1932

Abstract

One of the fundamental properties of the cell is the capability to digest and remodel its own components according to metabolic and developmental needs. This is accomplished via the autophagy-lysosome system, a pathway of critical importance in the brain, where it contributes to neuronal plasticity and must protect nonreplaceable neurons from the potentially harmful accumulation of cellular waste. The study of lysosomal biogenesis and function in the context of common and rare neurodegenerative diseases has revealed that a dysfunctional autophagy-lysosome system is the shared nexus where multiple, interconnected pathogenic events take place. The characterization of pathways and mechanisms regulating the lysosomal system and autophagic clearance offers unprecedented opportunities for the development of polyvalent therapeutic strategies based on the enhancement of the autophagy-lysosome pathway to maintain cellular homeostasis and achieve neuroprotection.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-neuro-080317-061804
2018-07-08
2024-11-05
Loading full text...

Full text loading...

/deliver/fulltext/neuro/41/1/annurev-neuro-080317-061804.html?itemId=/content/journals/10.1146/annurev-neuro-080317-061804&mimeType=html&fmt=ahah

Literature Cited

  1. Alegre-Abarrategui J, Wade-Martins R 2009. Parkinson disease, LRRK2 and the endocytic-autophagic pathway. Autophagy 5:1208–10
    [Google Scholar]
  2. Alirezaei M, Kemball CC, Flynn CT, Wood MR, Whitton JL, Kiosses WB 2010. Short-term fasting induces profound neuronal autophagy. Autophagy 6:702–10
    [Google Scholar]
  3. Allison R, Edgar JR, Pearson G, Rizo T, Newton T et al. 2017. Defects in ER-endosome contacts impact lysosome function in hereditary spastic paraplegia. J. Cell Biol. 216:1337–55
    [Google Scholar]
  4. Amick J, Roczniak-Ferguson A, Ferguson SM 2016. C9orf72 binds SMCR8, localizes to lysosomes, and regulates mTORC1 signaling. Mol. Biol. Cell 27:3040–51
    [Google Scholar]
  5. Aoki H, Takada Y, Kondo S, Sawaya R, Aggarwal BB, Kondo Y 2007. Evidence that curcumin suppresses the growth of malignant gliomas in vitro and in vivo through induction of autophagy: role of Akt and extracellular signal-regulated kinase signaling pathways. Mol. Pharmacol. 72:29–39
    [Google Scholar]
  6. Ashkenazi A, Bento CF, Ricketts T, Vicinanza M, Siddiqi F et al. 2017. Polyglutamine tracts regulate beclin 1-dependent autophagy. Nature 545:108–11
    [Google Scholar]
  7. Baker M, Mackenzie IR, Pickering-Brown SM, Gass J, Rademakers R et al. 2006. Mutations in progranulin cause tau-negative frontotemporal dementia linked to chromosome 17. Nature 442:916–19
    [Google Scholar]
  8. Ballabio A, Gieselmann V 2009. Lysosomal disorders: from storage to cellular damage. Biochim. Biophys. Acta 1793:684–96
    [Google Scholar]
  9. Bargal R, Avidan N, Ben-Asher E, Olender Z, Zeigler M et al. 2000. Identification of the gene causing mucolipidosis type IV. Nat. Genet. 26:118–23
    [Google Scholar]
  10. Berger Z, Ravikumar B, Menzies FM, Oroz LG, Underwood BR et al. 2006. Rapamycin alleviates toxicity of different aggregate-prone proteins. Hum. Mol. Genet. 15:433–42
    [Google Scholar]
  11. Bijur GN, De Sarno P, Jope RS 2000. Glycogen synthase kinase-3β facilitates staurosporine- and heat shock-induced apoptosis. Protection by lithium. J. Biol. Chem. 275:7583–90
    [Google Scholar]
  12. Brady OA, Zheng Y, Murphy K, Huang M, Hu F 2013. The frontotemporal lobar degeneration risk factor, TMEM106B, regulates lysosomal morphology and function. Hum. Mol. Genet. 22:685–95
    [Google Scholar]
  13. Brandenstein L, Schweizer M, Sedlacik J, Fiehler J, Storch S 2016. Lysosomal dysfunction and impaired autophagy in a novel mouse model deficient for the lysosomal membrane protein Cln7. Hum. Mol. Genet. 25:777–91
    [Google Scholar]
  14. Braulke T, Bonifacino JS 2009. Sorting of lysosomal proteins. Biochim. Biophys. Acta 1793:605–14
    [Google Scholar]
  15. Busch JI, Unger TL, Jain N, Skrinak RT, Charan RA, Chen-Plotkin AS 2016. Increased expression of the frontotemporal dementia risk factor TMEM106B causes C9orf72-dependent alterations in lysosomes. Hum. Mol. Genet. 25:2681–97
    [Google Scholar]
  16. Caccamo A, Majumder S, Deng JJ, Bai Y, Thornton FB, Oddo S 2009. Rapamycin rescues TDP-43 mislocalization and the associated low molecular mass neurofilament instability. J. Biol. Chem. 284:27416–24
    [Google Scholar]
  17. Caccamo A, Majumder S, Richardson A, Strong R, Oddo S 2010. Molecular interplay between mammalian target of rapamycin (mTOR), amyloid-β, and Tau: effects on cognitive impairments. J. Biol. Chem. 285:13107–20
    [Google Scholar]
  18. Caglayan S, Takagi-Niidome S, Liao F, Carlo AS, Schmidt V et al. 2014. Lysosomal sorting of amyloid-β by the SORLA receptor is impaired by a familial Alzheimer's disease mutation. Sci. Transl. Med. 6:223ra20
    [Google Scholar]
  19. Cao Y, Espinola JA, Fossale E, Massey AC, Cuervo AM et al. 2006. Autophagy is disrupted in a knock-in mouse model of juvenile neuronal ceroid lipofuscinosis. J. Biol. Chem. 281:20483–93
    [Google Scholar]
  20. Cataldo AM, Mathews PM, Boiteau AB, Hassinger LC, Peterhoff CM et al. 2008. Down syndrome fibroblast model of Alzheimer-related endosome pathology: Accelerated endocytosis promotes late endocytic defects. Am. J. Pathol. 173:370–84
    [Google Scholar]
  21. Chang J, Lee S, Blackstone C 2014. Spastic paraplegia proteins spastizin and spatacsin mediate autophagic lysosome reformation. J. Clin. Investig. 124:5249–62
    [Google Scholar]
  22. Chang MC, Srinivasan K, Friedman BA, Suto E, Modrusan Z et al. 2017. Progranulin deficiency causes impairment of autophagy and TDP-43 accumulation. J. Exp. Med. 214:2611–28
    [Google Scholar]
  23. Cheng CW, Lin MJ, Shen CK 2015. Rapamycin alleviates pathogenesis of a new Drosophila model of ALS-TDP. J. Neurogenet. 29:59–68
    [Google Scholar]
  24. Chongtham A, Agrawal N 2016. Curcumin modulates cell death and is protective in Huntington's disease model. Sci. Rep. 6:18736
    [Google Scholar]
  25. Cortes CJ, Qin K, Cook J, Solanki A, Mastrianni JA 2012. Rapamycin delays disease onset and prevents PrP plaque deposition in a mouse model of Gerstmann-Straussler-Scheinker disease. J. Neurosci. 32:12396–405
    [Google Scholar]
  26. Cruts M, Gijselinck I, van der Zee J, Engelborghs S, Wils H et al. 2006. Null mutations in progranulin cause ubiquitin-positive frontotemporal dementia linked to chromosome 17q21. Nature 442:920–24
    [Google Scholar]
  27. Cuervo AM, Stefanis L, Fredenburg R, Lansbury PT, Sulzer D 2004. Impaired degradation of mutant α-synuclein by chaperone-mediated autophagy. Science 305:1292–95
    [Google Scholar]
  28. Curcio-Morelli C, Charles FA, Micsenyi MC, Cao Y, Venugopal B et al. 2010. Macroautophagy is defective in mucolipin-1-deficient mouse neurons. Neurobiol. Dis. 40:370–77
    [Google Scholar]
  29. De Duve C 1957. [The lysosomes: a novel group of cytoplasmic granules]. J. Physiol. 49:113–15
    [Google Scholar]
  30. Decressac M, Mattsson B, Weikop P, Lundblad M, Jakobsson J, Bjorklund A 2013. TFEB-mediated autophagy rescues midbrain dopamine neurons from α-synuclein toxicity. PNAS 110:E1817–26
    [Google Scholar]
  31. Dehay B, Ramirez A, Martinez-Vicente M, Perier C, Canron MH et al. 2012. Loss of P-type ATPase ATP13A2/PARK9 function induces general lysosomal deficiency and leads to Parkinson disease neurodegeneration. PNAS 109:9611–16
    [Google Scholar]
  32. Elrick MJ, Yu T, Chung C, Lieberman AP 2012. Impaired proteolysis underlies autophagic dysfunction in Niemann-Pick type C disease. Hum. Mol. Genet. 21:4876–87
    [Google Scholar]
  33. Estrada-Cuzcano A, Martin S, Chamova T, Synofzik M, Timmann D et al. 2017. Loss-of-function mutations in the ATP13A2/PARK9 gene cause complicated hereditary spastic paraplegia (SPG78). Brain 140:287–305
    [Google Scholar]
  34. Fernández-Monreal M, Brown TC, Royo M, Esteban JA 2012. The balance between receptor recycling and trafficking toward lysosomes determines synaptic strength during long-term depression. J. Neurosci. 32:13200–5
    [Google Scholar]
  35. Filimonenko M, Stuffers S, Raiborg C, Yamamoto A, Malerod L et al. 2007. Functional multivesicular bodies are required for autophagic clearance of protein aggregates associated with neurodegenerative disease. J. Cell Biol. 179:485–500
    [Google Scholar]
  36. Finch N, Carrasquillo MM, Baker M, Rutherford NJ, Coppola G et al. 2011. TMEM106B regulates progranulin levels and the penetrance of FTLD in GRN mutation carriers. Neurology 76:467–74
    [Google Scholar]
  37. Foo JN, Liany H, Bei JX, Yu XQ, Liu J et al. 2013. Rare lysosomal enzyme gene SMPD1 variant (p.R591C) associates with Parkinson's disease. Neurobiol. Aging 34:2890.e13–15
    [Google Scholar]
  38. Freeman D, Cedillos R, Choyke S, Lukic Z, McGuire K et al. 2013. Alpha-synuclein induces lysosomal rupture and cathepsin dependent reactive oxygen species following endocytosis. PLOS ONE 8:e62143
    [Google Scholar]
  39. Gabandé-Rodriguez E, Boya P, Labrador V, Dotti CG, Ledesma MD 2014. High sphingomyelin levels induce lysosomal damage and autophagy dysfunction in Niemann Pick disease type A. Cell Death Differ. 21:864–75
    [Google Scholar]
  40. Gan-Or Z, Ozelius LJ, Bar-Shira A, Saunders-Pullman R, Mirelman A et al. 2013. The p.L302P mutation in the lysosomal enzyme gene SMPD1 is a risk factor for Parkinson disease. Neurology 80:1606–10
    [Google Scholar]
  41. Geisler S, Holmström KM, Skujat D, Fiesel FC, Rothfuss OC et al. 2010. PINK1/Parkin-mediated mitophagy is dependent on VDAC1 and p62/SQSTM1. Nat. Cell Biol. 12:119–31
    [Google Scholar]
  42. Goo MS, Sancho L, Slepak N, Boassa D, Deerinck TJ et al. 2017. Activity-dependent trafficking of lysosomes in dendrites and dendritic spines. J. Cell Biol. 216:2499–513
    [Google Scholar]
  43. Graves AR, Curran PK, Smith CL, Mindell JA 2008. The Cl/H+ antiporter ClC-7 is the primary chloride permeation pathway in lysosomes. Nature 453:788–92
    [Google Scholar]
  44. Hamano K, Hayashi M, Shioda K, Fukatsu R, Mizutani S 2008. Mechanisms of neurodegeneration in mucopolysaccharidoses II and IIIB: analysis of human brain tissue. Acta Neuropathol. 115:547–59
    [Google Scholar]
  45. He C, Sumpter R Jr., Levine B 2012. Exercise induces autophagy in peripheral tissues and in the brain. Autophagy 8:1548–51
    [Google Scholar]
  46. Hers HG 1963. α-Glucosidase deficiency in generalized glycogenstorage disease (Pompe's disease). Biochem. J. 86:11–16
    [Google Scholar]
  47. Hickey MA, Zhu C, Medvedeva V, Lerner RP, Patassini S et al. 2012. Improvement of neuropathology and transcriptional deficits in CAG 140 knock-in mice supports a beneficial effect of dietary curcumin in Huntington's disease. Mol. Neurodegener. 7:12
    [Google Scholar]
  48. Hu F, Padukkavidana T, Vaegter CB, Brady OA, Zheng Y et al. 2010. Sortilin-mediated endocytosis determines levels of the frontotemporal dementia protein, progranulin. Neuron 68:654–67
    [Google Scholar]
  49. Ju JS, Fuentealba RA, Miller SE, Jackson E, Piwnica-Worms D et al. 2009. Valosin-containing protein (VCP) is required for autophagy and is disrupted in VCP disease. J. Cell Biol. 187:875–88
    [Google Scholar]
  50. Kasper D, Planells-Cases R, Fuhrmann JC, Scheel O, Zeitz O et al. 2005. Loss of the chloride channel ClC-7 leads to lysosomal storage disease and neurodegeneration. EMBO J. 24:1079–91
    [Google Scholar]
  51. Keilani S, Lun Y, Stevens AC, Williams HN, Sjoberg ER et al. 2012. Lysosomal dysfunction in a mouse model of Sandhoff disease leads to accumulation of ganglioside-bound amyloid-β peptide. J. Neurosci. 32:5223–36
    [Google Scholar]
  52. Kitada T, Asakawa S, Hattori N, Matsumine H, Yamamura Y et al. 1998. Mutations in the parkin gene cause autosomal recessive juvenile parkinsonism. Nature 392:605–8
    [Google Scholar]
  53. Kobayashi H, Takahashi-Fujigasaki J, Fukuda T, Sakurai K, Shimada Y et al. 2011. Pathology of the first autopsy case diagnosed as mucolipidosis type III α/β suggesting autophagic dysfunction. Mol. Genet. Metabol. 102:170–75
    [Google Scholar]
  54. Koike M, Shibata M, Tadakoshi M, Gotoh K, Komatsu M et al. 2008. Inhibition of autophagy prevents hippocampal pyramidal neuron death after hypoxic-ischemic injury. Am. J. Pathol. 172:454–69
    [Google Scholar]
  55. Koike M, Shibata M, Waguri S, Yoshimura K, Tanida I et al. 2005. Participation of autophagy in storage of lysosomes in neurons from mouse models of neuronal ceroid-lipofuscinoses (Batten disease). Am. J. Pathol. 167:1713–28
    [Google Scholar]
  56. Kollmann K, Damme M, Markmann S, Morelle W, Schweizer M et al. 2012. Lysosomal dysfunction causes neurodegeneration in mucolipidosis II ‘knock-in’ mice. Brain 135:2661–75
    [Google Scholar]
  57. Krabbe G, Minami SS, Etchegaray JI, Taneja P, Djukic B et al. 2017. Microglial NFκB-TNFα hyperactivation induces obsessive-compulsive behavior in mouse models of progranulin-deficient frontotemporal dementia. PNAS 114:5029–34
    [Google Scholar]
  58. Kroemer G, Jäättelä M 2005. Lysosomes and autophagy in cell death control. Nat. Rev. Cancer 5:886–97
    [Google Scholar]
  59. Lai Y, Hickey RW, Chen Y, Bayir H, Sullivan ML et al. 2008. Autophagy is increased after traumatic brain injury in mice and is partially inhibited by the antioxidant γ-glutamylcysteinyl ethyl ester. J. Cereb. Blood Flow Metab. 28:540–50
    [Google Scholar]
  60. Lee JH, Yu WH, Kumar A, Lee S, Mohan PS et al. 2010. Lysosomal proteolysis and autophagy require presenilin 1 and are disrupted by Alzheimer-related PS1 mutations. Cell 141:1146–58
    [Google Scholar]
  61. Lefrancois S, Zeng J, Hassan AJ, Canuel M, Morales CR 2003. The lysosomal trafficking of sphingolipid activator proteins (SAPs) is mediated by sortilin. EMBO J. 22:6430–37
    [Google Scholar]
  62. Leinonen H, Keksa-Goldsteine V, Ragauskas S, Kohlmann P, Singh Y et al. 2017. Retinal degeneration in a mouse model of CLN5 disease is associated with compromised autophagy. Sci. Rep. 7:1597
    [Google Scholar]
  63. Levine B, Kroemer G 2008. Autophagy in the pathogenesis of disease. Cell 132:27–42
    [Google Scholar]
  64. Li Y, Xu M, Ding X, Yan C, Song Z et al. 2016. Protein kinase C controls lysosome biogenesis independently of mTORC1. Nat. Cell Biol. 18:1065–77
    [Google Scholar]
  65. Liao G, Yao Y, Liu J, Yu Z, Cheung S et al. 2007. Cholesterol accumulation is associated with lysosomal dysfunction and autophagic stress in Npc1−/− mouse brain. Am. J. Pathol. 171:962–75
    [Google Scholar]
  66. Lim GP, Chu T, Yang F, Beech W, Frautschy SA, Cole GM 2001. The curry spice curcumin reduces oxidative damage and amyloid pathology in an Alzheimer transgenic mouse. J. Neurosci. 21:8370–77
    [Google Scholar]
  67. Lotfi P, Tse DY, di Ronza A, Seymour ML, Martano G et al. 2018. Trehalose reduces retinal degeneration, neuroinflammation and storage burden caused by a lysosomal hydrolase deficiency. Autophagy. In press
    [Google Scholar]
  68. Lui H, Zhang J, Makinson SR, Cahill MK, Kelley KW et al. 2016. Progranulin deficiency promotes circuit-specific synaptic pruning by microglia via complement activation. Cell 165:921–35
    [Google Scholar]
  69. Macauley SL, Sidman RL, Schuchman EH, Taksir T, Stewart GR 2008. Neuropathology of the acid sphingomyelinase knockout mouse model of Niemann-Pick A disease including structure-function studies associated with cerebellar Purkinje cell degeneration. Exp. Neurol. 214:181–92
    [Google Scholar]
  70. Machado-Vieira R, Manji HK, Zarate CA Jr 2009. The role of lithium in the treatment of bipolar disorder: convergent evidence for neurotrophic effects as a unifying hypothesis. Bipolar Disord. 11:Suppl. 292–109
    [Google Scholar]
  71. Magalhaes J, Gegg ME, Migdalska-Richards A, Doherty MK, Whitfield PD, Schapira AH 2016. Autophagic lysosome reformation dysfunction in glucocerebrosidase deficient cells: relevance to Parkinson disease. Hum. Mol. Genet. 25:3432–45
    [Google Scholar]
  72. Martina JA, Chen Y, Gucek M, Puertollano R 2012. MTORC1 functions as a transcriptional regulator of autophagy by preventing nuclear transport of TFEB. Autophagy 8:903–14
    [Google Scholar]
  73. Martins C, Hulkova H, Dridi L, Dormoy-Raclet V, Grigoryeva L et al. 2015. Neuroinflammation, mitochondrial defects and neurodegeneration in mucopolysaccharidosis III type C mouse model. Brain 138:336–55
    [Google Scholar]
  74. Mazzulli JR, Xu YH, Sun Y, Knight AL, McLean PJ et al. 2011. Gaucher disease glucocerebrosidase and α-synuclein form a bidirectional pathogenic loop in synucleinopathies. Cell 146:37–52
    [Google Scholar]
  75. Menzies FM, Fleming A, Caricasole A, Bento CF, Andrews SP et al. 2017. Autophagy and neurodegeneration: pathogenic mechanisms and therapeutic opportunities. Neuron 93:1015–34
    [Google Scholar]
  76. Micsenyi MC, Sikora J, Stephney G, Dobrenis K, Walkley SU 2013. Lysosomal membrane permeability stimulates protein aggregate formation in neurons of a lysosomal disease. J. Neurosci 33:10815–27
    [Google Scholar]
  77. Narendra D, Tanaka A, Suen DF, Youle RJ 2008. Parkin is recruited selectively to impaired mitochondria and promotes their autophagy. J. Cell Biol. 183:795–803
    [Google Scholar]
  78. Nascimento-Ferreira I, Santos-Ferreira T, Sousa-Ferreira L, Auregan G, Onofre I et al. 2011. Overexpression of the autophagic beclin-1 protein clears mutant ataxin-3 and alleviates Machado-Joseph disease. Brain 134:1400–15
    [Google Scholar]
  79. Nixon RA, Mathews PM, Cataldo AM 2001. The neuronal endosomal-lysosomal system in Alzheimer's disease. J. Alzheimers Dis. 3:97–107
    [Google Scholar]
  80. Nixon RA, Wegiel J, Kumar A, Yu WH, Peterhoff C et al. 2005. Extensive involvement of autophagy in Alzheimer disease: an immuno-electron microscopy study. J. Neuropathol. Exp. Neurol. 64:113–22
    [Google Scholar]
  81. Nixon RA, Yang DS, Lee JH 2008. Neurodegenerative lysosomal disorders: a continuum from development to late age. Autophagy 4:590–99
    [Google Scholar]
  82. Obermajer N, Doljak B, Jamnik P, Fonović UP, Kos J 2009. Cathepsin X cleaves the C-terminal dipeptide of alpha- and gamma-enolase and impairs survival and neuritogenesis of neuronal cells. Int. J. Biochem. Cell Biol. 41:1685–96
    [Google Scholar]
  83. Osellame LD, Rahim AA, Hargreaves IP, Gegg ME, Richard-Londt A et al. 2013. Mitochondria and quality control defects in a mouse model of Gaucher disease–links to Parkinson's disease. Cell Metab. 17:941–53
    [Google Scholar]
  84. Padamsey Z, McGuinness L, Bardo SJ, Reinhart M, Tong R et al. 2017. Activity-dependent exocytosis of lysosomes regulates the structural plasticity of dendritic spines. Neuron 93:132–46
    [Google Scholar]
  85. Palmieri M, Pal R, Nelvagal HR, Lotfi P, Stinnett GR et al. 2017a. mTORC1-independent TFEB activation via Akt inhibition promotes cellular clearance in neurodegenerative storage diseases. Nat. Commun. 8:14338
    [Google Scholar]
  86. Palmieri M, Pal R, Sardiello M 2017b. AKT modulates the autophagy-lysosome pathway via TFEB. Cell Cycle 16:1237–38
    [Google Scholar]
  87. Pan T, Rawal P, Wu Y, Xie W, Jankovic J, Le W 2009. Rapamycin protects against rotenone-induced apoptosis through autophagy induction. Neuroscience 164:541–51
    [Google Scholar]
  88. Pickford F, Masliah E, Britschgi M, Lucin K, Narasimhan R et al. 2008. The autophagy-related protein beclin 1 shows reduced expression in early Alzheimer disease and regulates amyloid β accumulation in mice. J. Clin. Investig. 118:2190–99
    [Google Scholar]
  89. Pislar A, Kos J 2014. Cysteine cathepsins in neurological disorders. Mol. Neurobiol. 49:1017–30
    [Google Scholar]
  90. Platt FM, Boland B, van der Spoel AC 2012. Lysosomal storage disorders: the cellular impact of lysosomal dysfunction. J. Cell Biol. 199:723–34
    [Google Scholar]
  91. Polito VA, Li H, Martini-Stoica H, Wang B, Yang L et al. 2014. Selective clearance of aberrant tau proteins and rescue of neurotoxicity by transcription factor EB. EMBO Mol. Med. 6:1142–60
    [Google Scholar]
  92. Polymeropoulos MH, Lavedan C, Leroy E, Ide SE, Dehejia A et al. 1997. Mutation in the α-synuclein gene identified in families with Parkinson's disease. Science 276:2045–47
    [Google Scholar]
  93. Ravikumar B, Duden R, Rubinsztein DC 2002. Aggregate-prone proteins with polyglutamine and polyalanine expansions are degraded by autophagy. Hum. Mol. Genet. 11:1107–17
    [Google Scholar]
  94. Ravikumar B, Vacher C, Berger Z, Davies JE, Luo S et al. 2004. Inhibition of mTOR induces autophagy and reduces toxicity of polyglutamine expansions in fly and mouse models of Huntington disease. Nat. Genet. 36:585–95
    [Google Scholar]
  95. Reitman ML, Varki A, Kornfeld S 1981. Fibroblasts from patients with I-cell disease and pseudo-Hurler polydystrophy are deficient in uridine 5′-diphosphate-N-acetylglucosamine: glycoprotein N-acetylglucosaminylphosphotransferase activity. J. Clin. Investig. 67:1574–79
    [Google Scholar]
  96. Roczniak-Ferguson A, Petit CS, Froehlich F, Qian S, Ky J et al. 2012. The transcription factor TFEB links mTORC1 signaling to transcriptional control of lysosome homeostasis. Sci. Signal 5:ra42
    [Google Scholar]
  97. Rodríguez-Navarro JA, Rodríguez L, Casarejos MJ, Solano RM, Gómez A et al. 2010. Trehalose ameliorates dopaminergic and tau pathology in parkin deleted/tau overexpressing mice through autophagy activation. Neurobiol. Dis. 39:423–38
    [Google Scholar]
  98. Saffari A, Kölker S, Hoffmann GF, Ebrahimi-Fakhari D 2017. Linking mitochondrial dysfunction to neurodegeneration in lysosomal storage diseases. J. Inherit. Metab. Dis. 40:631–40
    [Google Scholar]
  99. Sandhoff K, Kolter T 2003. Biosynthesis and degradation of mammalian glycosphingolipids. Philos. Trans. R. Soc. B 358:847–61
    [Google Scholar]
  100. Sannerud R, Esselens C, Ejsmont P, Mattera R, Rochin L et al. 2016. Restricted location of PSEN2/γ-secretase determines substrate specificity and generates an intracellular Aβ pool. Cell 166:193–208
    [Google Scholar]
  101. Santini E, Heiman M, Greengard P, Valjent E, Fisone G 2009. Inhibition of mTOR signaling in Parkinson's disease prevents l-DOPA-induced dyskinesia. Sci. Signal 2:ra36
    [Google Scholar]
  102. Sardiello M 2016. Transcription factor EB: from master coordinator of lysosomal pathways to candidate therapeutic target in degenerative storage diseases. Ann. N. Y. Acad. Sci. 1371:3–14
    [Google Scholar]
  103. Sardiello M, Palmieri M, di Ronza A, Medina DL, Valenza M et al. 2009. A gene network regulating lysosomal biogenesis and function. Science 325:473–77
    [Google Scholar]
  104. Sarkar S, Carroll B, Buganim Y, Maetzel D, Ng AH et al. 2013. Impaired autophagy in the lipid-storage disorder Niemann-Pick type C1 disease. Cell Rep. 5:1302–15
    [Google Scholar]
  105. Sarkar S, Chigurupati S, Raymick J, Mann D, Bowyer JF et al. 2014. Neuroprotective effect of the chemical chaperone, trehalose in a chronic MPTP-induced Parkinson's disease mouse model. Neurotoxicology 44:250–62
    [Google Scholar]
  106. Sarkar S, Davies JE, Huang Z, Tunnacliffe A, Rubinsztein DC 2007. Trehalose, a novel mTOR-independent autophagy enhancer, accelerates the clearance of mutant huntingtin and α-synuclein. J. Biol. Chem. 282:5641–52
    [Google Scholar]
  107. Sarkar S, Floto RA, Berger Z, Imarisio S, Cordenier A et al. 2005. Lithium induces autophagy by inhibiting inositol monophosphatase. J. Cell Biol. 170:1101–11
    [Google Scholar]
  108. Sarkar S, Krishna G, Imarisio S, Saiki S, O'Kane CJ, Rubinsztein DC 2008. A rational mechanism for combination treatment of Huntington's disease using lithium and rapamycin. Hum. Mol. Genet. 17:170–78
    [Google Scholar]
  109. Schaeffer V, Lavenir I, Ozcelik S, Tolnay M, Winkler DT, Goedert M 2012. Stimulation of autophagy reduces neurodegeneration in a mouse model of human tauopathy. Brain 135:2169–77
    [Google Scholar]
  110. Schuchman EH 2010. Acid sphingomyelinase, cell membranes and human disease: lessons from Niemann-Pick disease. FEBS Lett. 584:1895–900
    [Google Scholar]
  111. Schwenk BM, Lang CM, Hogl S, Tahirovic S, Orozco D et al. 2014. The FTLD risk factor TMEM106B and MAP6 control dendritic trafficking of lysosomes. EMBO J. 33:450–67
    [Google Scholar]
  112. Settembre C, Di Malta C, Polito VA, Garcia Arencibia M, Vetrini F et al. 2011. TFEB links autophagy to lysosomal biogenesis. Science 332:1429–33
    [Google Scholar]
  113. Settembre C, Fraldi A, Jahreiss L, Spampanato C, Venturi C et al. 2008. A block of autophagy in lysosomal storage disorders. Hum. Mol. Genet. 17:119–29
    [Google Scholar]
  114. Settembre C, Zoncu R, Medina DL, Vetrini F, Erdin S et al. 2012. A lysosome-to-nucleus signalling mechanism senses and regulates the lysosome via mTOR and TFEB. EMBO J. 31:1095–108
    [Google Scholar]
  115. Shachar T, Lo Bianco C, Recchia A, Wiessner C, Raas-Rothschild A, Futerman AH 2011. Lysosomal storage disorders and Parkinson's disease: Gaucher disease and beyond. Mov. Disord. 26:1593–604
    [Google Scholar]
  116. Shehata M, Matsumura H, Okubo-Suzuki R, Ohkawa N, Inokuchi K 2012. Neuronal stimulation induces autophagy in hippocampal neurons that is involved in AMPA receptor degradation after chemical long-term depression. J. Neurosci. 32:10413–22
    [Google Scholar]
  117. Shen D, Wang X, Li X, Zhang X, Yao Z et al. 2012. Lipid storage disorders block lysosomal trafficking by inhibiting a TRP channel and lysosomal calcium release. Nat. Commun. 3:731
    [Google Scholar]
  118. Shimada K, Motoi Y, Ishiguro K, Kambe T, Matsumoto SE et al. 2012. Long-term oral lithium treatment attenuates motor disturbance in tauopathy model mice: implications of autophagy promotion. Neurobiol. Dis. 46:101–8
    [Google Scholar]
  119. Sidransky E, Nalls MA, Aasly JO, Aharon-Peretz J, Annesi G et al. 2009. Multicenter analysis of glucocerebrosidase mutations in Parkinson's disease. N. Engl. J. Med. 361:1651–61
    [Google Scholar]
  120. Singh S, Aggarwal BB 1995. Activation of transcription factor NF-κB is suppressed by curcumin (diferuloylmethane). J. Biol. Chem. 270:24995–5000
    [Google Scholar]
  121. Singleton AB, Farrer M, Johnson J, Singleton A, Hague S et al. 2003. α-Synuclein locus triplication causes Parkinson's disease. Science 302:841
    [Google Scholar]
  122. Spencer B, Potkar R, Trejo M, Rockenstein E, Patrick C et al. 2009. Beclin 1 gene transfer activates autophagy and ameliorates the neurodegenerative pathology in α-synuclein models of Parkinson's and Lewy body diseases. J. Neurosci. 29:13578–88
    [Google Scholar]
  123. Spillantini MG, Schmidt ML, Lee VM, Trojanowski JQ, Jakes R, Goedert M 1997. α-Synuclein in Lewy bodies. Nature 388:839–40
    [Google Scholar]
  124. Sun Y, Grabowski GA 2013. Altered autophagy in the mice with a deficiency of saposin A and saposin B. Autophagy 9:1115–16
    [Google Scholar]
  125. Suzuki K, Yamaguchi A, Yamanaka S, Kanzaki S, Kawashima M et al. 2016. Accumulated α-synuclein affects the progression of GM2 gangliosidoses. Exp. Neurol. 284:38–49
    [Google Scholar]
  126. Syntichaki P, Tavernarakis N 2003. The biochemistry of neuronal necrosis: rogue biology. Nat. Rev. Neurosci. 4:672–84
    [Google Scholar]
  127. Takamura A, Higaki K, Kajimaki K, Otsuka S, Ninomiya H et al. 2008. Enhanced autophagy and mitochondrial aberrations in murine GM1-gangliosidosis. Biochem. Biophys. Res. Commun. 367:616–22
    [Google Scholar]
  128. Tamboli IY, Hampel H, Tien NT, Tolksdorf K, Breiden B et al. 2011. Sphingolipid storage affects autophagic metabolism of the amyloid precursor protein and promotes Aβ generation. J. Neurosci. 31:1837–49
    [Google Scholar]
  129. Tanaka M, Machida Y, Niu S, Ikeda T, Jana NR et al. 2004. Trehalose alleviates polyglutamine-mediated pathology in a mouse model of Huntington disease. Nat. Med. 10:148–54
    [Google Scholar]
  130. Tanaka Y, Suzuki G, Matsuwaki T, Hosokawa M, Serrano G et al. 2017. Progranulin regulates lysosomal function and biogenesis through acidification of lysosomes. Hum. Mol. Genet. 26:969–88
    [Google Scholar]
  131. Tessitore A, Pirozzi M, Auricchio A 2009. Abnormal autophagy, ubiquitination, inflammation and apoptosis are dependent upon lysosomal storage and are useful biomarkers of mucopolysaccharidosis VI. Pathogenetics 2:4
    [Google Scholar]
  132. Thelen M, Damme M, Schweizer M, Hagel C, Wong AM et al. 2012. Disruption of the autophagy-lysosome pathway is involved in neuropathology of the nclf mouse model of neuronal ceroid lipofuscinosis. PLOS ONE 7:e35493
    [Google Scholar]
  133. Tsunemi T, Ashe TD, Morrison BE, Soriano KR, Au J et al. 2012. PGC-1α rescues Huntington's disease proteotoxicity by preventing oxidative stress and promoting TFEB function. Sci. Transl. Med. 4:142ra97
    [Google Scholar]
  134. Valente EM, Abou-Sleiman PM, Caputo V, Muqit MM, Harvey K et al. 2004. Hereditary early-onset Parkinson's disease caused by mutations in PINK1. Science 304:1158–60
    [Google Scholar]
  135. Varga RE, Khundadze M, Damme M, Nietzsche S, Hoffmann B et al. 2015. In vivo evidence for lysosome depletion and impaired autophagic clearance in hereditary spastic paraplegia type SPG11. PLOS Genet. 11:e1005454
    [Google Scholar]
  136. Venkatachalam K, Long AA, Elsaesser R, Nikolaeva D, Broadie K, Montell C 2008. Motor deficit in a Drosophila model of mucolipidosis type IV due to defective clearance of apoptotic cells. Cell 135:838–51
    [Google Scholar]
  137. Venkatachalam K, Wong CO, Zhu MX 2015. The role of TRPMLs in endolysosomal trafficking and function. Cell Calcium 58:48–56
    [Google Scholar]
  138. Vergarajauregui S, Connelly PS, Daniels MP, Puertollano R 2008. Autophagic dysfunction in mucolipidosis type IV patients. Hum. Mol. Genet. 17:2723–37
    [Google Scholar]
  139. Walkley SU 2004. Secondary accumulation of gangliosides in lysosomal storage disorders. Semin. Cell Dev. Biol. 15:433–44
    [Google Scholar]
  140. Wang IF, Guo BS, Liu YC, Wu CC, Yang CH et al. 2012. Autophagy activators rescue and alleviate pathogenesis of a mouse model with proteinopathies of the TAR DNA-binding protein 43. PNAS 109:15024–9
    [Google Scholar]
  141. Wang RC, Wei Y, An Z, Zou Z, Xiao G et al. 2012. Akt-mediated regulation of autophagy and tumorigenesis through Beclin 1 phosphorylation. Science 338:956–59
    [Google Scholar]
  142. Wei H, Qin ZH, Senatorov VV, Wei W, Wang Y et al. 2001. Lithium suppresses excitotoxicity-induced striatal lesions in a rat model of Huntington's disease. Neuroscience 106:603–12
    [Google Scholar]
  143. Winslow AR, Chen CW, Corrochano S, Acevedo-Arozena A, Gordon DE et al. 2010. α-Synuclein impairs macroautophagy: implications for Parkinson's disease. J. Cell Biol. 190:1023–37
    [Google Scholar]
  144. Wong CO, Li R, Montell C, Venkatachalam K 2012. Drosophila TRPML is required for TORC1 activation. Curr. Biol. 22:1616–21
    [Google Scholar]
  145. Wong CO, Palmieri M, Li J, Akhmedov D, Chao Y et al. 2015. Diminished MTORC1-dependent JNK activation underlies the neurodevelopmental defects associated with lysosomal dysfunction. Cell Rep. 12:2009–20
    [Google Scholar]
  146. Wong YC, Holzbaur EL 2014. The regulation of autophagosome dynamics by huntingtin and HAP1 is disrupted by expression of mutant huntingtin, leading to defective cargo degradation. J. Neurosci. 34:1293–305
    [Google Scholar]
  147. Xiao Q, Yan P, Ma X, Liu H, Perez R et al. 2014. Enhancing astrocytic lysosome biogenesis facilitates Aβ clearance and attenuates amyloid plaque pathogenesis. J. Neurosci. 34:9607–20
    [Google Scholar]
  148. Xiao Q, Yan P, Ma X, Liu H, Perez R et al. 2015. Neuronal-targeted TFEB accelerates lysosomal degradation of APP, reducing Aβ generation and amyloid plaque pathogenesis. J. Neurosci. 35:12137–51
    [Google Scholar]
  149. Xu H, Ren D 2015. Lysosomal physiology. Annu. Rev. Physiol. 77:57–80
    [Google Scholar]
  150. Yamamoto A, Tagawa Y, Yoshimori T, Moriyama Y, Masaki R, Tashiro Y 1998. Bafilomycin A1 prevents maturation of autophagic vacuoles by inhibiting fusion between autophagosomes and lysosomes in rat hepatoma cell line, H-4-II-E cells. Cell Struct. Funct. 23:33–42
    [Google Scholar]
  151. Yamamoto A, Yue Z 2014. Autophagy and its normal and pathogenic states in the brain. Annu. Rev. Neurosci. 37:55–78
    [Google Scholar]
  152. Yang F, Lim GP, Begum AN, Ubeda OJ, Simmons MR et al. 2005. Curcumin inhibits formation of amyloid beta oligomers and fibrils, binds plaques, and reduces amyloid in vivo. J. Biol. Chem. 280:5892–901
    [Google Scholar]
  153. Yu L, McPhee CK, Zheng L, Mardones GA, Rong Y et al. 2010. Termination of autophagy and reformation of lysosomes regulated by mTOR. Nature 465:942–46
    [Google Scholar]
  154. Zbarsky V, Datla KP, Parkar S, Rai DK, Aruoma OI, Dexter DT 2005. Neuroprotective properties of the natural phenolic antioxidants curcumin and naringenin but not quercetin and fisetin in a 6-OHDA model of Parkinson's disease. Free Radic. Res. 39:1119–25
    [Google Scholar]
  155. Zhou X, Sun L, Bracko O, Choi JW, Jia Y et al. 2017. Impaired prosaposin lysosomal trafficking in frontotemporal lobar degeneration due to progranulin mutations. Nat. Commun. 8:15277
    [Google Scholar]
/content/journals/10.1146/annurev-neuro-080317-061804
Loading
/content/journals/10.1146/annurev-neuro-080317-061804
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error