1932

Abstract

Structural plasticity in the myelinated infrastructure of the nervous system has come to light. Although an innate program of myelin development proceeds independent of nervous system activity, a second mode of myelination exists in which activity-dependent, plastic changes in myelin-forming cells influence myelin structure and neurological function. These complementary and possibly temporally overlapping activity-independent and activity-dependent modes of myelination crystallize in a model of experience-modulated myelin development and plasticity with broad implications for neurological function. In this article, I consider the contributions of myelin to neural circuit function, the dynamic influences of experience on myelin microstructure, and the role that plasticity of myelin may play in cognition.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-neuro-080317-061853
2018-07-08
2024-04-17
Loading full text...

Full text loading...

/deliver/fulltext/neuro/41/1/annurev-neuro-080317-061853.html?itemId=/content/journals/10.1146/annurev-neuro-080317-061853&mimeType=html&fmt=ahah

Literature Cited

  1. Barrera K, Chu P, Abramowitz J, Steger R, Ramos R, Brumberg J 2013. Organization of myelin in the mouse somatosensory barrel cortex and the effects of sensory deprivation. Dev. Neurobiol. 73:297–314
    [Google Scholar]
  2. Barres BA, Jacobson MD, Schmid R, Sendtner M, Raff MC 1993. Does oligodendrocyte survival depend on axons?. Curr. Biol. 3:489–97
    [Google Scholar]
  3. Barres BA, Raff MC 1993. Proliferation of oligodendrocyte precursor cells depends on electrical activity in axons. Nature 361:258–60
    [Google Scholar]
  4. Beaulieu C 2002. The basis of anisotropic water diffusion in the nervous system - a technical review. NMR Biomed 15:435–55
    [Google Scholar]
  5. Bechler ME, Byrne L, ffrench-Constant C 2015. CNS myelin sheath lengths are an intrinsic property of oligodendrocytes. Curr. Biol. 25:2411–16
    [Google Scholar]
  6. Benes FM 1989. Myelination of cortical-hippocampal relays during late adolescence. Schizophr. Bull. 15:585–93
    [Google Scholar]
  7. Bengtsson SL, Nagy Z, Skare S, Forsman L, Forssberg H, Ullén F 2005. Extensive piano practicing has regionally specific effects on white matter development. Nat. Neurosci. 8:1148–50
    [Google Scholar]
  8. Bergles D, Richardson W 2015. Oligodendrocyte development and plasticity. Cold Spring Harb. Perspect. Biol. 8:a020453
    [Google Scholar]
  9. Brody BA, Kinney HC, Kloman AS, Gilles FH 1987. Sequence of central nervous system myelination in human infancy. I. An autopsy study of myelination. J. Neuropathol. Exp. Neurol. 46:283–301
    [Google Scholar]
  10. Brown AM, Evans RD, Black J, Ransom BR 2012. Schwann cell glycogen selectively supports myelinated axon function. Ann. Neurol. 72:406–18
    [Google Scholar]
  11. Carr CE, Konishi M 1990. A circuit for detection of interaural time differences in the brain stem of the barn owl. J. Neurosci. 10:3227–46
    [Google Scholar]
  12. Cheng SM, Carr CE 2007. Functional delay of myelination of auditory delay lines in the nucleus laminaris of the barn owl. Dev. Neurobiol. 67:1957–74
    [Google Scholar]
  13. Clarke LE, Young KM, Hamilton NB, Li HL, Richardson WD, Attwell D 2012. Properties and fate of oligodendrocyte progenitor cells in the corpus callosum, motor cortex, and piriform cortex of the mouse. J. Neurosci. 32:8173–85
    [Google Scholar]
  14. Costa RM, Cohen D, Nicolelis MAL 2004. Differential corticostriatal plasticity during fast and slow motor skill learning in mice. Curr. Biol. 14:1124–34
    [Google Scholar]
  15. Czopka T, ffrench-Constant C, Lyons D 2013. Individual oligodendrocytes have only a few hours in which to generate new myelin sheaths in vivo. Dev. Cell 25:599–609
    [Google Scholar]
  16. de Hoz L, Simons M 2015. The emerging functions of oligodendrocytes in regulating neuronal network behaviour. BioEssays 37:60–69
    [Google Scholar]
  17. Demerens C, Stankoff B, Logak M, Anglade P, Allinquant B et al. 1996. Induction of myelination in the central nervous system by electrical activity. PNAS 93:9887–92
    [Google Scholar]
  18. Dimou L, Simon C, Kirchhoff F, Takebayashi H, Gotz M 2008. Progeny of Olig2-expressing progenitors in the gray and white matter of the adult mouse cerebral cortex. J. Neurosci. 28:10434–42
    [Google Scholar]
  19. Donaldson HH, Hoke GW 1905. On the areas of the axis cylinder and medullary sheath as seen in cross sections of the spinal nerves of vertebrates. J. Comp. Neurol. 15:1–15
    [Google Scholar]
  20. Eluvathingal TJ, Chugani HT, Behen ME, Juhasz C, Muzik O et al. 2006. Abnormal brain connectivity in children after early severe socioemotional deprivation: a diffusion tensor imaging study. Pediatrics 117:2093–100
    [Google Scholar]
  21. Emery B 2010. Regulation of oligodendrocyte differentiation and myelination. Science 330:779–82
    [Google Scholar]
  22. Emery B, Agalliu D, Cahoy J, Watkins T, Dugas J et al. 2009. Myelin gene regulatory factor is a critical transcriptional regulator required for CNS myelination. Cell 138:172–85
    [Google Scholar]
  23. Ford MC, Alexandrova O, Cossell L, Stange-Marten A, Sinclair J et al. 2015. Tuning of Ranvier node and internode properties in myelinated axons to adjust action potential timing. Nat. Commun. 6:8073
    [Google Scholar]
  24. Funfschilling U, Supplie L, Mahad D, Boretius S, Saab A et al. 2012. Glycolytic oligodendrocytes maintain myelin and long-term axonal integrity. Nature 485:517–21
    [Google Scholar]
  25. Gallo V, Zhou JM, McBain CJ, Wright P, Knutson PL, Armstrong RC 1996. Oligodendrocyte progenitor cell proliferation and lineage progression are regulated by glutamate receptor-mediated K+ channel block. J. Neurosci. 16:2659–70
    [Google Scholar]
  26. Geha S, Pallud J, Junier M, Devaux B, Leonard N et al. 2010. NG2+/Olig2+ cells are the major cycle-related cell population of the adult human normal brain. Brain Pathol 20:399–411
    [Google Scholar]
  27. Gerber RJ, Wilks T, Erdie-Lalena C 2010. Developmental milestones: motor development. Pediatr. Rev. 31:267–76
    [Google Scholar]
  28. Gibson E, Purger D, Mount C, Goldstein A, Lin G et al. 2014. Neuronal activity promotes oligodendrogenesis and adaptive myelination in the mammalian brain. Science 344:1252304
    [Google Scholar]
  29. Glasser MF, Van Essen DC 2011. Mapping human cortical areas in vivo based on myelin content as revealed by T1- and T2-weighted MRI. J. Neurosci. 31:11597–616
    [Google Scholar]
  30. Hartline DK, Colman DR 2007. Rapid conduction and the evolution of giant axons and myelinated fibers. Curr. Biol. 17:R29–35
    [Google Scholar]
  31. Hildebrand C, Remahl S, Persson H, Bjartmar C 1993. Myelinated nerve fibres in the CNS. Prog. Neurobiol. 40:319–84
    [Google Scholar]
  32. Hill R, Patel K, Goncalves C, Grutzendler J, Nishiyama A 2014. Modulation of oligodendrocyte generation during a critical temporal window after NG2 cell division. Nat. Neurosci. 17:1518–27
    [Google Scholar]
  33. Hill R, Patel K, Medved J, Reiss A, Nishiyama A 2013. NG2 cells in white matter but not gray matter proliferate in response to PDGF. J. Neurosci. 33:14558–66
    [Google Scholar]
  34. Hines J, Ravanelli A, Schwindt R, Scott E, Appel B 2015. Neuronal activity biases axon selection for myelination in vivo. Nat. Neurosci. 18:683–89
    [Google Scholar]
  35. Honjin R, Sakato S, Yamashita T 1977. Electron microscopy of the mouse optic nerve: a quantitative study of the total optic nerve fibers. Arch. Histol. Jpn. 40:321–32
    [Google Scholar]
  36. Hughes E, Kang S, Fukaya M, Bergles D 2013. Oligodendrocyte progenitors balance growth with self-repulsion to achieve homeostasis in the adult brain. Nat. Neurosci. 16:668–76
    [Google Scholar]
  37. Huxley AF, Stampfli R 1949. Evidence for saltatory conduction in peripheral myelinated nerve fibres. J. Physiol. 108:315–39
    [Google Scholar]
  38. Ishibashi T, Dakin K, Stevens B, Lee P, Kozlov S et al. 2006. Astrocytes promote myelination in response to electrical impulses. Neuron 49:823–32
    [Google Scholar]
  39. Kang S, Fukaya M, Yang J, Rothstein J, Bergles D 2010. NG2+ CNS glial progenitors remain committed to the oligodendrocyte lineage in postnatal life and following neurodegeneration. Neuron 68:668–81
    [Google Scholar]
  40. Kawai R, Markman T, Poddar R, Ko R, Fantana Antoniu L et al. 2015. Motor cortex is required for learning but not for executing a motor skill. Neuron 86:800–12
    [Google Scholar]
  41. Keller TA, Just MA 2009. Altering cortical connectivity: remediation-induced changes in the white matter of poor readers. Neuron 64:624–31
    [Google Scholar]
  42. Kessaris N, Fogarty M, Iannarelli P, Grist M, Wegner M, Richardson W 2006. Competing waves of oligodendrocytes in the forebrain and postnatal elimination of an embryonic lineage. Nat. Neurosci. 9:173–79
    [Google Scholar]
  43. Kinney HC, Brody BA, Kloman AS, Gilles FH 1988. Sequence of central nervous system myelination in human infancy. II. Patterns of myelination in autopsied infants. J. Neuropathol. Exp. Neurol. 47:217–34
    [Google Scholar]
  44. Kirby B, Takada N, Latimer A, Shin J, Carney T et al. 2006. In vivo time-lapse imaging shows dynamic oligodendrocyte progenitor behavior during zebrafish development. Nat. Neurosci. 9:1506–11
    [Google Scholar]
  45. Lebel C, Gee M, Camicioli R, Wieler M, Martin W, Beaulieu C 2012. Diffusion tensor imaging of white matter tract evolution over the lifespan. Neuroimage 60:340–52
    [Google Scholar]
  46. Lee S, Chong SYC, Tuck SJ, Corey JM, Chan JR 2013. A rapid and reproducible assay for modeling myelination by oligodendrocytes using engineered nanofibers. Nat. Protoc. 8:771–82
    [Google Scholar]
  47. Liu J, Dietz K, DeLoyht J, Pedre X, Kelkar D et al. 2012. Impaired adult myelination in the prefrontal cortex of socially isolated mice. Nat. Neurosci. 15:1621–23
    [Google Scholar]
  48. Liu J, Dupree JL, Gacias M, Frawley R, Sikder T et al. 2016. Clemastine enhances myelination in the prefrontal cortex and rescues behavioral changes in socially isolated mice. J. Neurosci. 36:957–62
    [Google Scholar]
  49. Lu QR, Sun T, Zhu Z, Ma N, Garcia M et al. 2002. Common developmental requirement for Olig function indicates a motor neuron/oligodendrocyte connection. Cell 109:75–86
    [Google Scholar]
  50. Lundgaard I, Luzhynskaya A, Stockley J, Wang Z, Evans K et al. 2013. Neuregulin and BDNF induce a switch to NMDA receptor-dependent myelination by oligodendrocytes. PLOS Biol 11:e1001743
    [Google Scholar]
  51. Lyons DA, Talbot WS 2015. Glial cell development and function in zebrafish. Cold Spring Harbor Perspect. Biol. 7:a020586
    [Google Scholar]
  52. Makinodan M, Rosen K, Ito S, Corfas G 2012. A critical period for social experience-dependent oligodendrocyte maturation and myelination. Science 337:1357–60
    [Google Scholar]
  53. Mangin J, Li P, Scafidi J, Gallo V 2012. Experience-dependent regulation of NG2 progenitors in the developing barrel cortex. Nat. Neurosci. 15:1192–94
    [Google Scholar]
  54. Marques S, Zeisel A, Codeluppi S, van Bruggen D, Falcao AM et al. 2016. Oligodendrocyte heterogeneity in the mouse juvenile and adult central nervous system. Science 352:1326–29
    [Google Scholar]
  55. McKenzie I, Ohayon D, Li H, de Faria J, Emery B et al. 2014. Motor skill learning requires active central myelination. Science 346:318–22
    [Google Scholar]
  56. Mei F, Fancy SPJ, Shen YA, Niu J, Zhao C et al. 2014. Micropillar arrays as a high-throughput screening platform for therapeutics in multiple sclerosis. Nat. Med. 20:954–60
    [Google Scholar]
  57. Mei L, Nave KA 2014. Neuregulin-ERBB signaling in the nervous system and neuropsychiatric diseases. Neuron 83:27–49
    [Google Scholar]
  58. Mensch S, Baraban M, Almeida R, Czopka T, Ausborn J et al. 2015. Synaptic vesicle release regulates myelin sheath number of individual oligodendrocytes in vivo. Nat. Neurosci. 18:628–30
    [Google Scholar]
  59. Michalski J, Kothary R 2015. Oligodendrocytes in a nutshell. Front. Cell Neurosci. 9:340
    [Google Scholar]
  60. Miller DJ, Duka T, Stimpson CD, Schapiro SJ, Baze WB et al. 2012. Prolonged myelination in human neocortical evolution. PNAS 109:16480–85
    [Google Scholar]
  61. Miron V, Boyd A, Zhao J, Yuen T, Ruckh J et al. 2013. M2 microglia and macrophages drive oligodendrocyte differentiation during CNS remyelination. Nat. Neurosci. 16:1211–18
    [Google Scholar]
  62. Morris MJ, Mahgoub M, Na ES, Pranav H, Monteggia LM 2013. Loss of histone deacetylase 2 improves working memory and accelerates extinction learning. J. Neurosci. 33:6401–11
    [Google Scholar]
  63. Nishiyama A, Komitova M, Suzuki R, Zhu X 2009. Polydendrocytes (NG2 cells): multifunctional cells with lineage plasticity. Nat. Rev. Neurosci. 10:9–22
    [Google Scholar]
  64. Olivares R, Montiel J, Aboitiz F 2001. Species differences and similarities in the fine structure of the mammalian corpus callosum. Brain Behav. Evol. 57:98–105
    [Google Scholar]
  65. Pajevic S, Basser P, Fields R 2014. Role of myelin plasticity in oscillations and synchrony of neuronal activity. Neuroscience 276:135–47
    [Google Scholar]
  66. Peters A, Sethares C 1996. Myelinated axons and the pyramidal cell modules in monkey primary visual cortex. J. Comp. Neurol. 365:232–55
    [Google Scholar]
  67. Peters A, Sethares C 2004. Oligodendrocytes, their progenitors and other neuroglial cells in the aging primate cerebral cortex. Cereb. Cortex 14:995–1007
    [Google Scholar]
  68. Peters A, Verderosa A, Sethares C 2008. The neuroglial population in the primary visual cortex of the aging rhesus monkey. Glia 56:1151–61
    [Google Scholar]
  69. Rakic P 1985. DNA synthesis and cell division in the adult primate brain. Ann. N. Y. Acad. Sci. 457:193–211
    [Google Scholar]
  70. Redmond SA, Mei F, Eshed-Eisenbach Y, Osso LA, Leshkowitz D et al. 2016. Somatodendritic expression of JAM2 inhibits oligodendrocyte myelination. Neuron 91:824–36
    [Google Scholar]
  71. Richardson W, Kessaris N, Pringle N 2006. Oligodendrocyte wars. Nat. Rev. Neurosci. 7:11–18
    [Google Scholar]
  72. Rivers L, Young K, Rizzi M, Jamen F, Psachoulia K et al. 2008. PDGFRA/NG2 glia generate myelinating oligodendrocytes and piriform projection neurons in adult mice. Nat. Neurosci. 11:1392–401
    [Google Scholar]
  73. Rosenberg SS, Kelland EE, Tokar E, De La Torret AR, Chan JR 2008. The geometric and spatial constraints of the microenvironment induce oligodendrocyte differentiation. PNAS 105:14662–67
    [Google Scholar]
  74. Saab AS, Tzvetanova ID, Nave KA 2013. The role of myelin and oligodendrocytes in axonal energy metabolism. Curr. Opin. Neurobiol. 23:1065–72
    [Google Scholar]
  75. Salinas E, Sejnowski TJ 2000. Impact of correlated synaptic input on output firing rate and variability in simple neuronal models. J. Neurosci. 20:6193–209
    [Google Scholar]
  76. Sampaio-Baptista C, Khrapitchev A, Foxley S, Schlagheck T, Scholz J et al. 2013. Motor skill learning induces changes in white matter microstructure and myelination. J. Neurosci. 33:19499–503
    [Google Scholar]
  77. Sanchez MM, Hearn EF, Do D, Rilling JK, Herndon JG 1998. Differential rearing affects corpus callosum size and cognitive function of rhesus monkeys. Brain Res 812:38–49
    [Google Scholar]
  78. Schlegel A, Rudelson J, Tse P 2012. White matter structure changes as adults learn a second language. J. Cogn. Neurosci. 24:1664–70
    [Google Scholar]
  79. Scholz J, Klein MC, Behrens TEJ, Johansen-Berg H 2009. Training induces changes in white-matter architecture. Nat. Neurosci. 12:1370–71
    [Google Scholar]
  80. Seidl AH, Rubel EW 2016. Systematic and differential myelination of axon collaterals in the mammalian auditory brainstem. Glia 64:487–94
    [Google Scholar]
  81. Seidl AH, Rubel EW, Barria A 2014. Differential conduction velocity regulation in ipsilateral and contralateral collaterals innervating brainstem coincidence detector neurons. J. Neurosci. 34:4914–19
    [Google Scholar]
  82. Shen S, Li J, Casaccia-Bonnefil P 2005. Histone modifications affect timing of oligodendrocyte progenitor differentiation in the developing rat brain. J. Cell Biol. 169:577–89
    [Google Scholar]
  83. Shi P, Scott MA, Ghosh B, Wan D, Wissner-Gross Z et al. 2011. Synapse microarray identification of small molecules that enhance synaptogenesis. Nat. Commun. 2:510
    [Google Scholar]
  84. Shmuelof L, Krakauer JW 2011. Are we ready for a natural history of motor learning. Neuron 72:469–76
    [Google Scholar]
  85. Simon C, Gotz M, Dimou L 2011. Progenitors in the adult cerebral cortex: cell cycle properties and regulation by physiological stimuli and injury. Glia 59:869–81
    [Google Scholar]
  86. Smith RS, Koles ZJ 1970. Myelinated nerve fibers: computed effect of myelin thickness on conduction velocity. Am. J. Physiol. 219:1256–58
    [Google Scholar]
  87. Song S, Miller KD, Abbott LF 2000. Competitive Hebbian learning through spike-timing-dependent synaptic plasticity. Nat. Neurosci. 3:919–26
    [Google Scholar]
  88. Steele C, Bailey J, Zatorre R, Penhune V 2013. Early musical training and white-matter plasticity in the corpus callosum: evidence for a sensitive period. J. Neurosci. 33:1282–90
    [Google Scholar]
  89. Stevens B, Porta S, Haak LL, Gallo V, Fields RD 2002. Adenosine: a neuron-glial transmitter promoting myelination in the CNS in response to action potentials. Neuron 36:855–68
    [Google Scholar]
  90. Stevens B, Tanner S, Fields RD 1998. Control of myelination by specific patterns of neural impulses. J. Neurosci. 18:9303–11
    [Google Scholar]
  91. Taubert M, Draganski B, Anwander A, Müller K, Horstmann A et al. 2010. Dynamic properties of human brain structure: learning-related changes in cortical areas and associated fiber connections. J. Neurosci. 30:11670–77
    [Google Scholar]
  92. Tomassy GS, Berger DR, Chen HH, Kasthuri N, Hayworth KJ et al. 2014. Distinct profiles of myelin distribution along single axons of pyramidal neurons in the neocortex. Science 344:319–24
    [Google Scholar]
  93. Tomassy GS, Fossati V 2014. How big is the myelinating orchestra? Cellular diversity within the oligodendrocyte lineage: facts and hypotheses. Front. Cell Neurosci. 8:201
    [Google Scholar]
  94. Tripathi RB, Jackiewicz M, McKenzie IA, Kougioumtzidou E, Grist M, Richardson WD 2017. Remarkable stability of myelinating oligodendrocytes in mice. Cell Rep 21:316–23
    [Google Scholar]
  95. Tsai HH, Niu J, Munji R, Davalos D, Chang J et al. 2016. Oligodendrocyte precursors migrate along vasculature in the developing nervous system. Science 351:379–84
    [Google Scholar]
  96. Vigano F, Mobius W, Gotz M, Dimou L 2013. Transplantation reveals regional differences in oligodendrocyte differentiation in the adult brain. Nat. Neurosci. 16:1370–72
    [Google Scholar]
  97. Wake H, Lee P, Fields R 2011. Control of local protein synthesis and initial events in myelination by action potentials. Science 333:1647–51
    [Google Scholar]
  98. Wake H, Ortiz FC, Woo DH, Lee PR, Angulo MC, Fields RD 2015. Nonsynaptic junctions on myelinating glia promote preferential myelination of electrically active axons. Nat. Commun. 6:7844
    [Google Scholar]
  99. Watkins T, Emery B, Mulinyawe S, Barres B 2008. Distinct stages of myelination regulated by γ-secretase and astrocytes in a rapidly myelinating CNS coculture system. Neuron 60:555–69
    [Google Scholar]
  100. Wu LMN, Williams A, Delaney A, Sherman DL, Brophy PJ 2012. Increasing internodal distance in myelinated nerves accelerates nerve conduction to a flat maximum. Curr. Biol. 22:1957–61
    [Google Scholar]
  101. Wu M, Hernandez M, Shen S, Sabo J, Kelkar D et al. 2012. Differential modulation of the oligodendrocyte transcriptome by sonic hedgehog and bone morphogenetic protein 4 via opposing effects on histone acetylation. J. Neurosci. 32:6651–64
    [Google Scholar]
  102. Xiao L, Ohayon D, McKenzie I, Sinclair-Wilson A, Wright J et al. 2016. Rapid production of new oligodendrocytes is required in the earliest stages of motor-skill learning. Nat. Neurosci. 19:1210–17
    [Google Scholar]
  103. Yakovlev PI 1967. The myelogenetic cycles of regional maturation of the brain. Regional Development of the Brain in Early Life A Minkowski 3–70 Oxford, UK: Blackwell Scientific Publications
    [Google Scholar]
  104. Yeung M, Zdunek S, Bergmann O, Bernard S, Salehpour M et al. 2014. Dynamics of oligodendrocyte generation and myelination in the human brain. Cell 159:766–74
    [Google Scholar]
  105. Yin HH, Mulcare SP, Hilario MRF, Clouse E, Holloway T et al. 2009. Dynamic reorganization of striatal circuits during the acquisition and consolidation of a skill. Nat. Neurosci. 12:333–41
    [Google Scholar]
  106. Yizhar O, Fenno LE, Davidson TJ, Mogri M, Deisseroth K 2011. Optogenetics in neural systems. Neuron 71:9–34
    [Google Scholar]
  107. Young K, Psachoulia K, Tripathi R, Dunn S, Cossell L et al. 2013. Oligodendrocyte dynamics in the healthy adult CNS: evidence for myelin remodeling. Neuron 77:873–85
    [Google Scholar]
  108. Yuen T, Silbereis J, Griveau A, Chang S, Daneman R et al. 2014. Oligodendrocyte-encoded HIF function couples postnatal myelination and white matter angiogenesis. Cell 158:383–96
    [Google Scholar]
  109. Zalc B, Colman DR 2000. Origins of vertebrate success. Science 288:271–72
    [Google Scholar]
  110. Zalc B, Goujet D, Colman D 2008. The origin of the myelination program in vertebrates. Curr. Biol. 18:R511–12
    [Google Scholar]
  111. Zhu X, Hill R, Dietrich D, Komitova M, Suzuki R, Nishiyama A 2011. Age-dependent fate and lineage restriction of single NG2 cells. Development 138:745–53
    [Google Scholar]
  112. Zuccaro E, Arlotta P 2013. The quest for myelin in the adult brain. Nat. Cell Biol. 15:572–75
    [Google Scholar]
/content/journals/10.1146/annurev-neuro-080317-061853
Loading
/content/journals/10.1146/annurev-neuro-080317-061853
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error