C, Trongnetrpunya A, Samuel IBH, Ding M, Kluger BM. 2016. Compensatory neural activity in response to cognitive fatigue. J. Neurosci. 36:3919–24 [Google Scholar]
  196. Wessel JR, Danielmeier C, Morton JB, Ullsperger M. 2012. Surprise and error: common neuronal architecture for the processing of errors and novelty. J. Neurosci. 32:7528–37 [Google Scholar]
  197. Westbrook A, Braver TS. 2015. Cognitive effort: a neuroeconomic approach. Cogn. Affect. Behav. Neurosci. 15:395–415 [Google Scholar]
  198. Westbrook A, Braver TS. 2016. Dopamine does double duty in motivating cognitive effort. Neuron 89:695–710 [Google Scholar]
  199. Westbrook A, Kester D, Braver TS. 2013. What is the subjective cost of cognitive effort? Load, trait, and aging effects revealed by economic preference. PLOS ONE 8:e68210 [Google Scholar]
  200. Wickens DD. 1984. Processing resources in attention. Varieties of Attention R Parasuraman, DR Davies, J Beatty 63–102 New York: Academic [Google Scholar]
  201. Wolpert DM, Landy MS. 2012. Motor control is decision-making. Curr. Opin. Neurobiol. 22:996–1003 [Google Scholar]
  202. Womelsdorf T, Johnston K, Vinck M, Everling S. 2010. Theta-activity in anterior cingulate cortex predicts task rules and their adjustments following errors. PNAS 107:5248–53 [Google Scholar]
  203. Zakay D. 2014. Psychological time as information: the case of boredom. Front. Psychol. 5:917 [Google Scholar]
  204. Zenon A, Sidibe M, Olivier E. 2015. Disrupting the supplementary motor area makes physical effort appear less effortful. J. Neurosci. 35:8737–44 [Google Scholar]
/content/journals/10.1146/annurev-neuro-072116-031526
Loading
/content/journals/10.1146/annurev-neuro-072116-031526
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error