1932

Abstract

Wakefulness, rapid eye movement (REM) sleep, and non–rapid eye movement (NREM) sleep are characterized by distinct electroencephalogram (EEG), electromyogram (EMG), and autonomic profiles. The circuit mechanism coordinating these changes during sleep-wake transitions remains poorly understood. The past few years have witnessed rapid progress in the identification of REM and NREM sleep neurons, which constitute highly distributed networks spanning the forebrain, midbrain, and hindbrain. Here we propose an arousal-action circuit for sleep-wake control in which wakefulness is supported by separate arousal and action neurons, while REM and NREM sleep neurons are part of the central somatic and autonomic motor circuits. This model is well supported by the currently known sleep and wake neurons. It can also account for the EEG, EMG, and autonomic profiles of wake, REM, and NREM states and several key features of their transitions. The intimate association between the sleep and autonomic/somatic motor control circuits suggests that a primary function of sleep is to suppress motor activity.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-neuro-080317-061813
2019-07-08
2024-04-16
Loading full text...

Full text loading...

/deliver/fulltext/neuro/42/1/annurev-neuro-080317-061813.html?itemId=/content/journals/10.1146/annurev-neuro-080317-061813&mimeType=html&fmt=ahah

Literature Cited

  1. Adamantidis AR, Zhang F, Aravanis AM, Deisseroth K, de Lecea L 2007. Neural substrates of awakening probed with optogenetic control of hypocretin neurons. Nature 450:420–24
    [Google Scholar]
  2. Alam MA, Kostin A, Siegel J, McGinty D, Szymusiak R, Alam MN 2018. Characteristics of sleep-active neurons in the medullary parafacial zone in rats. Sleep 41:zsy130
    [Google Scholar]
  3. Amatruda TT 3rd, Black DA, McKenna TM, McCarley RW, Hobson JA 1975. Sleep cycle control and cholinergic mechanisms: differential effects of carbachol injections at pontine brain stem sites. Brain Res 98:501–15
    [Google Scholar]
  4. Anaclet C, Ferrari L, Arrigoni E, Bass CE, Saper CB et al. 2014. The GABAergic parafacial zone is a medullary slow wave sleep-promoting center. Nat. Neurosci. 17:1217–24
    [Google Scholar]
  5. Anaclet C, Lin JS, Vetrivelan R, Krenzer M, Vong L et al. 2012. Identification and characterization of a sleep-active cell group in the rostral medullary brainstem. J. Neurosci. 32:17970–76
    [Google Scholar]
  6. Aserinsky E, Kleitman N 1953. Regularly occurring periods of eye motility, and concomitant phenomena, during sleep. Science 118:273–74
    [Google Scholar]
  7. Aston-Jones G, Bloom FE 1981. Activity of norepinephrine-containing locus coeruleus neurons in behaving rats anticipates fluctuations in the sleep-waking cycle. J. Neurosci. 1:876–86
    [Google Scholar]
  8. Aston-Jones G, Ennis M, Pieribone VA, Nickell WT, Shipley MT 1986. The brain nucleus locus coeruleus: restricted afferent control of a broad efferent network. Science 234:734–37
    [Google Scholar]
  9. Bandler R, Keay KA 1996. Columnar organization in the midbrain periaqueductal gray and the integration of emotional expression. Prog. Brain Res. 107:285–300
    [Google Scholar]
  10. Barlow IL, Rihel J 2017. Zebrafish sleep: from geneZZZ to neuronZZZ. Curr. Opin. Neurobiol. 44:65–71
    [Google Scholar]
  11. Batini C, Moruzzi G, Palestini M, Rossi GF, Zanchetti A 1958. Persistent patterns of wakefulness in the pretrigeminal midpontine preparation. Science 128:30–32
    [Google Scholar]
  12. Beaulieu P, Lambert C 1998. Peptidic regulation of heart rate and interactions with the autonomic nervous system. Cardiovasc. Res. 37:578–85
    [Google Scholar]
  13. Behbehani MM 1995. Functional characteristics of the midbrain periaqueductal gray. Prog. Neurobiol. 46:575–605
    [Google Scholar]
  14. Behn CG, Brown EN, Scammell TE, Kopell NJ 2007. Mathematical model of network dynamics governing mouse sleep-wake behavior. J. Neurophysiol. 97:3828–40
    [Google Scholar]
  15. Boissard R, Gervasoni D, Schmidt MH, Barbagli B, Fort P, Luppi PH 2002. The rat ponto-medullary network responsible for paradoxical sleep onset and maintenance: a combined microinjection and functional neuroanatomical study. Eur. J. Neurosci. 16:1959–73
    [Google Scholar]
  16. Boucetta S, Cisse Y, Mainville L, Morales M, Jones BE 2014. Discharge profiles across the sleep-waking cycle of identified cholinergic, GABAergic, and glutamatergic neurons in the pontomesencephalic tegmentum of the rat. J. Neurosci. 34:4708–27
    [Google Scholar]
  17. Broughton R, Valley V, Aguirre M, Roberts J, Suwalski W, Dunham W 1986. Excessive daytime sleepiness and the pathophysiology of narcolepsy-cataplexy: a laboratory perspective. Sleep 9:205–15
    [Google Scholar]
  18. Brown RE, Basheer R, McKenna JT, Strecker RE, McCarley RW 2012. Control of sleep and wakefulness. Physiol. Rev. 92:1087–187
    [Google Scholar]
  19. Buzsaki G, Bickford RG, Ponomareff G, Thal LJ, Mandel R, Gage FH 1988. Nucleus basalis and thalamic control of neocortical activity in the freely moving rat. J. Neurosci. 8:4007–26
    [Google Scholar]
  20. Caggiano V, Leiras R, Goni-Erro H, Masini D, Bellardita C et al. 2018. Midbrain circuits that set locomotor speed and gait selection. Nature 553:455–60
    [Google Scholar]
  21. Campbell SS, Tobler I 1984. Animal sleep: a review of sleep duration across phylogeny. Neurosci. Biobehav. Rev. 8:269–300
    [Google Scholar]
  22. Campos CA, Bowen AJ, Roman CW, Palmiter RD 2018. Encoding of danger by parabrachial CGRP neurons. Nature 555:617–22
    [Google Scholar]
  23. Capelli P, Pivetta C, Esposito MS, Arber S 2017. Locomotor speed control circuits in the caudal brainstem. Nature 551:373–77
    [Google Scholar]
  24. Carrive P 1993. The periaqueductal gray and defensive behavior: functional representation and neuronal organization. Behav. Brain Res. 58:27–47
    [Google Scholar]
  25. Carter ME, Yizhar O, Chikahisa S, Nguyen H, Adamantidis A et al. 2010. Tuning arousal with optogenetic modulation of locus coeruleus neurons. Nat. Neurosci. 13:1526–33
    [Google Scholar]
  26. Cetin A, Callaway EM 2014. Optical control of retrogradely infected neurons using drug-regulated “TLoop” lentiviral vectors. J. Neurophysiol. 111:2150–59
    [Google Scholar]
  27. Chemelli RM, Willie JT, Sinton CM, Elmquist JK, Scammell T et al. 1999. Narcolepsy in orexin knockout mice: molecular genetics of sleep regulation. Cell 98:437–51
    [Google Scholar]
  28. Chen KS, Xu M, Zhang Z, Chang WC, Gaj T et al. 2018. A hypothalamic switch for REM and non-REM sleep. Neuron 97:1168–76.e4
    [Google Scholar]
  29. Cho JR, Treweek JB, Robinson JE, Xiao C, Bremner LR et al. 2017. Dorsal raphe dopamine neurons modulate arousal and promote wakefulness by salient stimuli. Neuron 94:1205–19.e8
    [Google Scholar]
  30. Chung S, Weber F, Zhong P, Tan CL, Nguyen TN et al. 2017. Identification of preoptic sleep neurons using retrograde labelling and gene profiling. Nature 545:477–81
    [Google Scholar]
  31. Clement O, Sapin E, Berod A, Fort P, Luppi PH 2011. Evidence that neurons of the sublaterodorsal tegmental nucleus triggering paradoxical (REM) sleep are glutamatergic. Sleep 34:419–23
    [Google Scholar]
  32. Cox J, Pinto L, Dan Y 2016. Calcium imaging of sleep-wake related neuronal activity in the dorsal pons. Nat. Commun. 7:10763
    [Google Scholar]
  33. da Silva JA, Tecuapetla F, Paixao V, Costa RM 2018. Dopamine neuron activity before action initiation gates and invigorates future movements. Nature 554:244–48
    [Google Scholar]
  34. Datta S, Siwek DF 2002. Single cell activity patterns of pedunculopontine tegmentum neurons across the sleep-wake cycle in the freely moving rats. J. Neurosci. Res. 70:611–21
    [Google Scholar]
  35. de Zambotti M, Trinder J, Silvani A, Colrain IM, Baker FC 2018. Dynamic coupling between the central and autonomic nervous systems during sleep: a review. Neurosci. Biobehav. Rev. 90:84–103
    [Google Scholar]
  36. Deisseroth K 2011. Optogenetics. Nat. Methods 8:26–29
    [Google Scholar]
  37. Eban-Rothschild A, Rothschild G, Giardino WJ, Jones JR, de Lecea L 2016. VTA dopaminergic neurons regulate ethologically relevant sleep-wake behaviors. Nat. Neurosci. 19:1356–66
    [Google Scholar]
  38. Eguchi K, Satoh T 1980. Characterization of the neurons in the region of solitary tract nucleus during sleep. Physiol. Behav. 24:99–102
    [Google Scholar]
  39. Fuller P, Sherman D, Pedersen NP, Saper CB, Lu J 2011. Reassessment of the structural basis of the ascending arousal system. J. Comp. Neurol. 519:933–56
    [Google Scholar]
  40. Gent TC, Bandarabadi M, Herrera CG, Adamantidis AR 2018. Thalamic dual control of sleep and wakefulness. Nat. Neurosci. 21:974–84
    [Google Scholar]
  41. George R, Haslett WL, Jenden DJ 1964. A cholinergic mechanism in the brainstem reticular formation: induction of paradoxical sleep. Int. J. Neuropharmacol. 3:541–52
    [Google Scholar]
  42. Gerashchenko D, Blanco-Centurion CA, Miller JD, Shiromani PJ 2006. Insomnia following hypocretin2-saporin lesions of the substantia nigra. Neuroscience 137:29–36
    [Google Scholar]
  43. Gerfen CR, Surmeier DJ 2011. Modulation of striatal projection systems by dopamine. Annu. Rev. Neurosci. 34:441–66
    [Google Scholar]
  44. Glenn LL, Steriade M 1982. Discharge rate and excitability of cortically projecting intralaminar thalamic neurons during waking and sleep states. J. Neurosci. 2:1387–404
    [Google Scholar]
  45. Gnadt JW, Pegram GV 1986. Cholinergic brainstem mechanisms of REM sleep in the rat. Brain Res 384:29–41
    [Google Scholar]
  46. Gong H, McGinty D, Guzman-Marin R, Chew KT, Stewart D, Szymusiak R 2004. Activation of c-fos in GABAergic neurones in the preoptic area during sleep and in response to sleep deprivation. J. Physiol. 556:935–46
    [Google Scholar]
  47. Guan JL, Uehara K, Lu S, Wang QP, Funahashi H et al. 2002. Reciprocal synaptic relationships between orexin- and melanin-concentrating hormone-containing neurons in the rat lateral hypothalamus: a novel circuit implicated in feeding regulation. Int. J. Obes. Relat. Metab. Disord. 26:1523–32
    [Google Scholar]
  48. Han S, Soleiman MT, Soden ME, Zweifel LS, Palmiter RD 2015. Elucidating an affective pain circuit that creates a threat memory. Cell 162:363–74
    [Google Scholar]
  49. Harding EC, Yu X, Miao A, Andrews N, Ma Y et al. 2018. A neuronal hub binding sleep initiation and body cooling in response to a warm external stimulus. Curr. Biol. 28:2263–73.e4
    [Google Scholar]
  50. Hassani OK, Lee MG, Henny P, Jones BE 2009a. Discharge profiles of identified GABAergic in comparison to cholinergic and putative glutamatergic basal forebrain neurons across the sleep-wake cycle. J. Neurosci. 29:11828–40
    [Google Scholar]
  51. Hassani OK, Lee MG, Jones BE 2009b. Melanin-concentrating hormone neurons discharge in a reciprocal manner to orexin neurons across the sleep-wake cycle. PNAS 106:2418–22
    [Google Scholar]
  52. Hastings MH, Maywood ES, Brancaccio M 2018. Generation of circadian rhythms in the suprachiasmatic nucleus. Nat. Rev. Neurosci. 19:453–69
    [Google Scholar]
  53. Hayashi Y, Kashiwagi M, Yasuda K, Ando R, Kanuka M et al. 2015. Cells of a common developmental origin regulate REM/non-REM sleep and wakefulness in mice. Science 350:957–61
    [Google Scholar]
  54. Hendricks JC, Finn SM, Panckeri KA, Chavkin J, Williams JA et al. 2000. Rest in Drosophila is a sleep-like state. Neuron 25:129–38
    [Google Scholar]
  55. Hobson JA, McCarley RW, Wyzinski PW 1975. Sleep cycle oscillation: reciprocal discharge by two brainstem neuronal groups. Science 189:55–58
    [Google Scholar]
  56. Holstege JC, Kuypers HG 1987. Brainstem projections to spinal motoneurons: an update. Neuroscience 23:809–21
    [Google Scholar]
  57. Honjoh S, Sasai S, Schiereck SS, Nagai H, Tononi G, Cirelli C 2018. Regulation of cortical activity and arousal by the matrix cells of the ventromedial thalamic nucleus. Nat. Commun. 9:2100
    [Google Scholar]
  58. Inutsuka A, Yamanaka A 2013. The physiological role of orexin/hypocretin neurons in the regulation of sleep/wakefulness and neuroendocrine functions. Front. Endocrinol. 4:18
    [Google Scholar]
  59. Jacobs BL, Fornal CA 1991. Activity of brain serotonergic neurons in the behaving animal. Pharmacol. Rev. 43:563–78
    [Google Scholar]
  60. Jafari B 2017. Sleep architecture and blood pressure. Sleep Med. Clin. 12:161–66
    [Google Scholar]
  61. Jego S, Glasgow SD, Herrera CG, Ekstrand M, Reed SJ et al. 2013. Optogenetic identification of a rapid eye movement sleep modulatory circuit in the hypothalamus. Nat. Neurosci. 16:1637–43
    [Google Scholar]
  62. Jones B 2009. Sleep-wake autonomic regulation. Encyclopedia of Neuroscience MD Binder, N Hirokawa, U Windhorst 3732–36 Berlin: Springer-Verlag
    [Google Scholar]
  63. Jouvet M 1962. [Research on the neural structures and responsible mechanisms in different phases of physiological sleep]. Arch. Ital. Biol. 100:125–206 (In French)
    [Google Scholar]
  64. Kaur S, Thankachan S, Begum S, Liu M, Blanco-Centurion C, Shiromani PJ 2009. Hypocretin-2 saporin lesions of the ventrolateral periaquaductal gray (vlPAG) increase REM sleep in hypocretin knockout mice. PLOS ONE 4:e6346
    [Google Scholar]
  65. Kaur S, Wang JL, Ferrari L, Thankachan S, Kroeger D et al. 2017. A genetically defined circuit for arousal from sleep during hypercapnia. Neuron 96:1153–67.e5
    [Google Scholar]
  66. Khalighi S, Sousa T, Santos JM, Nunes U 2016. ISRUC-Sleep: a comprehensive public dataset for sleep researchers. Comput. Methods Programs Biomed. 124:180–92
    [Google Scholar]
  67. Kohyama J, Lai YY, Siegel JM 1998. Inactivation of the pons blocks medullary-induced muscle tone suppression in the decerebrate cat. Sleep 21:695–99
    [Google Scholar]
  68. Konadhode RR, Pelluru D, Blanco-Centurion C, Zayachkivsky A, Liu M et al. 2013. Optogenetic stimulation of MCH neurons increases sleep. J. Neurosci. 33:10257–63
    [Google Scholar]
  69. Krauchi K, Cajochen C, Werth E, Wirz-Justice A 1999. Warm feet promote the rapid onset of sleep. Nature 401:36–37
    [Google Scholar]
  70. Kravitz AV, Freeze BS, Parker PR, Kay K, Thwin MT et al. 2010. Regulation of parkinsonian motor behaviours by optogenetic control of basal ganglia circuitry. Nature 466:622–26
    [Google Scholar]
  71. Krenzer M, Anaclet C, Vetrivelan R, Wang N, Vong L et al. 2011. Brainstem and spinal cord circuitry regulating REM sleep and muscle atonia. PLOS ONE 6:e24998
    [Google Scholar]
  72. Kroeger D, Ferrari LL, Petit G, Mahoney CE, Fuller PM et al. 2017. Cholinergic, glutamatergic, and GABAergic neurons of the pedunculopontine tegmental nucleus have distinct effects on sleep/wake behavior in mice. J. Neurosci. 37:1352–66
    [Google Scholar]
  73. Lai YY, Shalita T, Hajnik T, Wu JP, Kuo JS et al. 1999. Neurotoxic N-methyl-d-aspartate lesion of the ventral midbrain and mesopontine junction alters sleep-wake organization. Neuroscience 90:469–83
    [Google Scholar]
  74. Lee AM, Hoy JL, Bonci A, Wilbrecht L, Stryker MP, Niell CM 2014. Identification of a brainstem circuit regulating visual cortical state in parallel with locomotion. Neuron 83:455–66
    [Google Scholar]
  75. Lee MG, Hassani OK, Jones BE 2005. Discharge of identified orexin/hypocretin neurons across the sleep-waking cycle. J. Neurosci. 25:6716–20
    [Google Scholar]
  76. Li Y, Gao XB, Sakurai T, van den Pol AN 2002. Hypocretin/orexin excites hypocretin neurons via a local glutamate neuron-A potential mechanism for orchestrating the hypothalamic arousal system. Neuron 36:1169–81
    [Google Scholar]
  77. Lin JS, Sakai K, Vanni-Mercier G, Jouvet M 1989. A critical role of the posterior hypothalamus in the mechanisms of wakefulness determined by microinjection of muscimol in freely moving cats. Brain Res 479:225–40
    [Google Scholar]
  78. Lin L, Faraco J, Li R, Kadotani H, Rogers W et al. 1999. The sleep disorder canine narcolepsy is caused by a mutation in the hypocretin (orexin) receptor 2 gene. Cell 98:365–76
    [Google Scholar]
  79. Liu D, Ma C, Zheng W, Yao Y, Dan Y 2018. Sleep and motor control by a basal ganglia circuit. bioRxiv 405324. https://doi.org/10.1101/405324
    [Crossref]
  80. Liu K, Kim J, Kim DW, Zhang YS, Bao H et al. 2017. Lhx6-positive GABA-releasing neurons of the zona incerta promote sleep. Nature 548:582–87
    [Google Scholar]
  81. Llewellyn-Smith IJ, Verberne AJM, eds. 2011. Central Regulation of Autonomic Functions New York: Oxford Univ. Press. , 2nd ed..
  82. Lu J, Greco MA, Shiromani P, Saper CB 2000. Effect of lesions of the ventrolateral preoptic nucleus on NREM and REM sleep. J. Neurosci. 20:3830–42
    [Google Scholar]
  83. Lu J, Jhou TC, Saper CB 2006a. Identification of wake-active dopaminergic neurons in the ventral periaqueductal gray matter. J. Neurosci. 26:193–202
    [Google Scholar]
  84. Lu J, Sherman D, Devor M, Saper CB 2006b. A putative flip-flop switch for control of REM sleep. Nature 441:589–94
    [Google Scholar]
  85. Magnes J, Moruzzi G, Pompeiano O, US Air Force. 1960. Synchronization of the EEG produced by low-frequency electrical stimulation of the region of the solitary tract Rep., US Air Force Off. Sci. Res., Air Res. Dev. Command Washington, DC:
  86. Magoun HW, Rhines R 1946. An inhibitory mechanism in the bulbar reticular formation. J. Neurophysiol. 9:165–71
    [Google Scholar]
  87. Maimon G, Straw AD, Dickinson MH 2010. Active flight increases the gain of visual motion processing in Drosophila. Nat. . Neurosci 13:393–99
    [Google Scholar]
  88. Maloney KJ, Mainville L, Jones BE 2000. c-Fos expression in GABAergic, serotonergic, and other neurons of the pontomedullary reticular formation and raphe after paradoxical sleep deprivation and recovery. J. Neurosci. 20:4669–79
    [Google Scholar]
  89. Matyas F, Komlosi G, Babiczky A, Kocsis K, Bartho P et al. 2018. A highly collateralized thalamic cell type with arousal-predicting activity serves as a key hub for graded state transitions in the forebrain. Nat. Neurosci. 21:1551–62
    [Google Scholar]
  90. McCarley RW, Hobson JA 1975. Neuronal excitability modulation over the sleep cycle: a structural and mathematical model. Science 189:58–60
    [Google Scholar]
  91. McGinley MJ, David SV, McCormick DA 2015. Cortical membrane potential signature of optimal states for sensory signal detection. Neuron 87:179–92
    [Google Scholar]
  92. McGinty DJ, Sterman MB 1968. Sleep suppression after basal forebrain lesions in the cat. Science 160:1253–55
    [Google Scholar]
  93. Mileykovskiy BY, Kiyashchenko LI, Siegel JM 2005. Behavioral correlates of activity in identified hypocretin/orexin neurons. Neuron 46:787–98
    [Google Scholar]
  94. Modirrousta M, Mainville L, Jones BE 2004. Gabaergic neurons with α2-adrenergic receptors in basal forebrain and preoptic area express c-Fos during sleep. Neuroscience 129:803–10
    [Google Scholar]
  95. Monti JM 2011. Serotonin control of sleep-wake behavior. Sleep Med. Rev. 15:269–81
    [Google Scholar]
  96. Morairty SR, Szymusiak R, Thomson D, McGinty DJ 1993. Selective increases in non-rapid eye movement sleep following whole body heating in rats. Brain Res 617:10–16
    [Google Scholar]
  97. Moruzzi G, Magoun HW 1949. Brain stem reticular formation and activation of the EEG. Electroencephalogr. Clin. Neurophysiol. 1:455–73
    [Google Scholar]
  98. Nath RD, Bedbrook CN, Abrams MJ, Basinger T, Bois JS et al. 2017. The jellyfish Cassiopea exhibits a sleep-like state. Curr. Biol. 27:2984–90.e3
    [Google Scholar]
  99. Nauta WJ 1946. Hypothalamic regulation of sleep in rats; an experimental study. J. Neurophysiol. 9:285–316
    [Google Scholar]
  100. Niell CM, Stryker MP 2010. Modulation of visual responses by behavioral state in mouse visual cortex. Neuron 65:472–79
    [Google Scholar]
  101. Oh SW, Harris JA, Ng L, Winslow B, Cain N et al. 2014. A mesoscale connectome of the mouse brain. Nature 508:207–14
    [Google Scholar]
  102. Oishi Y, Xu Q, Wang L, Zhang BJ, Takahashi K et al. 2017. Slow-wave sleep is controlled by a subset of nucleus accumbens core neurons in mice. Nat. Commun. 8:734
    [Google Scholar]
  103. Osakada F, Callaway EM 2013. Design and generation of recombinant rabies virus vectors. Nat. Protoc. 8:1583–601
    [Google Scholar]
  104. Phillips AJ, Robinson PA 2007. A quantitative model of sleep-wake dynamics based on the physiology of the brainstem ascending arousal system. J. Biol. Rhythms 22:167–79
    [Google Scholar]
  105. Phillips AJ, Robinson PA, Kedziora DJ, Abeysuriya RG 2010. Mammalian sleep dynamics: how diverse features arise from a common physiological framework. PLOS Comput. Biol. 6:e1000826
    [Google Scholar]
  106. Pinto L, Goard MJ, Estandian D, Xu M, Kwan AC et al. 2013. Fast modulation of visual perception by basal forebrain cholinergic neurons. Nat. Neurosci. 16:1857–63
    [Google Scholar]
  107. Polack PO, Friedman J, Golshani P 2013. Cellular mechanisms of brain state–dependent gain modulation in visual cortex. Nat. Neurosci. 16:1331–39
    [Google Scholar]
  108. Poulet JF, Petersen CC 2008. Internal brain state regulates membrane potential synchrony in barrel cortex of behaving mice. Nature 454:881–85
    [Google Scholar]
  109. Qiu MH, Vetrivelan R, Fuller PM, Lu J 2010. Basal ganglia control of sleep-wake behavior and cortical activation. Eur. J. Neurosci. 31:499–507
    [Google Scholar]
  110. Raizen DM, Zimmerman JE, Maycock MH, Ta UD, You YJ et al. 2008. Lethargus is a Caenorhabditis elegans sleep-like state. Nature 451:569–72
    [Google Scholar]
  111. Rempe MJ, Best J, Terman D 2010. A mathematical model of the sleep/wake cycle. J. Math. Biol. 60:615–44
    [Google Scholar]
  112. Ren SC, Wang YL, Yue FG, Cheng XF, Dang RZ et al. 2018. The paraventricular thalamus is a critical thalamic area for wakefulness. Science 362:429–34
    [Google Scholar]
  113. Roseberry TK, Lee AM, Lalive AL, Wilbrecht L, Bonci A, Kreitzer AC 2016. Cell-type-specific control of brainstem locomotor circuits by basal ganglia. Cell 164:526–37
    [Google Scholar]
  114. Sallanon M, Denoyer M, Kitahama K, Aubert C, Gay N, Jouvet M 1989. Long-lasting insomnia induced by preoptic neuron lesions and its transient reversal by muscimol injection into the posterior hypothalamus in the cat. Neuroscience 32:669–83
    [Google Scholar]
  115. Saper CB, Chou TC, Scammell TE 2001. The sleep switch: hypothalamic control of sleep and wakefulness. Trends Neurosci 24:726–31
    [Google Scholar]
  116. Saper CB, Fuller PM, Pedersen NP, Lu J, Scammell TE 2010. Sleep state switching. Neuron 68:1023–42
    [Google Scholar]
  117. Sapin E, Lapray D, Berod A, Goutagny R, Leger L et al. 2009. Localization of the brainstem GABAergic neurons controlling paradoxical (REM) sleep. PLOS ONE 4:e4272
    [Google Scholar]
  118. Sastre JP, Buda C, Kitahama K, Jouvet M 1996. Importance of the ventrolateral region of the periaqueductal gray and adjacent tegmentum in the control of paradoxical sleep as studied by muscimol microinjections in the cat. Neuroscience 74:415–26
    [Google Scholar]
  119. Scammell TE, Arrigoni E, Lipton JO 2017. Neural circuitry of wakefulness and sleep. Neuron 93:747–65
    [Google Scholar]
  120. Schenkel E, Siegel JM 1989. REM sleep without atonia after lesions of the medial medulla. Neurosci. Lett. 98:159–65
    [Google Scholar]
  121. Shaw PJ, Cirelli C, Greenspan RJ, Tononi G 2000. Correlates of sleep and waking in Drosophila melanogaster. . Science 287:1834–37
    [Google Scholar]
  122. Shein-Idelson M, Ondracek JM, Liaw HP, Reiter S, Laurent G 2016. Slow waves, sharp waves, ripples, and REM in sleeping dragons. Science 352:590–95
    [Google Scholar]
  123. Sherin JE, Elmquist JK, Torrealba F, Saper CB 1998. Innervation of histaminergic tuberomammillary neurons by GABAergic and galaninergic neurons in the ventrolateral preoptic nucleus of the rat. J. Neurosci. 18:4705–21
    [Google Scholar]
  124. Sherin JE, Shiromani PJ, McCarley RW, Saper CB 1996. Activation of ventrolateral preoptic neurons during sleep. Science 271:216–19
    [Google Scholar]
  125. Silvani A, Dampney RA 2013. Central control of cardiovascular function during sleep. Am. J. Physiol. Heart Circ. Physiol. 305:H1683–92
    [Google Scholar]
  126. Sirieix C, Gervasoni D, Luppi PH, Leger L 2012. Role of the lateral paragigantocellular nucleus in the network of paradoxical (REM) sleep: an electrophysiological and anatomical study in the rat. PLOS ONE 7:e28724
    [Google Scholar]
  127. Steininger TL, Gong H, McGinty D, Szymusiak R 2001. Subregional organization of preoptic area/anterior hypothalamic projections to arousal-related monoaminergic cell groups. J. Comp. Neurol. 429:638–53
    [Google Scholar]
  128. Sternson SM, Roth BL 2014. Chemogenetic tools to interrogate brain functions. Annu. Rev. Neurosci. 37:387–407
    [Google Scholar]
  129. Szymusiak R, Alam N, Steininger TL, McGinty D 1998. Sleep-waking discharge patterns of ventrolateral preoptic/anterior hypothalamic neurons in rats. Brain Res 803:178–88
    [Google Scholar]
  130. Szymusiak R, McGinty D 1989. Sleep-waking discharge of basal forebrain projection neurons in cats. Brain Res. Bull. 22:423–30
    [Google Scholar]
  131. Takahashi K, Kayama Y, Lin JS, Sakai K 2010. Locus coeruleus neuronal activity during the sleep-waking cycle in mice. Neuroscience 169:1115–26
    [Google Scholar]
  132. Takahashi K, Lin JS, Sakai K 2006. Neuronal activity of histaminergic tuberomammillary neurons during wake-sleep states in the mouse. J. Neurosci. 26:10292–98
    [Google Scholar]
  133. Takahashi K, Lin JS, Sakai K 2009. Characterization and mapping of sleep-waking specific neurons in the basal forebrain and preoptic hypothalamus in mice. Neuroscience 161:269–92
    [Google Scholar]
  134. Tamakawa Y, Karashima A, Koyama Y, Katayama N, Nakao M 2006. A quartet neural system model orchestrating sleep and wakefulness mechanisms. J. Neurophysiol. 95:2055–69
    [Google Scholar]
  135. Tian L, Hires SA, Looger LL 2012. Imaging neuronal activity with genetically encoded calcium indicators. Cold Spring Harb. Protoc. 2012:647–56
    [Google Scholar]
  136. Tovote P, Esposito MS, Botta P, Chaudun F, Fadok JP et al. 2016. Midbrain circuits for defensive behaviour. Nature 534:206–12
    [Google Scholar]
  137. Tsunematsu T, Ueno T, Tabuchi S, Inutsuka A, Tanaka KF et al. 2014. Optogenetic manipulation of activity and temporally controlled cell-specific ablation reveal a role for MCH neurons in sleep/wake regulation. J. Neurosci. 34:6896–909
    [Google Scholar]
  138. Van Dort CJ, Zachs DP, Kenny JD, Zheng S, Goldblum RR et al. 2015. Optogenetic activation of cholinergic neurons in the PPT or LDT induces REM sleep. PNAS 112:584–89
    [Google Scholar]
  139. Van Someren EJ 2006. Mechanisms and functions of coupling between sleep and temperature rhythms. Prog. Brain Res. 153:309–24
    [Google Scholar]
  140. Vanini G, Torterolo P, McGregor R, Chase MH, Morales FR 2007. GABAergic processes in the mesencephalic tegmentum modulate the occurrence of active (rapid eye movement) sleep in guinea pigs. Neuroscience 145:1157–67
    [Google Scholar]
  141. Vinck M, Batista-Brito R, Knoblich U, Cardin JA 2015. Arousal and locomotion make distinct contributions to cortical activity patterns and visual encoding. Neuron. 86740–54
  142. Von Economo C 1930. Sleep as a problem of localization. J. Nerv. Ment. Dis. 71:249–59
    [Google Scholar]
  143. Weber F, Chung S, Beier KT, Xu M, Luo L, Dan Y 2015. Control of REM sleep by ventral medulla GABAergic neurons. Nature 526:435–38
    [Google Scholar]
  144. Weber F, Dan Y 2016. Circuit-based interrogation of sleep control. Nature 538:51–59
    [Google Scholar]
  145. Weber F, Hoang Do JP, Chung S, Beier KT, Bikov M et al. 2018. Regulation of REM and non-REM sleep by periaqueductal GABAergic neurons. Nat. Commun. 9:354
    [Google Scholar]
  146. Weissbourd B, Ren J, DeLoach KE, Guenthner CJ, Miyamichi K, Luo L 2014. Presynaptic partners of dorsal raphe serotonergic and GABAergic neurons. Neuron 83:645–62
    [Google Scholar]
  147. White SR, Fung SJ, Barnes CD 1991. Norepinephrine effects on spinal motoneurons. Prog. Brain Res. 88:343–50
    [Google Scholar]
  148. Xu M, Chung S, Zhang S, Zhong P, Ma C et al. 2015. Basal forebrain circuit for sleep-wake control. Nat. Neurosci. 18:1641–47
    [Google Scholar]
  149. Yamanaka A, Tabuchi S, Tsunematsu T, Fukazawa Y, Tominaga M 2010. Orexin directly excites orexin neurons through orexin 2 receptor. J. Neurosci. 30:12642–52
    [Google Scholar]
  150. Yang SR, Hu ZZ, Luo YJ, Zhao YN, Sun HX et al. 2018. The rostromedial tegmental nucleus is essential for non-rapid eye movement sleep. PLOS Biol 16:e2002909
    [Google Scholar]
  151. Yu X, Ye Z, Houston CM, Zecharia AY, Ma Y et al. 2015. Wakefulness is governed by GABA and histamine cotransmission. Neuron 87:164–78
    [Google Scholar]
  152. Yuan XS, Wang L, Dong H, Qu WM, Yang SR et al. 2017. Striatal adenosine A2A receptor neurons control active-period sleep via parvalbumin neurons in external globus pallidus. eLife 6:e29055
    [Google Scholar]
  153. Zhang Z, Ferretti V, Guntan I, Moro A, Steinberg EA et al. 2015. Neuronal ensembles sufficient for recovery sleep and the sedative actions of α2 adrenergic agonists. Nat. Neurosci. 18:553–61
    [Google Scholar]
/content/journals/10.1146/annurev-neuro-080317-061813
Loading
/content/journals/10.1146/annurev-neuro-080317-061813
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error