1932

Abstract

Opioids are the most commonly used and effective analgesic treatments for severe pain, but they have recently come under scrutiny owing to epidemic levels of abuse and overdose. These compounds act on the endogenous opioid system, which comprises four G protein–coupled receptors (mu, delta, kappa, and nociceptin) and four major peptide families (β-endorphin, enkephalins, dynorphins, and nociceptin/orphanin FQ). In this review, we first describe the functional organization and pharmacology of the endogenous opioid system. We then summarize current knowledge on the signaling mechanisms by which opioids regulate neuronal function and neurotransmission. Finally, we discuss the loci of opioid analgesic action along peripheral and central pain pathways, emphasizing the pain-relieving properties of opioids against the affective dimension of the pain experience.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-neuro-080317-061522
2018-07-08
2024-05-28
Loading full text...

Full text loading...

/deliver/fulltext/neuro/41/1/annurev-neuro-080317-061522.html?itemId=/content/journals/10.1146/annurev-neuro-080317-061522&mimeType=html&fmt=ahah

Literature Cited

  1. Aicher SA, Punnoose A, Goldberg A 2000. μ-Opioid receptors often colocalize with the substance P receptor (NK1) in the trigeminal dorsal horn. J. Neurosci. 20:4345–54
    [Google Scholar]
  2. Al-Hasani R, Bruchas MR 2011. Molecular mechanisms of opioid receptor-dependent signaling and behavior. Anesthesiology 115:1363–81
    [Google Scholar]
  3. Al-Hasani R, McCall JG, Shin G, Gomez AM, Schmitz GP et al. 2015. Distinct subpopulations of nucleus accumbens dynorphin neurons drive aversion and reward. Neuron 87:1063–77
    [Google Scholar]
  4. al-Rodhan NR, Yaksh TL, Kelly PJ 1992. Comparison of the neurochemistry of the endogenous opioid systems in two brainstem pain-processing centers. Stereotact. Funct. Neurosurg. 59:15–19
    [Google Scholar]
  5. Altier C, Khosravani H, Evans RM, Hameed S, Peloquin JB et al. 2006. ORL1 receptor-mediated internalization of N-type calcium channels. Nat. Neurosci. 9:31–40
    [Google Scholar]
  6. Araldi D, Khomula EV, Ferrari LF, Levine JD 2018. Fentanyl induces rapid onset hyperalgesic priming: type I at peripheral and type II at central nociceptor terminals. J. Neurosci. 38:2226–45
    [Google Scholar]
  7. Arvidsson U, Dado RJ, Riedl M, Lee JH, Law PY et al. 1995a. delta-Opioid receptor immunoreactivity: distribution in brainstem and spinal cord, and relationship to biogenic amines and enkephalin. J. Neurosci. 15:1215–35
    [Google Scholar]
  8. Arvidsson U, Riedl M, Chakrabarti S, Lee JH, Nakano AH et al. 1995b. Distribution and targeting of a mu-opioid receptor (MOR1) in brain and spinal cord. J. Neurosci. 15:5 Pt. 13328–41
    [Google Scholar]
  9. Bahouth SW, Nooh MM 2017. Barcoding of GPCR trafficking and signaling through the various trafficking roadmaps by compartmentalized signaling networks. Cell. Signal. 36:42–55
    [Google Scholar]
  10. Banghart MR, Sabatini BL 2012. Photoactivatable neuropeptides for spatiotemporally precise delivery of opioids in neural tissue. Neuron 73:249–59
    [Google Scholar]
  11. Barchfeld CC, Medzihradsky F 1984. Receptor-mediated stimulation of brain GTPase by opiates in normal and dependent rats. Biochem. Biophys. Res. Commun. 121:641–48
    [Google Scholar]
  12. Bardoni R, Tawfik VL, Wang D, François A, Solorzano C et al. 2014. Delta opioid receptors presynaptically regulate cutaneous mechanosensory neuron input to the spinal cord dorsal horn. Neuron 81:1312–27
    [Google Scholar]
  13. Basbaum AI, Bautista DM, Scherrer G, Julius D 2009. Cellular and molecular mechanisms of pain. Cell 139:267–84
    [Google Scholar]
  14. Basbaum AI, Fields HL 1984. Endogenous pain control systems: brainstem spinal pathways and endorphin circuitry. Annu. Rev. Neurosci. 7:309–38
    [Google Scholar]
  15. Bingel U, Lorenz J, Schoell E, Weiller C, Büchel C 2006. Mechanisms of placebo analgesia: rACC recruitment of a subcortical antinociceptive network. Pain 120:8–15
    [Google Scholar]
  16. Bloom FE, Rossier J, Battenberg EL, Bayon A, French E et al. 1978. beta-endorphin: cellular localization, electrophysiological and behavioral effects. Adv. Biochem. Psychopharmacol. 18:89–109
    [Google Scholar]
  17. Bohn LM, Aubé J 2017. Seeking (and finding) biased ligands of the kappa opioid receptor. ACS Med. Chem. Lett. 8:694–700
    [Google Scholar]
  18. Bohn LM, Gainetdinov RR, Sotnikova TD, Medvedev IO, Lefkowitz RJ et al. 2003. Enhanced rewarding properties of morphine, but not cocaine, in βarrestin-2 knock-out mice. J. Neurosci. 23:10265–73
    [Google Scholar]
  19. Bohn LM, Lefkowitz RJ, Gainetdinov RR, Peppel K, Caron MG, Lin FT 1999. Enhanced morphine analgesia in mice lacking β-arrestin 2. Science 286:2495–98
    [Google Scholar]
  20. Borras MC, Becerra L, Ploghaus A, Gostic JM, DaSilva A et al. 2004. fMRI measurement of CNS responses to naloxone infusion and subsequent mild noxious thermal stimuli in healthy volunteers. J. Neurophysiol. 91:2723–33
    [Google Scholar]
  21. Bower JD, Guest KP, Morgan BA 1976. Enkephalin. Synthesis of two pentapeptides isolated from porcine brain with receptor-mediated opiate agonist activity. J. Chem. Soc. Perkin Trans. 1 23:2488–92
    [Google Scholar]
  22. Boyle KA, Gutierrez-Mecinas M, Polgár E, Mooney N, O'Connor E et al. 2017. A quantitative study of neurochemically defined populations of inhibitory interneurons in the superficial dorsal horn of the mouse spinal cord. Neuroscience 363:120–33
    [Google Scholar]
  23. Bruchas MR, Land BB, Aita M, Xu M, Barot SK et al. 2007a. Stress-induced p38 mitogen-activated protein kinase activation mediates κ-opioid-dependent dysphoria. J. Neurosci. 27:11614–23
    [Google Scholar]
  24. Bruchas MR, Land BB, Chavkin C 2010. The dynorphin/kappa opioid system as a modulator of stress-induced and pro-addictive behaviors. Brain Res 1314:44–55
    [Google Scholar]
  25. Bruchas MR, Macey TA, Lowe JD, Chavkin C 2006. Kappa opioid receptor activation of p38 MAPK is GRK3- and arrestin-dependent in neurons and astrocytes. J. Biol. Chem. 281:18081–89
    [Google Scholar]
  26. Bruchas MR, Schindler AG, Shankar H, Messinger DI, Miyatake M et al. 2011. Selective p38α MAPK deletion in serotonergic neurons produces stress resilience in models of depression and addiction. Neuron 71:498–511
    [Google Scholar]
  27. Bruchas MR, Yang T, Schreiber S, Defino M, Kwan SC et al. 2007b. Long-acting κ opioid antagonists disrupt receptor signaling and produce noncompetitive effects by activating c-Jun N-terminal kinase. J. Biol. Chem. 282:29803–11
    [Google Scholar]
  28. Brust TF, Morgenweck J, Kim SA, Rose JH, Locke JL et al. 2016. Biased agonists of the kappa opioid receptor suppress pain and itch without causing sedation or dysphoria. Sci. Signal. 9:ra117
    [Google Scholar]
  29. Burma NE, Bonin RP, Leduc-Pessah H, Baimel C, Cairncross ZF et al. 2017. Blocking microglial pannexin-1 channels alleviates morphine withdrawal in rodents. Nat. Med. 23:355–60
    [Google Scholar]
  30. Cahill CM, Xue L, Grenier P, Magnussen C, Lecour S, Olmstead MC 2013. Changes in morphine reward in a model of neuropathic pain. Behav. Pharmacol. 24:207–13
    [Google Scholar]
  31. Cai X, Huang H, Kuzirian MS, Snyder LM, Matsushita M et al. 2016. Generation of a KOR-Cre knockin mouse strain to study cells involved in kappa opioid signaling. Genesis 54:29–37
    [Google Scholar]
  32. Castro DC, Berridge KC 2014. Opioid hedonic hotspot in nucleus accumbens shell: mu, delta, and kappa maps for enhancement of sweetness “liking” and “wanting. J. Neurosci. 34:4239–50
    [Google Scholar]
  33. CDC (Cent. Dis. Control Prev.). 2013. Vital signs: overdoses of prescription opioid pain relievers and other drugs among women–United States, 1999–2010. MMWR Morb. Mortal. Wkly. Rep. 62:537–42
    [Google Scholar]
  34. Chan HCS, McCarthy D, Li J, Palczewski K, Yuan S 2017. Designing safer analgesics via μ-opioid receptor pathways. Trends Pharmacol. Sci. 38:1016–37
    [Google Scholar]
  35. Chavkin C 2013. Dynorphin—still an extraordinarily potent opioid peptide. Mol. Pharmacol. 83:729–36
    [Google Scholar]
  36. Chen G, Xie R-G, Gao Y-J, Xu Z-Z, Zhao L-X et al. 2016. β-arrestin-2 regulates NMDA receptor function in spinal lamina II neurons and duration of persistent pain. Nat. Commun. 7:12531
    [Google Scholar]
  37. Chen L-Y, Huang J-X, Yu L-C 2008. Involvement of ORL1 receptor and ERK kinase in the orphanin FQ–induced nociception in the nucleus accumbens of rats. Regul. Pept 151:43–47
    [Google Scholar]
  38. Chen S-R, Pan H-L 2008. Removing TRPV1-expressing primary afferent neurons potentiates the spinal analgesic effect of delta-opioid agonists on mechano-nociception. Neuropharmacology 55:215–22
    [Google Scholar]
  39. Cheng ZF, Fields HL, Heinricher MM 1986. Morphine microinjected into the periaqueductal gray has differential effects on 3 classes of medullary neurons. Brain Res 375:57–65
    [Google Scholar]
  40. Childers SR, Snyder SH 1978. Guanine nucleotides differentiate agonist and antagonist interactions with opiate receptors. Life Sci 23:759–61
    [Google Scholar]
  41. Chu LF, Angst MS, Clark D 2008. Opioid-induced hyperalgesia in humans: molecular mechanisms and clinical considerations. Clin. J. Pain 24:479–96
    [Google Scholar]
  42. Cobos EJ, Ghasemlou N, Araldi D, Segal D, Duong K, Woolf CJ 2012. Inflammation-induced decrease in voluntary wheel running in mice: a nonreflexive test for evaluating inflammatory pain and analgesia. Pain 153:876–84
    [Google Scholar]
  43. Connor M, Bagley EE, Chieng BC, Christie MJ 2015. β-Arrestin-2 knockout prevents development of cellular μ-opioid receptor tolerance but does not affect opioid-withdrawal-related adaptations in single PAG neurons. Br. J. Pharmacol. 172:492–500
    [Google Scholar]
  44. Convertino M, Samoshkin A, Gauthier J, Gold MS, Maixner W et al. 2015. μ-Opioid receptor 6-transmembrane isoform: a potential therapeutic target for new effective opioids. Prog. Neuropsychopharmacol. Biol. Psychiatry 62:61–67
    [Google Scholar]
  45. Corder G, Doolen S, Donahue RR, Winter MK, Jutras BL et al. 2013. Constitutive μ-opioid receptor activity leads to long-term endogenous analgesia and dependence. Science 341:1394–99
    [Google Scholar]
  46. Corder G, Tawfik VL, Wang D, Sypek EI, Low SA et al. 2017. Loss of μ opioid receptor signaling in nociceptors, but not microglia, abrogates morphine tolerance without disrupting analgesia. Nat. Med. 23:164–73
    [Google Scholar]
  47. Cowley MA, Smart JL, Rubinstein M, Cerdán MG, Diano S et al. 2001. Leptin activates anorexigenic POMC neurons through a neural network in the arcuate nucleus. Nature 411:480–84
    [Google Scholar]
  48. Craig AD 2003. A new view of pain as a homeostatic emotion. Trends Neurosci 26:303–7
    [Google Scholar]
  49. Crowley NA, Bloodgood DW, Hardaway JA, Kendra AM, McCall JG et al. 2016. Dynorphin controls the gain of an amygdalar anxiety circuit. Cell Rep 14:2774–83
    [Google Scholar]
  50. Dado RJ, Law PY, Loh HH, Elde R 1993. Immunofluorescent identification of a delta (delta)-opioid receptor on primary afferent nerve terminals. Neuroreport 5:341–44
    [Google Scholar]
  51. DeHaven-Hudkins DL, Dolle RE 2004. Peripherally restricted opioid agonists as novel analgesic agents. Curr. Pharm. Des. 10:743–57
    [Google Scholar]
  52. Drake CT, Terman GW, Simmons ML, Milner TA, Kunkel DD et al. 1994. Dynorphin opioids present in dentate granule cells may function as retrograde inhibitory neurotransmitters. J. Neurosci. 14:3736–50
    [Google Scholar]
  53. Drdla R, Gassner M, Gingl E, Sandkühler J 2009. Induction of synaptic long-term potentiation after opioid withdrawal. Science 325:207–10
    [Google Scholar]
  54. Drdla-Schutting R, Benrath J, Wunderbaldinger G, Sandkühler J 2012. Erasure of a spinal memory trace of pain by a brief, high-dose opioid administration. Science 335:235–38
    [Google Scholar]
  55. Duan B, Cheng L, Bourane S, Britz O, Padilla C et al. 2014. Identification of spinal circuits transmitting and gating mechanical pain. Cell 159:1417–32
    [Google Scholar]
  56. Duggan AW 2000. Neuropeptide spread in the brain and spinal cord. Prog. Brain Res. 125:369–80
    [Google Scholar]
  57. Eckert WA, Light AR 2002. Hyperpolarization of substantia gelatinosa neurons evoked by μ-, κ-, δ1-, and δ2-selective opioids. J. Pain 3:115–25
    [Google Scholar]
  58. Eichel K, Jullié D, von Zastrow M 2016. β-Arrestin drives MAP kinase signalling from clathrin-coated structures after GPCR dissociation. Nat. Cell Biol. 18:303–10
    [Google Scholar]
  59. Eisinger DA, Ammer H 2008. δ-Opioid receptors activate ERK/MAP kinase via integrin-stimulated receptor tyrosine kinases. Cell. Signal. 20:2324–31
    [Google Scholar]
  60. Erbs E, Faget L, Scherrer G, Matifas A, Filliol D et al. 2015. A mu-delta opioid receptor brain atlas reveals neuronal co-occurrence in subcortical networks. Brain Struct. Funct. 220:677–702
    [Google Scholar]
  61. Fang FG, Haws CM, Drasner K, Williamson A, Fields HL 1989. Opioid peptides (DAGO-enkephalin, dynorphin A(1–13), BAM 22P) microinjected into the rat brainstem: comparison of their antinociceptive effect and their effect on neuronal firing in the rostral ventromedial medulla. Brain Res 501:116–28
    [Google Scholar]
  62. Fields HL, Margolis EB 2015. Understanding opioid reward. Trends Neurosci 38:217–25
    [Google Scholar]
  63. François A, Low SA, Sypek EI, Christensen AJ, Sotoudeh C et al. 2017. A brainstem-spinal cord inhibitory circuit for mechanical pain modulation by GABA and enkephalins. Neuron 93:822–839.e6
    [Google Scholar]
  64. François A, Scherrer G 2017. Delta opioid receptor expression and function in primary afferent somatosensory neurons. Handb. Exp. Pharmacol. doi: 10.1007/164_2017_58
  65. Fujita W, Gomes I, Devi LA 2015. Heteromers of μ-δ opioid receptors: new pharmacology and novel therapeutic possibilities. Br. J. Pharmacol. 172:375–87
    [Google Scholar]
  66. Gaspari S, Purushothaman I, Cogliani V, Sakloth F, Neve RL 2018. Suppression of RGSz1 function optimizes the actions of opioid analgesics by mechanisms that involve the Wnt/β-catenin pathway. PNAS 115:E2085–94
    [Google Scholar]
  67. Gaveriaux-Ruff C, Nozaki C, Nadal X, Hever XC, Weibel R et al. 2011. Genetic ablation of delta opioid receptors in nociceptive sensory neurons increases chronic pain and abolishes opioid analgesia. Pain 152:1238–48
    [Google Scholar]
  68. Gendron L, Mittal N, Beaudry H, Walwyn W 2015. Recent advances on the δ opioid receptor: from trafficking to function. Br. J. Pharmacol. 172:403–19
    [Google Scholar]
  69. Glass MJ, Vanyo L, Quimson L, Pickel VM 2009. Ultrastructural relationship between N-methyl-d-aspartate-NR1 receptor subunit and mu-opioid receptor in the mouse central nucleus of the amygdala. Neuroscience 163:857–67
    [Google Scholar]
  70. Goldstein A, Tachibana S, Lowney LI, Hunkapiller M, Hood L 1979. Dynorphin-(1-13), an extraordinarily potent opioid peptide. PNAS 76:6666–70
    [Google Scholar]
  71. Goody RJ, Oakley SM, Filliol D, Kieffer BL, Kitchen I 2002. Quantitative autoradiographic mapping of opioid receptors in the brain of δ-opioid receptor gene knockout mice. Brain Res 945:9–19
    [Google Scholar]
  72. Granier S, Manglik A, Kruse AC, Kobilka TS, Thian FS et al. 2012. Structure of the δ-opioid receptor bound to naltrindole. Nature 485:400–4
    [Google Scholar]
  73. Günther T, Dasgupta P, Mann A, Miess E, Kliewer A et al. 2017. Targeting multiple opioid receptors—improved analgesics with reduced side effects?. Br. J. Pharmacol. doi: 10.1111/bph.13809
  74. Han S, Soleiman MT, Soden ME, Zweifel LS, Palmiter RD 2015. Elucidating an affective pain circuit that creates a threat memory. Cell 162:363–74
    [Google Scholar]
  75. Hipólito L, Wilson-Poe A, Campos-Jurado Y, Zhong E, Gonzalez-Romero J et al. 2015. Inflammatory pain promotes increased opioid self-administration: role of dysregulated ventral tegmental area μ opioid receptors. J. Neurosci. 35:12217–31
    [Google Scholar]
  76. Hummel M, Lu P, Cummons TA, Whiteside GT 2008. The persistence of a long-term negative affective state following the induction of either acute or chronic pain. Pain 140:436–45
    [Google Scholar]
  77. Institute of Medicine (US) Committee on Advancing Pain Research, Care, and Education. 2011. Relieving Pain in America: A Blueprint for Transforming Prevention, Care, Education, and Research Washington, DC: National Academies Press
  78. Inturrisi CE 2002. Clinical pharmacology of opioids for pain. Clin. J. Pain 18:4 Suppl.S3–13
    [Google Scholar]
  79. Irannejad R, Tomshine JC, Tomshine JR, Chevalier M, Mahoney JP et al. 2013. Conformational biosensors reveal GPCR signalling from endosomes. Nature 495:534–38
    [Google Scholar]
  80. Irannejad R, von Zastrow M 2014. GPCR signaling along the endocytic pathway. Curr. Opin. Cell Biol. 27:109–16
    [Google Scholar]
  81. James IF, Chavkin C, Goldstein A 1982. Preparation of brain membranes containing a single type of opioid receptor highly selective for dynorphin. PNAS 79:7570–74
    [Google Scholar]
  82. Joseph EK, Reichling DB, Levine JD 2010. Shared mechanisms for opioid tolerance and a transition to chronic pain. J. Neurosci. 30:4660–66
    [Google Scholar]
  83. Kandasamy R, Price TJ 2015. The pharmacology of nociceptor priming. Handb. Exp. Pharmacol. 227:15–37
    [Google Scholar]
  84. Kardon AP, Polgár E, Hachisuka J, Snyder LM, Cameron D et al. 2014. Dynorphin acts as a neuromodulator to inhibit itch in the dorsal horn of the spinal cord. Neuron 82:573–86
    [Google Scholar]
  85. Kenakin T 2001. Inverse, protean, and ligand-selective agonist: matters of receptor conformation. FASEB J 3:593–611
    [Google Scholar]
  86. Kieffer BL, Evans CJ 2009. Opioid receptors: from binding sites to visible molecules in vivo. Neuropharmacology 56:Suppl. 1205–12
    [Google Scholar]
  87. Kivell B, Prisinzano TE 2010. Kappa opioids and the modulation of pain. Psychopharmacology 210:109–19
    [Google Scholar]
  88. Kupers RC, Konings H, Adriaensen H, Gybels JM 1991. Morphine differentially affects the sensory and affective pain ratings in neurogenic and idiopathic forms of pain. Pain 47:5–12
    [Google Scholar]
  89. LaGraize SC, Borzan J, Peng YB, Fuchs PN 2006. Selective regulation of pain affect following activation of the opioid anterior cingulate cortex system. Exp. Neurol. 197:22–30
    [Google Scholar]
  90. Lai J, Luo M, Chen Q, Porreca F 2008. Pronociceptive actions of dynorphin via bradykinin receptors. Neurosci. Lett. 437:175–79
    [Google Scholar]
  91. Lamberts JT, Traynor JR 2013. Opioid receptor interacting proteins and the control of opioid signaling. Curr. Pharm. Des. 19:7333–47
    [Google Scholar]
  92. Land BB, Bruchas MR, Lemos JC, Xu M, Melief EJ, Chavkin C 2008. The dysphoric component of stress is encoded by activation of the dynorphin κ-opioid system. J. Neurosci. 28:407–14
    [Google Scholar]
  93. Land BB, Bruchas MR, Schattauer S, Giardino WJ, Aita M et al. 2009. Activation of the kappa opioid receptor in the dorsal raphe nucleus mediates the aversive effects of stress and reinstates drug seeking. PNAS 106:19168–73
    [Google Scholar]
  94. Lane DA, Patel PA, Morgan MM 2005. Evidence for an intrinsic mechanism of antinociceptive tolerance within the ventrolateral periaqueductal gray of rats. Neuroscience 135:227–34
    [Google Scholar]
  95. Lazarus LH, Ling N, Guillemin R 1976. beta-Lipotropin as a prohormone for the morphinomimetic peptides endorphins and enkephalins. PNAS 73:2156–59
    [Google Scholar]
  96. Liu JG, Prather PL 2001. Chronic exposure to mu-opioid agonists produces constitutive activation of mu-opioid receptors in direct proportion to the efficacy of the agonist used for pretreatment. Mol. Pharmacol. 60:53–62
    [Google Scholar]
  97. Liu-Chen L-Y 2017. Characterization of a mutant mouse line expressing a fusion protein of kappa opioid receptor and tdTomato Presented at the International Narcotics Research Conference, Chicago, July 9–14
  98. Luján R, Marron Fernandez de Velasco E, Aguado C, Wickman K 2014. New insights into the therapeutic potential of GIRK channels. Trends Neurosci 37:20–29
    [Google Scholar]
  99. Macey TA, Lowe JD, Chavkin C 2006. Mu opioid receptor activation of ERK1/2 is GRK3 and arrestin dependent in striatal neurons. J. Biol. Chem. 281:34515–24
    [Google Scholar]
  100. Manchikanti L, Helm S, Fellows B, Janata JW, Pampati V et al. 2012. Opioid epidemic in the United States. Pain Phys 15:3 Suppl.ES9–38
    [Google Scholar]
  101. Manglik A, Kruse AC, Kobilka TS, Thian FS, Mathiesen JM et al. 2012. Crystal structure of the μ-opioid receptor bound to a morphinan antagonist. Nature 485:321–26
    [Google Scholar]
  102. Manglik A, Lin H, Aryal DK, McCorvy JD, Dengler D et al. 2016. Structure-based discovery of opioid analgesics with reduced side effects. Nature 537:185–90
    [Google Scholar]
  103. Mansour A, Fox CA, Burke S, Meng F, Thompson RC et al. 1994. Mu, delta, and kappa opioid receptor mRNA expression in the rat CNS: an in situ hybridization study. J. Comp. Neurol. 350:412–38
    [Google Scholar]
  104. Mansour A, Khachaturian H, Lewis ME, Akil H, Watson SJ 1988. Anatomy of CNS opioid receptors. Trends Neurosci 11:308–14
    [Google Scholar]
  105. Massaly N, Wilson-Poe A, Hipólito L, Markovic T, Bruchas MR, Moron J 2017. Pain recruits accumbal kappa opioid system and alters opioid consumption Presented at the International Narcotics Research Conference, Chicago, July 9–14
  106. McCall JG, Siuda ER, Bhatti DL, Lawson LA, McElligott ZA et al. 2017. Locus coeruleus to basolateral amygdala noradrenergic projections promote anxiety-like behavior. eLife 6:e18247
    [Google Scholar]
  107. Melief EJ, Miyatake M, Bruchas MR, Chavkin C 2010. Ligand-directed c-Jun N-terminal kinase activation disrupts opioid receptor signaling. PNAS 107:11608–13
    [Google Scholar]
  108. Meunier JC, Mollereau C, Toll L, Suaudeau C, Moisand C et al. 1995. Isolation and structure of the endogenous agonist of opioid receptor-like ORL1 receptor. Nature 377:532–35
    [Google Scholar]
  109. Meye FJ, van Zessen R, Smidt MP, Adan RA, Ramakers GM 2012. Morphine withdrawal enhances constitutive μ-opioid receptor activity in the ventral tegmental area. J. Neurosci. 32:16120–28
    [Google Scholar]
  110. Miaskowski C, Taiwo YO, Levine JD 1991. Contribution of supraspinal μ- and δ-opioid receptors to antinociception in the rat. Eur. J. Pharmacol. 205:247–52
    [Google Scholar]
  111. Minneman KP, Iversen IL 1976. Enkephalin and opiate narcotics increase cyclic GMP accumulation in slices of rat neostriatum. Nature 262:313–14
    [Google Scholar]
  112. Morgan MM, Fossum EN, Levine CS, Ingram SL 2006. Antinociceptive tolerance revealed by cumulative intracranial microinjections of morphine into the periaqueductal gray in the rat. Pharmacol. Biochem. Behav. 85:214–19
    [Google Scholar]
  113. Morgan MM, Heinricher MM, Fields HL 1992. Circuitry linking opioid-sensitive nociceptive modulatory systems in periaqueductal gray and spinal cord with rostral ventromedial medulla. Neuroscience 47:863–71
    [Google Scholar]
  114. Nagi K, Pineyro G 2014. Kir3 channel signaling complexes: focus on opioid receptor signaling. Front. Cell Neurosci. 8:186
    [Google Scholar]
  115. Namburi P, Beyeler A, Yorozu S, Calhoon GG, Halbert SA et al. 2015. A circuit mechanism for differentiating positive and negative associations. Nature 520:675–78
    [Google Scholar]
  116. Narita M, Kishimoto Y, Ise Y, Yajima Y, Misawa K, Suzuki T 2005. Direct evidence for the involvement of the mesolimbic κ-opioid system in the morphine-induced rewarding effect under an inflammatory pain-like state. Neuropsychopharmacology 30:111–18
    [Google Scholar]
  117. Navratilova E, Xie JY, Meske D, Qu C, Morimura K et al. 2015. Endogenous opioid activity in the anterior cingulate cortex is required for relief of pain. J. Neurosci. 35:7264–71
    [Google Scholar]
  118. Navratilova E, Xie JY, Okun A, Qu C, Eyde N et al. 2012. Pain relief produces negative reinforcement through activation of mesolimbic reward-valuation circuitry. PNAS 109:20709–13
    [Google Scholar]
  119. Neal CR, Mansour A, Reinscheid R, Nothacker HP, Civelli O et al. 1999. Opioid receptor-like (ORL1) receptor distribution in the rat central nervous system: comparison of ORL1 receptor mRNA expression with 125I-[14Tyr]-orphanin FQ binding. J. Comp. Neurol. 412:563–605
    [Google Scholar]
  120. Negrete R, García Gutiérrez MS, Manzanares J, Maldonado R 2017. Involvement of the dynorphin/KOR system on the nociceptive, emotional and cognitive manifestations of joint pain in mice. Neuropharmacology 116:315–27
    [Google Scholar]
  121. Nygard SK, Hourguettes NJ, Sobczak GG, Carlezon WA, Bruchas MR 2016. Stress-induced reinstatement of nicotine preference requires dynorphin/kappa opioid activity in the basolateral amygdala. J. Neurosci. 36:9937–48
    [Google Scholar]
  122. Oertel BG, Preibisch C, Wallenhorst T, Hummel T, Geisslinger G et al. 2008. Differential opioid action on sensory and affective cerebral pain processing. Clin. Pharmacol. Ther. 83:577–88
    [Google Scholar]
  123. Ossipov MH, Lai J, King T, Vanderah TW, Porreca F 2005. Underlying mechanisms of pronociceptive consequences of prolonged morphine exposure. Biopolymers 80:319–24
    [Google Scholar]
  124. Ozawa A, Brunori G, Mercatelli D, Wu J, Cippitelli A et al. 2015. Knock-in mice with NOP-eGFP receptors identify receptor cellular and regional localization. J. Neurosci. 35:11682–93
    [Google Scholar]
  125. Park PE, Schlosburg JE, Vendruscolo LF, Schulteis G, Edwards S, Koob GF 2015. Chronic CRF1 receptor blockade reduces heroin intake escalation and dependence-induced hyperalgesia. Addict. Biol. 20:275–84
    [Google Scholar]
  126. Pasternak GW 2018. Mu opioid pharmacology: 40 years to the promised land. Adv. Pharmacol. 82:261–91
    [Google Scholar]
  127. Podvin S, Yaksh T, Hook V 2016. The emerging role of spinal dynorphin in chronic pain: a therapeutic perspective. Annu. Rev. Pharmacol. Toxicol. 56:511–33
    [Google Scholar]
  128. Polter AM, Barcomb K, Chen RW, Dingess PM, Graziane NM et al. 2017. Constitutive activation of kappa opioid receptors at ventral tegmental area inhibitory synapses following acute stress. eLife 6:e23785
    [Google Scholar]
  129. Price DD, Von der Gruen A, Miller J, Rafii A, Price C 1985. A psychophysical analysis of morphine analgesia. Pain 22:261–69
    [Google Scholar]
  130. Raehal KM, Schmid CL, Groer CE, Bohn LM 2011. Functional selectivity at the μ-opioid receptor: implications for understanding opioid analgesia and tolerance. Pharmacol. Rev. 63:1001–19
    [Google Scholar]
  131. Raman M, Chen W, Cobb MH 2007. Differential regulation and properties of MAPKs. Oncogene 26:3100–12
    [Google Scholar]
  132. Remeniuk B, Sukhtankar D, Okun A, Navratilova E, Xie JY et al. 2015. Behavioral and neurochemical analysis of ongoing bone cancer pain in rats. Pain 156:1864–73
    [Google Scholar]
  133. Roeckel L-A, Le Coz G-M, Gavériaux-Ruff C, Simonin F 2016. Opioid-induced hyperalgesia: cellular and molecular mechanisms. Neuroscience 338:160–82
    [Google Scholar]
  134. Rossi GC, Pasternak GW, Bodnar RJ 1994. μ and δ opioid synergy between the periaqueductal gray and the rostro-ventral medulla. Brain Res 665:85–93
    [Google Scholar]
  135. Ruscheweyh R, Wilder-Smith O, Drdla R, Liu X-G, Sandkühler J 2011. Long-term potentiation in spinal nociceptive pathways as a novel target for pain therapy. Mol. Pain 7:20
    [Google Scholar]
  136. Rusin KI, Giovannucci DR, Stuenkel EL, Moises HC 1997. κ-Opioid receptor activation modulates Ca2+ currents and secretion in isolated neuroendocrine nerve terminals. J. Neurosci. 17:6565–74
    [Google Scholar]
  137. Samoshkin A, Convertino M, Viet CT, Wieskopf JS, Kambur O et al. 2015. Structural and functional interactions between six-transmembrane μ-opioid receptors and β2-adrenoreceptors modulate opioid signaling. Sci. Rep. 5:18198
    [Google Scholar]
  138. Schattauer SS, Land BB, Reichard KL, Abraham AD, Burgeno LM et al. 2017. Peroxiredoxin 6 mediates Gαi protein-coupled receptor inactivation by cJun kinase. Nat. Commun. 8:743
    [Google Scholar]
  139. Scherrer G, Imamachi N, Cao Y-Q, Contet C, Mennicken F et al. 2009. Dissociation of the opioid receptor mechanisms that control mechanical and heat pain. Cell 137:1148–59
    [Google Scholar]
  140. Scherrer G, Tryoen-Tóth P, Filliol D, Matifas A, Laustriat D et al. 2006. Knockin mice expressing fluorescent δ-opioid receptors uncover G protein-coupled receptor dynamics in vivo. PNAS 103:9691–96
    [Google Scholar]
  141. Schmid CL, Kennedy NM, Ross NC, Lovell KM, Yue Z et al. 2017. Bias factor and therapeutic window correlate to predict safer opioid analgesics. Cell 71:1165–75
    [Google Scholar]
  142. Shoblock JR, Maidment NT 2006. Constitutively active micro opioid receptors mediate the enhanced conditioned aversive effect of naloxone in morphine-dependent mice. Neuropsychopharmacology 31:171–77
    [Google Scholar]
  143. Siuda ER, Carr R, Rominger DH, Violin JD 2017. Biased mu-opioid receptor ligands: a promising new generation of pain therapeutics. Curr. Opin. Pharmacol. 32:77–84
    [Google Scholar]
  144. Spahn V, Del Vecchio G, Labuz D, Rodriguez-Gaztelumendi A, Massaly N et al. 2017. A nontoxic pain killer designed by modeling of pathological receptor conformations. Science 355:966–69
    [Google Scholar]
  145. Spangler SM, Bruchas MR 2017. Optogenetic approaches for dissecting neuromodulation and GPCR signaling in neural circuits. Curr. Opin. Pharmacol. 32:Suppl. C56–70
    [Google Scholar]
  146. Spike RC, Puskár Z, Sakamoto H, Stewart W, Watt C, Todd AJ 2002. MOR-1-immunoreactive neurons in the dorsal horn of the rat spinal cord: evidence for nonsynaptic innervation by substance P-containing primary afferents and for selective activation by noxious thermal stimuli. Eur. J. Neurosci. 15:1306–16
    [Google Scholar]
  147. Stein C, Clark JD, Oh U, Vasko MR, Wilcox GL et al. 2009. Peripheral mechanisms of pain and analgesia. Brain Res. Rev. 60:90–113
    [Google Scholar]
  148. Streicher JM, Bilsky EJ 2017. Peripherally acting μ-opioid receptor antagonists for the treatment of opioid-related side effects: mechanism of action and clinical implications. J. Pharm. Pract. doi: 10.1177/0897190017732263
  149. Svingos AL, Moriwaki A, Wang JB, Uhl GR, Pickel VM 1996. Ultrastructural immunocytochemical localization of μ-opioid receptors in rat nucleus accumbens: extrasynaptic plasmalemmal distribution and association with Leu5-enkephalin. J. Neurosci. 16:4162–73
    [Google Scholar]
  150. Taylor AMW, Castonguay A, Taylor AJ, Murphy NP, Ghogha A et al. 2015. Microglia disrupt mesolimbic reward circuitry in chronic pain. J. Neurosci. 35:8442–50
    [Google Scholar]
  151. Thompson AA, Liu W, Chun E, Katritch V, Wu H et al. 2012. Structure of the nociceptin/orphanin FQ receptor in complex with a peptide mimetic. Nature 485:395–99
    [Google Scholar]
  152. Toll L, Bruchas MR, Calo’ G, Cox BM, Zaveri NT 2016. Nociceptin/orphanin FQ receptor structure, signaling, ligands, functions, and interactions with opioid systems. Pharmacol. Rev. 68:419–57
    [Google Scholar]
  153. Torrecilla M, Marker CL, Cintora SC, Stoffel M, Williams JT, Wickman K 2002. G-protein-gated potassium channels containing Kir3.2 and Kir3.3 subunits mediate the acute inhibitory effects of opioids on locus ceruleus neurons. J. Neurosci. 22:4328–34
    [Google Scholar]
  154. Trang T, Al-Hasani R, Salvemini D, Salter MW, Gutstein H, Cahill CM 2015. Pain and poppies: the good, the bad, and the ugly of opioid analgesics. J. Neurosci. 35:13879–88
    [Google Scholar]
  155. Ueda H 2006. Molecular mechanisms of neuropathic pain-phenotypic switch and initiation mechanisms. Pharmacol. Ther. 109:57–77
    [Google Scholar]
  156. Usoskin D, Furlan A, Islam S, Abdo H, Lönnerberg P et al. 2015. Unbiased classification of sensory neuron types by large-scale single-cell RNA sequencing. Nat. Neurosci. 18:145–53
    [Google Scholar]
  157. Vadivelu N, Mitra S, Hines RL 2011. Peripheral opioid receptor agonists for analgesia: a comprehensive review. J. Opioid Manag. 7:55–68
    [Google Scholar]
  158. Vanderah TW 2010. Delta and kappa opioid receptors as suitable drug targets for pain. Clin. J. Pain 26:Suppl. 10S10–15
    [Google Scholar]
  159. Vanderah TW, Suenaga NM, Ossipov MH, Malan TP Jr et al. 2001. Tonic descending facilitation from the rostral ventromedial medulla mediates opioid-induced abnormal pain and antinociceptive tolerance. J. Neurosci. 21:279–86
    [Google Scholar]
  160. Vetter I, Wyse BD, Monteith GR, Roberts-Thomson SJ, Cabot PJ 2006. The μ opioid agonist morphine modulates potentiation of capsaicin-evoked TRPV1 responses through a cyclic AMP-dependent protein kinase A pathway. Mol. Pain 2:22
    [Google Scholar]
  161. Volkow ND, McLellan AT 2016. Opioid abuse in chronic pain: misconceptions and mitigation strategies. N. Engl. J. Med. 374:1253–63
    [Google Scholar]
  162. Wager TD, Scott DJ, Zubieta J-K 2007. Placebo effects on human μ-opioid activity during pain. PNAS 104:11056–61
    [Google Scholar]
  163. Walwyn W, Evans CJ, Hales TG 2007. β-Arrestin2 and c-Src regulate the constitutive activity and recycling of μ opioid receptors in dorsal root ganglion neurons. J. Neurosci. 27:5092–104
    [Google Scholar]
  164. Wang D, Tawfik VL, Corder G, Low SA, François A et al. 2018. Functional divergence of delta and mu opioid receptor organization in CNS pain circuits. Neuron 98:190–108.e5
    [Google Scholar]
  165. Weibel R, Reiss D, Karchewski L, Gardon O, Matifas A et al. 2013. Mu opioid receptors on primary afferent nav1.8 neurons contribute to opiate-induced analgesia: insight from conditional knockout mice. PLOS ONE 8:e74706
    [Google Scholar]
  166. Wiech K 2016. Deconstructing the sensation of pain: the influence of cognitive processes on pain perception. Science 354:584–87
    [Google Scholar]
  167. Wieskopf JS, Pan YX, Marcovitz J, Tuttle AH, Majumdar S et al. 2014. Broad-spectrum analgesic efficacy of IBNtxA is mediated by exon 11-associated splice variants of the mu-opioid receptor gene. Pain 155:2063–70
    [Google Scholar]
  168. Williams JT, Ingram SL, Henderson G, Chavkin C, von Zastrow M et al. 2013. Regulation of μ-opioid receptors: desensitization, phosphorylation, internalization, and tolerance. Pharmacol. Rev. 65:223–54
    [Google Scholar]
  169. Wilson-Poe AR, Jeong HJ, Vaughan CW 2017. Chronic morphine reduces the readily releasable pool of GABA, a presynaptic mechanism of opioid tolerance. J. Physiol. 595:6541–55
    [Google Scholar]
  170. Winters BL, Gregoriou GC, Kissiwaa SA, Wells OA, Medagoda DI et al. 2017. Endogenous opioids regulate moment-to-moment neuronal communication and excitability. Nat. Commun. 8:14611
    [Google Scholar]
  171. Wu H, Wacker D, Mileni M, Katritch V, Han GW et al. 2012. Structure of the human κ-opioid receptor in complex with JDTic. Nature 485:327–32
    [Google Scholar]
  172. Xie JY, De Felice M, Kopruszinski CM, Eyde N, LaVigne J et al. 2017. Kappa opioid receptor antagonists: a possible new class of therapeutics for migraine prevention. Cephalalgia 37:780–94
    [Google Scholar]
  173. Xu M, Bruchas MR, Ippolito DL, Gendron L, Chavkin C 2007. Sciatic nerve ligation-induced proliferation of spinal cord astrocytes is mediated by κ opioid activation of p38 mitogen-activated protein kinase. J. Neurosci. 27:2570–81
    [Google Scholar]
  174. Xu M, Petraschka M, McLaughlin JP, Westenbroek RE, Caron MG et al. 2004. Neuropathic pain activates the endogenous κ opioid system in mouse spinal cord and induces opioid receptor tolerance. J. Neurosci. 24:4576–84
    [Google Scholar]
  175. Yamamoto T, Sakashita Y, Nozaki-Taguchi N 2001. Antagonism of ORLI receptor produces an algesic effect in the rat formalin test. Neuroreport 12:1323–27
    [Google Scholar]
  176. Yao X-Q, Malik RU, Griggs NW, Skjærven L, Traynor JR et al. 2016. Dynamic coupling and allosteric networks in the α subunit of heterotrimeric G proteins. J. Biol. Chem. 291:4742–53
    [Google Scholar]
  177. Zhang Y, Zhao S, Rodriguez E, Takatoh J, Han B-X et al. 2015. Identifying local and descending inputs for primary sensory neurons. J. Clin. Investig. 125:3782–94
    [Google Scholar]
  178. Zhao Z-Q, Gao Y-J, Sun Y-G, Zhao C-S, Gereau RW, Chen Z-F 2007. Central serotonergic neurons are differentially required for opioid analgesia but not for morphine tolerance or morphine reward. PNAS 104:14519–24
    [Google Scholar]
  179. Zhou HY, Chen SR, Chen H, Pan HL 2010. Opioid-induced long-term potentiation in the spinal cord is a presynaptic event. J. Neurosci. 30:4460–66
    [Google Scholar]
  180. Zhu Y, Hsu MS, Pintar JE 1998. Developmental expression of the μ, κ, and δ opioid receptor mRNAs in mouse. J. Neurosci. 18:2538–49
    [Google Scholar]
  181. Zubieta J-K, Bueller JA, Jackson LR, Scott DJ, Xu Y et al. 2005. Placebo effects mediated by endogenous opioid activity on μ-opioid receptors. J. Neurosci. 25:7754–62
    [Google Scholar]
/content/journals/10.1146/annurev-neuro-080317-061522
Loading
/content/journals/10.1146/annurev-neuro-080317-061522
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error