1932

Abstract

Supervised learning plays a key role in the operation of many biological and artificial neural networks. Analysis of the computations underlying supervised learning is facilitated by the relatively simple and uniform architecture of the cerebellum, a brain area that supports numerous motor, sensory, and cognitive functions. We highlight recent discoveries indicating that the cerebellum implements supervised learning using the following organizational principles: () extensive preprocessing of input representations (i.e., feature engineering), () massively recurrent circuit architecture, () linear input–output computations, () sophisticated instructive signals that can be regulated and are predictive, () adaptive mechanisms of plasticity with multiple timescales, and () task-specific hardware specializations. The principles emerging from studies of the cerebellum have striking parallels with those in other brain areas and in artificial neural networks, as well as some notable differences, which can inform future research on supervised learning and inspire next-generation machine-based algorithms.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-neuro-080317-061948
2018-07-08
2024-12-08
Loading full text...

Full text loading...

/deliver/fulltext/neuro/41/1/annurev-neuro-080317-061948.html?itemId=/content/journals/10.1146/annurev-neuro-080317-061948&mimeType=html&fmt=ahah

Literature Cited

  1. Albus JS 1971. A theory of cerebellar function. Math. Biosci. 10:25–61
    [Google Scholar]
  2. Alpaydin E 2014. Introduction to Machine Learning Cambridge, MA: MIT Press
    [Google Scholar]
  3. Alvina K, Walter JT, Kohn A, Ellis-Davies G, Khodakhah K 2008. Questioning the role of rebound firing in the cerebellum. Nat. Neurosci. 11:1256–58
    [Google Scholar]
  4. Ankri L, Husson Z, Pietrajtis K, Proville R, Lena C et al. 2015. A novel inhibitory nucleo-cortical circuit controls cerebellar Golgi cell activity. eLife 4:e06262
    [Google Scholar]
  5. Apps R 2000. Gating of climbing fibre input to cerebellar cortical zones. Prog. Brain Res. 124:201–11
    [Google Scholar]
  6. Apps R, Hawkes R 2009. Cerebellar cortical organization: a one-map hypothesis. Nat. Rev. Neurosci. 10:670–81
    [Google Scholar]
  7. Arenz A, Bracey EF, Margrie TW 2009. Sensory representations in cerebellar granule cells. Curr. Opin. Neurobiol. 19:445–51
    [Google Scholar]
  8. Astorga G, Bao J, Marty A, Augustine GJ, Franconville R et al. 2015. An excitatory GABA loop operating in vivo. Front. Cell Neurosci. 9:275
    [Google Scholar]
  9. Aziz W, Wang W, Kesaf S, Mohamed AA, Fukazawa Y, Shigemoto R 2014. Distinct kinetics of synaptic structural plasticity, memory formation, and memory decay in massed and spaced learning. PNAS 111:E194–202
    [Google Scholar]
  10. Bazzigaluppi P, De Gruijl JR, van der Giessen RS, Khosrovani S, De Zeeuw CI, de Jeu MT 2012. Olivary subthreshold oscillations and burst activity revisited. Front. Neural Circuits 6:91
    [Google Scholar]
  11. Bengio Y, Courville A, Vincent P 2013. Representation learning: a review and new perspectives. IEEE Trans. Pattern Anal. Mach. Intell. 35:1798–828
    [Google Scholar]
  12. Bengio Y, Lamblin P, Popovici D, Larochelle H 2006. Greedy layer-wise training of deep networks. Proc. Int. Conf. Neural Inf. Process. Syst., 19th153–60 Cambridge, MA: MIT Press
    [Google Scholar]
  13. Bengtsson F, Jorntell H 2009. Sensory transmission in cerebellar granule cells relies on similarly coded mossy fiber inputs. PNAS 106:2389–94
    [Google Scholar]
  14. Billings G, Piasini E, Lorincz A, Nusser Z, Silver RA 2014. Network structure within the cerebellar input layer enables lossless sparse encoding. Neuron 83:960–74
    [Google Scholar]
  15. Black JE, Isaacs KR, Anderson BJ, Alcantara AA, Greenough WT 1990. Learning causes synaptogenesis, whereas motor activity causes angiogenesis, in cerebellar cortex of adult rats. PNAS 87:5568–72
    [Google Scholar]
  16. Boele HJ, Koekkoek SK, De Zeeuw CI, Ruigrok TJ 2013. Axonal sprouting and formation of terminals in the adult cerebellum during associative motor learning. J. Neurosci. 33:17897–907
    [Google Scholar]
  17. Bostan AC, Dum RP, Strick PL 2013. Cerebellar networks with the cerebral cortex and basal ganglia. Trends Cogn. Sci. 17:241–54
    [Google Scholar]
  18. Boyden ES, Katoh A, Pyle JL, Chatila TA, Tsien RW, Raymond JL 2006. Selective engagement of plasticity mechanisms for motor memory storage. Neuron 51:823–34
    [Google Scholar]
  19. Boyden ES, Katoh A, Raymond JL 2004. Cerebellum-dependent learning: the role of multiple plasticity mechanisms. Annu. Rev. Neurosci. 27:581–609
    [Google Scholar]
  20. Brandi S, Herreros I, Sanchez-Fibla M, Verschure PFMJ 2013. Learning of motor sequences based on a computational model of the cerebellum. Living Machines: Conference on Biomimetic and Biohybrid Systems NF Lepora, A Mura, HG Krapp, PFMJ Verschure, TJ Prescott 356–58 Berlin: Springer-Verlag
    [Google Scholar]
  21. Brenowitz SD, Regehr WG 2005. Associative short-term synaptic plasticity mediated by endocannabinoids. Neuron 45:419–31
    [Google Scholar]
  22. Callaway JC, Lasser-Ross N, Ross WN 1995. IPSPs strongly inhibit climbing fiber-activated [Ca2+]i increases in the dendrites of cerebellar Purkinje neurons. J. Neurosci. 15:2777–87
    [Google Scholar]
  23. Carey MR, Regehr WG 2009. Noradrenergic control of associative synaptic plasticity by selective modulation of instructive signals. Neuron 62:112–22
    [Google Scholar]
  24. Cayco-Gajic NA, Clopath C, Silver RA 2017. Sparse synaptic connectivity is required for decorrelation and pattern separation in feedforward networks. Nat. Commun. 8:1116
    [Google Scholar]
  25. Cembrowski MS, Bachman JL, Wang L, Sugino K, Shields BC, Spruston N 2016. Spatial gene-expression gradients underlie prominent heterogeneity of CA1 pyramidal neurons. Neuron 89:351–68
    [Google Scholar]
  26. Cerminara NL, Lang EJ, Sillitoe RV, Apps R 2015. Redefining the cerebellar cortex as an assembly of non-uniform Purkinje cell microcircuits. Nat. Rev. Neurosci. 16:79–93
    [Google Scholar]
  27. Chabrol FP, Arenz A, Wiechert MT, Margrie TW, DiGregorio DA 2015. Synaptic diversity enables temporal coding of coincident multisensory inputs in single neurons. Nat. Neurosci. 18:718–27
    [Google Scholar]
  28. Chadderton P, Schaefer AT, Williams SR, Margrie TW 2014. Sensory-evoked synaptic integration in cerebellar and cerebral cortical neurons. Nat. Rev. Neurosci. 15:71–83
    [Google Scholar]
  29. Chan-Palay V 1977. Cerebellar Dentate Nucleus: Organization, Cytology, and Transmitters Berlin: Springer-Verlag
    [Google Scholar]
  30. Chaumont J, Guyon N, Valera AM, Dugue GP, Popa D et al. 2013. Clusters of cerebellar Purkinje cells control their afferent climbing fiber discharge. PNAS 110:16223–28
    [Google Scholar]
  31. Chen S, Augustine GJ, Chadderton P 2016. The cerebellum linearly encodes whisker position during voluntary movement. eLife 5:e10509
    [Google Scholar]
  32. Chen S, Augustine GJ, Chadderton P 2017. Serial processing of kinematic signals by cerebellar circuitry during voluntary whisking. Nat. Commun. 8:232
    [Google Scholar]
  33. Coates A, Lee H, Ng AY 2011. An analysis of single-layer networks in unsupervised feature learning Presented at Proc. Int. Conf. Artif. Intell. Stat., 14th, Fort Lauderdale, FL. http://proceedings.mlr.press/v15/coates11a.html
    [Google Scholar]
  34. Cooke SF, Attwell PJ, Yeo CH 2004. Temporal properties of cerebellar-dependent memory consolidation. J. Neurosci. 24:2934–41
    [Google Scholar]
  35. D'Angelo E, De Zeeuw CI 2009. Timing and plasticity in the cerebellum: focus on the granular layer. Trends Neurosci 32:30–40
    [Google Scholar]
  36. De Gruijl JR, Bazzigaluppi P, de Jeu MT, De Zeeuw CI 2012. Climbing fiber burst size and olivary sub-threshold oscillations in a network setting. PLOS Comput. Biol. 8:e1002814
    [Google Scholar]
  37. De Zeeuw CI, Simpson JI, Hoogenraad CC, Galjart N, Koekkoek SK, Ruigrok TJ 1998. Microcircuitry and function of the inferior olive. Trends Neurosci 21:391–400
    [Google Scholar]
  38. Dean P, Porrill J 2011. Evaluating the adaptive-filter model of the cerebellum. J. Physiol. 589:3459–70
    [Google Scholar]
  39. Dino MR, Schuerger RJ, Liu Y, Slater NT, Mugnaini E 2000. Unipolar brush cell: a potential feedforward excitatory interneuron of the cerebellum. Neuroscience 98:625–36
    [Google Scholar]
  40. Doya K 2000. Complementary roles of basal ganglia and cerebellum in learning and motor control. Curr. Opin. Neurobiol. 10:732–39
    [Google Scholar]
  41. Dudai Y, Karni A, Born J 2015. The consolidation and transformation of memory. Neuron 88:20–32
    [Google Scholar]
  42. Dugue GP, Tihy M, Gourevitch B, Lena C 2017. Cerebellar re-encoding of self-generated head movements. eLife 6:e26179
    [Google Scholar]
  43. Ebner TJ, Hewitt AL, Popa LS 2011. What features of limb movements are encoded in the discharge of cerebellar neurons. Cerebellum 10:683–93
    [Google Scholar]
  44. Eccles JC, Llinás R, Sasaki K 1966. The excitatory synaptic action of climbing fibres on the Purkinje cells of the cerebellum. J. Physiol. 182:268–96
    [Google Scholar]
  45. Eichenbaum H 2014. Time cells in the hippocampus: a new dimension for mapping memories. Nat. Rev. Neurosci. 15:732–44
    [Google Scholar]
  46. Finnerty GT, Shadlen MN, Jazayeri M, Nobre AC, Buonomano DV 2015. Time in cortical circuits. J. Neurosci. 35:13912–16
    [Google Scholar]
  47. Gaffield MA, Christie JM 2017. Movement rate is encoded and influenced by widespread, coherent activity of cerebellar molecular layer interneurons. J. Neurosci. 37:4751–65
    [Google Scholar]
  48. Gao Z, Proietti-Onori M, Lin Z, Ten Brinke MM, Boele HJ et al. 2016. Excitatory cerebellar nucleocortical circuit provides internal amplification during associative conditioning. Neuron 89:645–57
    [Google Scholar]
  49. Gao Z, van Beugen BJ, De Zeeuw CI 2012. Distributed synergistic plasticity and cerebellar learning. Nat. Rev. Neurosci. 13:619–35
    [Google Scholar]
  50. Giocomo LM, Hasselmo ME 2008. Time constants of h current in layer II stellate cells differ along the dorsal to ventral axis of medial entorhinal cortex. J. Neurosci. 28:9414–25
    [Google Scholar]
  51. Giovannucci A, Badura A, Deverett B, Najafi F, Pereira TD et al. 2017. Cerebellar granule cells acquire a widespread predictive feedback signal during motor learning. Nat. Neurosci. 20:727–34
    [Google Scholar]
  52. Gomi H, Sun W, Finch CE, Itohara S, Yoshimi K, Thompson RF 1999. Learning induces a CDC2-related protein kinase, KKIAMRE. J. Neurosci. 19:9530–37
    [Google Scholar]
  53. Guo C, Witter L, Rudolph S, Elliott HL, Ennis KA, Regehr WG 2016. Purkinje cells directly inhibit granule cells in specialized regions of the cerebellar cortex. Neuron 91:1330–41
    [Google Scholar]
  54. Hagan MT, Demuth HB, Beale M, De Jesus O 2014. Neural Network Design Stillwater, OK: Martin Hagan, 2nd ed..
    [Google Scholar]
  55. Hawkes R 2014. Purkinje cell stripes and long-term depression at the parallel fiber-Purkinje cell synapse. Front. Syst. Neurosci. 8:41
    [Google Scholar]
  56. Haykin SS 2013. Adaptive Filter Theory London: Pearson
    [Google Scholar]
  57. Heiney SA, Kim J, Augustine GJ, Medina JF 2014. Precise control of movement kinematics by optogenetic inhibition of Purkinje cell activity. J. Neurosci. 34:2321–30
    [Google Scholar]
  58. Herzfeld DJ, Kojima Y, Soetedjo R, Shadmehr R 2015. Encoding of action by the Purkinje cells of the cerebellum. Nature 526:439–42
    [Google Scholar]
  59. Herzfeld DJ, Vaswani PA, Marko MK, Shadmehr R 2014. A memory of errors in sensorimotor learning. Science 345:1349–53
    [Google Scholar]
  60. Hikosaka O, Nakahara H, Rand MK, Sakai K, Lu X et al. 1999. Parallel neural networks for learning sequential procedures. Trends Neurosci 22:464–71
    [Google Scholar]
  61. Hoche F, Guell X, Sherman JC, Vangel MG, Schmahmann JD 2016. Cerebellar contribution to social cognition. Cerebellum 15:732–43
    [Google Scholar]
  62. Hoebeek FE, Witter L, Ruigrok TJ, De Zeeuw CI 2010. Differential olivo-cerebellar cortical control of rebound activity in the cerebellar nuclei. PNAS 107:8410–15
    [Google Scholar]
  63. Hong S, Negrello M, Junker M, Smilgin A, Thier P, De Schutter E 2016. Multiplexed coding by cerebellar Purkinje neurons. eLife 5:e13810
    [Google Scholar]
  64. Houck BD, Person AL 2014. Cerebellar loops: a review of the nucleocortical pathway. Cerebellum 13:378–85
    [Google Scholar]
  65. Houck BD, Person AL 2015. Cerebellar premotor output neurons collateralize to innervate the cerebellar cortex. J. Comp. Neurol. 523:2254–71
    [Google Scholar]
  66. Huang CC, Sugino K, Shima Y, Guo C, Bai S et al. 2013. Convergence of pontine and proprioceptive streams onto multimodal cerebellar granule cells. eLife 2:e00400
    [Google Scholar]
  67. Hull C, Regehr WG 2012. Identification of an inhibitory circuit that regulates cerebellar Golgi cell activity. Neuron 73:149–58
    [Google Scholar]
  68. Ishikawa T, Shimuta M, Hausser M 2015. Multimodal sensory integration in single cerebellar granule cells in vivo. eLife 4:e12916
    [Google Scholar]
  69. Ito M 2000. Mechanisms of motor learning in the cerebellum. Brain Res 886:237–45
    [Google Scholar]
  70. Ito M 2013. Error detection and representation in the olivo-cerebellar system. Front. Neural Circuits 7:1
    [Google Scholar]
  71. Jahnsen H 1986. Electrophysiological characteristics of neurones in the guinea-pig deep cerebellar nuclei in vitro. J. Physiol. 372:129–47
    [Google Scholar]
  72. Jelitai M, Puggioni P, Ishikawa T, Rinaldi A, Duguid I 2016. Dendritic excitation-inhibition balance shapes cerebellar output during motor behaviour. Nat. Commun. 7:13722
    [Google Scholar]
  73. Jenkins WK, Hull AW, Strait JC, Schnaufer BA, Li X 1996. Advanced Concepts in Adaptive Signal Processing Alphen aan den Rijn, Neth.: Wolters Kluwer
    [Google Scholar]
  74. Johansson F, Carlsson HA, Rasmussen A, Yeo CH, Hesslow G 2015. Activation of a temporal memory in Purkinje cells by the mGluR7 receptor. Cell Rep 13:1741–46
    [Google Scholar]
  75. Johansson F, Jirenhed DA, Rasmussen A, Zucca R, Hesslow G 2014. Memory trace and timing mechanism localized to cerebellar Purkinje cells. PNAS 111:14930–34
    [Google Scholar]
  76. Joiner WM, Smith MA 2008. Long-term retention explained by a model of short-term learning in the adaptive control of reaching. J. Neurophysiol. 100:2948–55
    [Google Scholar]
  77. Jordan M, Rumelhart D 1992. Forward models: supervised learning with a distal teacher. Cogn. Sci. 16:307–54
    [Google Scholar]
  78. Jorntell H, Ekerot CF 2006. Properties of somatosensory synaptic integration in cerebellar granule cells in vivo. J. Neurosci. 26:11786–97
    [Google Scholar]
  79. Kassardjian CD, Tan YF, Chung JY, Heskin R, Peterson MJ, Broussard DM 2005. The site of a motor memory shifts with consolidation. J. Neurosci. 25:7979–85
    [Google Scholar]
  80. Ke MC, Guo CC, Raymond JL 2009. Elimination of climbing fiber instructive signals during motor learning. Nat. Neurosci. 12:1171–79
    [Google Scholar]
  81. Kennedy A, Wayne G, Kaifosh P, Alvina K, Abbott LF, Sawtell NB 2014. A temporal basis for predicting the sensory consequences of motor commands in an electric fish. Nat. Neurosci. 17:416–22
    [Google Scholar]
  82. Khilkevich A, Halverson HE, Canton-Josh JE, Mauk MD 2016. Links between single-trial changes and learning rate in eyelid conditioning. Cerebellum 15:112–21
    [Google Scholar]
  83. Kimpo RR, Rinaldi JM, Kim CK, Payne HL, Raymond JL 2014. Gating of neural error signals during motor learning. eLife 3:e02076
    [Google Scholar]
  84. Kleim JA, Freeman JH Jr., Bruneau R, Nolan BC, Cooper NR et al. 2002. Synapse formation is associated with memory storage in the cerebellum. PNAS 99:13228–31
    [Google Scholar]
  85. Kleine JF, Guan Y, Buttner U 2003. Saccade-related neurons in the primate fastigial nucleus: What do they encode. J. Neurophysiol. 90:3137–54
    [Google Scholar]
  86. Knogler LD, Markov DA, Dragomir EI, Stih V, Portugues R 2017. Sensorimotor representations in cerebellar granule cells in larval zebrafish are dense, spatially organized, and non-temporally patterned. Curr. Biol. 27:1288–302
    [Google Scholar]
  87. Knudsen EI 1994. Supervised learning in the brain. J. Neurosci. 14:3985–97
    [Google Scholar]
  88. Kording KP, Tenenbaum JB, Shadmehr R 2007. The dynamics of memory as a consequence of optimal adaptation to a changing body. Nat. Neurosci. 10:779–86
    [Google Scholar]
  89. Koziol LF, Budding D, Andreasen N, D'Arrigo S, Bulgheroni S et al. 2014. Consensus paper: the cerebellum's role in movement and cognition. Cerebellum 13:151–77
    [Google Scholar]
  90. Kukushkin NV, Carew TJ 2017. Memory takes time. Neuron 95:259–79
    [Google Scholar]
  91. Laurens J, Heiney SA, Kim G, Blazquez PM 2013. Cerebellar cortex granular layer interneurons in the macaque monkey are functionally driven by mossy fiber pathways through net excitation or inhibition. PLOS ONE 8:e82239
    [Google Scholar]
  92. Lawrenson CL, Watson TC, Apps R 2016. Transmission of predictable sensory signals to the cerebellum via climbing fiber pathways is gated during exploratory behavior. J. Neurosci. 36:7841–51
    [Google Scholar]
  93. LeCun Y, Bengio Y, Hinton G 2015. Deep learning. Nature 521:436–44
    [Google Scholar]
  94. Lee KH, Mathews PJ, Reeves AM, Choe KY, Jami SA et al. 2015. Circuit mechanisms underlying motor memory formation in the cerebellum. Neuron 86:529–40
    [Google Scholar]
  95. Lefler Y, Yarom Y, Uusisaari MY 2014. Cerebellar inhibitory input to the inferior olive decreases electrical coupling and blocks subthreshold oscillations. Neuron 81:1389–400
    [Google Scholar]
  96. Lefort JM, Rochefort C, Rondi-Reig L. 2015. Cerebellar contribution to spatial navigation: new insights into potential mechanisms. Cerebellum 14:59–62
    [Google Scholar]
  97. Leggio M, Molinari M 2015. Cerebellar sequencing: a trick for predicting the future. Cerebellum 14:35–38
    [Google Scholar]
  98. Li JX, Medina JF, Frank LM, Lisberger SG 2011. Acquisition of neural learning in cerebellum and cerebral cortex for smooth pursuit eye movements. J. Neurosci. 31:12716–26
    [Google Scholar]
  99. Lisberger SG, Fuchs AF 1978. Role of primate flocculus during rapid behavioral modification of vestibuloocular reflex. II. Mossy fiber firing patterns during horizontal head rotation and eye movement. J. Neurophysiol. 41:764–77
    [Google Scholar]
  100. Lisberger SG, Sejnowski TJ 1992. Motor learning in a recurrent network model based on the vestibulo-ocular reflex. Nature 360:159–61
    [Google Scholar]
  101. Litwin-Kumar A, Harris KD, Axel R, Sompolinsky H, Abbott LF 2017. Optimal degrees of synaptic connectivity. Neuron 93:1153–64.e7
    [Google Scholar]
  102. Loewenstein Y, Mahon S, Chadderton P, Kitamura K, Sompolinsky H et al. 2005. Bistability of cerebellar Purkinje cells modulated by sensory stimulation. Nat. Neurosci. 8:202–11
    [Google Scholar]
  103. Maex R, Gutkin B 2017. Temporal integration and 1/f power scaling in a circuit model of cerebellar interneurons. J. Neurophysiol. 118:471–85
    [Google Scholar]
  104. Marblestone AH, Wayne G, Kording KP 2016. Toward an integration of deep learning and neuroscience. Front. Comput. Neurosci. 10:94
    [Google Scholar]
  105. Marr D 1969. A theory of cerebellar cortex. J. Physiol. 202:437–70
    [Google Scholar]
  106. Maruta J, Hensbroek RA, Simpson JI 2007. Intraburst and interburst signaling by climbing fibers. J. Neurosci. 27:11263–70
    [Google Scholar]
  107. Mathy A, Ho SS, Davie JT, Duguid IC, Clark BA, Häusser M 2009. Encoding of oscillations by axonal bursts in inferior olive neurons. Neuron 62:388–99
    [Google Scholar]
  108. Mauk MD, Garcia KS, Medina JF, Steele PM 1998. Does cerebellar LTD mediate motor learning? Toward a resolution without a smoking gun. Neuron 20:359–62
    [Google Scholar]
  109. McElvain LE, Bagnall MW, Sakatos A, du Lac S 2010. Bidirectional plasticity gated by hyperpolarization controls the gain of postsynaptic firing responses at central vestibular nerve synapses. Neuron 68:763–75
    [Google Scholar]
  110. Medina JF 2011. The multiple roles of Purkinje cells in sensori-motor calibration: to predict, teach and command. Curr. Opin. Neurobiol. 21:616–22
    [Google Scholar]
  111. Medina JF, Garcia KS, Nores WL, Taylor NM, Mauk MD 2000a. Timing mechanisms in the cerebellum: testing predictions of a large-scale computer simulation. J. Neurosci. 20:5516–25
    [Google Scholar]
  112. Medina JF, Lisberger SG 2007. Variation, signal, and noise in cerebellar sensory-motor processing for smooth-pursuit eye movements. J. Neurosci. 27:6832–42
    [Google Scholar]
  113. Medina JF, Lisberger SG 2008. Links from complex spikes to local plasticity and motor learning in the cerebellum of awake-behaving monkeys. Nat. Neurosci. 11:1185–92
    [Google Scholar]
  114. Medina JF, Lisberger SG 2009. Encoding and decoding of learned smooth-pursuit eye movements in the floccular complex of the monkey cerebellum. J. Neurophysiol. 102:2039–54
    [Google Scholar]
  115. Medina JF, Mauk MD 1999. Simulations of cerebellar motor learning: computational analysis of plasticity at the mossy fiber to deep nucleus synapse. J. Neurosci. 19:7140–51
    [Google Scholar]
  116. Medina JF, Mauk MD 2000. Computer simulation of cerebellar information processing. Nat. Neurosci. 3:Suppl.1205–11
    [Google Scholar]
  117. Medina JF, Nores WL, Ohyama T, Mauk MD 2000b. Mechanisms of cerebellar learning suggested by eyelid conditioning. Curr. Opin. Neurobiol. 10:717–24
    [Google Scholar]
  118. Medina JF, Repa JC, Mauk MD, LeDoux JE 2002. Parallels between cerebellum- and amygdala-dependent conditioning. Nat. Rev. Neurosci. 3:122–31
    [Google Scholar]
  119. Medsker L, Jain LC 1999. Recurrent Neural Networks: Design and Applications Boca Raton, FL: CRC Press
    [Google Scholar]
  120. Miall RC, Weir DJ, Wolpert DM, Stein JF 1993. Is the cerebellum a Smith Predictor. J. Mot. Behav. 25:203–16
    [Google Scholar]
  121. Miles FA, Lisberger SG 1981. Plasticity in the vestibulo-ocular reflex: a new hypothesis. Annu. Rev. Neurosci. 4:273–99
    [Google Scholar]
  122. Minsky ML 1963. Steps toward artificial intelligence. Computers and Thought EA Feigenbaum, J Feldman 406–50 New York: McGraw-Hill
    [Google Scholar]
  123. Mittleman G, Goldowitz D, Heck DH, Blaha CD 2008. Cerebellar modulation of frontal cortex dopamine efflux in mice: relevance to autism and schizophrenia. Synapse 62:544–50
    [Google Scholar]
  124. Mugnaini E, Floris A 1994. The unipolar brush cell: a neglected neuron of the mammalian cerebellar cortex. J. Comp. Neurol. 339:174–80
    [Google Scholar]
  125. Najafi F, Giovannucci A, Wang SS-H, Medina JF 2014a. Coding of stimulus strength via analog calcium signals in Purkinje cell dendrites of awake mice. eLife 3:e03663
    [Google Scholar]
  126. Najafi F, Giovannucci A, Wang SS-H, Medina JF 2014b. Sensory-driven enhancement of calcium signals in individual Purkinje cell dendrites of awake mice. Cell Rep 6:792–98
    [Google Scholar]
  127. Najafi F, Medina JF 2013. Beyond “all-or-nothing” climbing fibers: graded representation of teaching signals in Purkinje cells. Front. Neural Circuits 7:115
    [Google Scholar]
  128. Nguyen-Vu TD, Kimpo RR, Rinaldi JM, Kohli A, Zeng H et al. 2013. Cerebellar Purkinje cell activity drives motor learning. Nat. Neurosci. 16:1734–36
    [Google Scholar]
  129. Nguyen-Vu TDB, Zhao GQ, Lahiri S, Kimpo RR, Lee H et al. 2017. A saturation hypothesis to explain both enhanced and impaired learning with enhanced plasticity. eLife 6:e20147
    [Google Scholar]
  130. O'Doherty JP, Dayan P, Friston K, Critchley H, Dolan RJ 2003. Temporal difference models and reward-related learning in the human brain. Neuron 38:329–37
    [Google Scholar]
  131. Ohmae S, Medina JF 2015. Climbing fibers encode a temporal-difference prediction error during cerebellar learning in mice. Nat. Neurosci. 18:1798–803
    [Google Scholar]
  132. Ozden I, Dombeck DA, Hoogland TM, Tank DW, Wang SS-H 2012. Widespread state-dependent shifts in cerebellar activity in locomoting mice. PLOS ONE 7:e42650
    [Google Scholar]
  133. Park SM, Tara E, Khodakhah K 2012. Efficient generation of reciprocal signals by inhibition. J. Neurophysiol. 107:2453–62
    [Google Scholar]
  134. Penhune VB, Steele CJ 2012. Parallel contributions of cerebellar, striatal and M1 mechanisms to motor sequence learning. Behav. Brain Res. 226:579–91
    [Google Scholar]
  135. Perciavalle V, Apps R, Bracha V, Delgado-Garcia JM, Gibson AR et al. 2013. Consensus paper: current views on the role of cerebellar interpositus nucleus in movement control and emotion. Cerebellum 12:738–57
    [Google Scholar]
  136. Person AL, Raman IM 2010. Deactivation of L-type Ca current by inhibition controls LTP at excitatory synapses in the cerebellar nuclei. Neuron 66:550–59
    [Google Scholar]
  137. Person AL, Raman IM 2011. Purkinje neuron synchrony elicits time-locked spiking in the cerebellar nuclei. Nature 481:502–5
    [Google Scholar]
  138. Pitkow X, Meister M 2012. Decorrelation and efficient coding by retinal ganglion cells. Nat. Neurosci. 15:628–35
    [Google Scholar]
  139. Popa LS, Streng ML, Hewitt AL, Ebner TJ 2016. The errors of our ways: understanding error representations in cerebellar-dependent motor learning. Cerebellum 15:93–103
    [Google Scholar]
  140. Porrill J, Dean P 2007. Recurrent cerebellar loops simplify adaptive control of redundant and nonlinear motor systems. Neural Comput 19:170–93
    [Google Scholar]
  141. Porrill J, Dean P, Anderson SR 2013. Adaptive filters and internal models: multilevel description of cerebellar function. Neural Netw 47:134–49
    [Google Scholar]
  142. Porrill J, Dean P, Stone JV 2004. Recurrent cerebellar architecture solves the motor-error problem. Proc. Biol. Sci. 271:789–96
    [Google Scholar]
  143. Pouget A, Snyder LH 2000. Computational approaches to sensorimotor transformations. Nat. Neurosci. 3:Suppl.1192–98
    [Google Scholar]
  144. Powell K, Mathy A, Duguid I, Hausser M 2015. Synaptic representation of locomotion in single cerebellar granule cells. eLife 4:e07290
    [Google Scholar]
  145. Raymond JL, Lisberger SG 1998. Neural learning rules for the vestibulo-ocular reflex. J. Neurosci. 18:9112–29
    [Google Scholar]
  146. Rieubland S, Roth A, Hausser M 2014. Structured connectivity in cerebellar inhibitory networks. Neuron 81:913–29
    [Google Scholar]
  147. Rossert C, Dean P, Porrill J 2015. At the edge of chaos: how cerebellar granular layer network dynamics can provide the basis for temporal filters. PLOS Comput. Biol. 11:e1004515
    [Google Scholar]
  148. Rossert C, Solinas S, D'Angelo E, Dean P, Porrill J 2014. Model cerebellar granule cells can faithfully transmit modulated firing rate signals. Front. Cell Neurosci. 8:304
    [Google Scholar]
  149. Rossi DJ, Alford S, Mugnaini E, Slater NT 1995. Properties of transmission at a giant glutamatergic synapse in cerebellum: the mossy fiber-unipolar brush cell synapse. J. Neurophysiol. 74:24–42
    [Google Scholar]
  150. Sawtell NB 2010. Multimodal integration in granule cells as a basis for associative plasticity and sensory prediction in a cerebellum-like circuit. Neuron 66:573–84
    [Google Scholar]
  151. Schaul T, Zhang S, LeCun Y 2012. No more pesky learning rates. arXiv:1206.1106 [stat.ML]
  152. Schonewille M, Gao Z, Boele HJ, Veloz MF, Amerika WE et al. 2011. Reevaluating the role of LTD in cerebellar motor learning. Neuron 70:43–50
    [Google Scholar]
  153. Schonewille M, Khosrovani S, Winkelman BH, Hoebeek FE, De Jeu MT et al. 2006. Purkinje cells in awake behaving animals operate at the upstate membrane potential. Nat. Neurosci. 9:459–61
    [Google Scholar]
  154. Schultz W 1998. Predictive reward signal of dopamine neurons. J. Neurophysiol. 80:1–27
    [Google Scholar]
  155. Schultz W, Dayan P, Montague PR 1997. A neural substrate of prediction and reward. Science 275:1593–99
    [Google Scholar]
  156. Seymour B, O'Doherty JP, Dayan P, Koltzenburg M, Jones AK et al. 2004. Temporal difference models describe higher-order learning in humans. Nature 429:664–67
    [Google Scholar]
  157. Sgritta M, Locatelli F, Soda T, Prestori F, D'Angelo EU 2017. Hebbian spike-timing dependent plasticity at the cerebellar input stage. J. Neurosci. 37:2809–23
    [Google Scholar]
  158. Shidara M, Kawano K, Gomi H, Kawato M 1993. Inverse-dynamics model eye movement control by Purkinje cells in the cerebellum. Nature 365:50–52
    [Google Scholar]
  159. Shutoh F, Ohki M, Kitazawa H, Itohara S, Nagao S 2006. Memory trace of motor learning shifts transsynaptically from cerebellar cortex to nuclei for consolidation. Neuroscience 139:767–77
    [Google Scholar]
  160. Simpson JI, Wylie DR, De Zeeuw CI 1996. On climbing fiber signals and their consequence(s). Behav. Brain Sci. 19:384–98
    [Google Scholar]
  161. Sokolov AA, Miall RC, Ivry RB 2017. The cerebellum: adaptive prediction for movement and cognition. Trends Cogn. Sci. 21:313–32
    [Google Scholar]
  162. Soltesz I 2005. Diversity in the Neuronal Machine: Order and Variability in Interneuronal Microcircuits Oxford, UK: Oxford Univ. Press
    [Google Scholar]
  163. Spanne A, Jorntell H 2013. Processing of multi-dimensional sensorimotor information in the spinal and cerebellar neuronal circuitry: a new hypothesis. PLOS Comput. Biol. 9:e1002979
    [Google Scholar]
  164. Spanne A, Jorntell H 2015. Questioning the role of sparse coding in the brain. Trends Neurosci 38:417–27
    [Google Scholar]
  165. Squire LR, Genzel L, Wixted JT, Morris RG 2015. Memory consolidation. Cold Spring Harb. Perspect. Biol. 7:a021766
    [Google Scholar]
  166. Steuber V, Jaeger D 2013. Modeling the generation of output by the cerebellar nuclei. Neural Netw 47:112–19
    [Google Scholar]
  167. Strata P 2015. The emotional cerebellum. Cerebellum 14:570–77
    [Google Scholar]
  168. Sun Z, Smilgin A, Junker M, Dicke PW, Thier P 2017. The same oculomotor vermal Purkinje cells encode the different kinematics of saccades and of smooth pursuit eye movements. Sci. Rep. 7:40613
    [Google Scholar]
  169. Sutton MA, Carew TJ 2000. Parallel molecular pathways mediate expression of distinct forms of intermediate-term facilitation at tail sensory-motor synapses in Aplysia. Neuron 26:219–31
    [Google Scholar]
  170. Sutton RS 1984. Temporal credit assignment in reinforcement learning PhD Thesis, Univ. Mass Amherst:
    [Google Scholar]
  171. Sutton RS 1988. Learning to predict by the methods of temporal differences. Mach. Learn. 3:9–44
    [Google Scholar]
  172. Suvrathan A, Payne HL, Raymond JL 2016. Timing rules for synaptic plasticity matched to behavioral function. Neuron 92:959–67
    [Google Scholar]
  173. Tang T, Xiao J, Suh CY, Burroughs A, Cerminara NL et al. 2017. Heterogeneity of Purkinje cell simple spike-complex spike interactions: zebrin- and non-zebrin-related variations. J. Physiol. 595:5341–57
    [Google Scholar]
  174. ten Brinke MM, Boele HJ, Spanke JK, Potters JW, Kornysheva K et al. 2015. Evolving models of Pavlovian conditioning: cerebellar cortical dynamics in awake behaving mice. Cell Rep 13:1977–88
    [Google Scholar]
  175. ten Brinke MM, Heiney SA, Wang X, Proietti-Onori M, Boele HJ et al. 2017. Dynamic modulation of activity in cerebellar nuclei neurons during Pavlovian eyeblink conditioning in mice. eLife 6:e28132
    [Google Scholar]
  176. Titley HK, Brunel N, Hansel C 2017. Toward a neurocentric view of learning. Neuron 95:19–32
    [Google Scholar]
  177. Tokuda IT, Hoang H, Schweighofer N, Kawato M 2013. Adaptive coupling of inferior olive neurons in cerebellar learning. Neural Netw 47:42–50
    [Google Scholar]
  178. Trott JR, Apps R, Armstrong DM 1998a. Zonal organization of cortico-nuclear and nucleo-cortical projections of the paramedian lobule of the cat cerebellum. 1. The C1 zone. Exp. Brain Res. 118:298–315
    [Google Scholar]
  179. Trott JR, Apps R, Armstrong DM 1998b. Zonal organization of cortico-nuclear and nucleo-cortical projections of the paramedian lobule of the cat cerebellum. 2. The C2 zone. Exp. Brain Res. 118:316–30
    [Google Scholar]
  180. Tsutsumi S, Yamazaki M, Miyazaki T, Watanabe M, Sakimura K et al. 2015. Structure-function relationships between aldolase C/zebrin II expression and complex spike synchrony in the cerebellum. J. Neurosci. 35:843–52
    [Google Scholar]
  181. Turecek J, Jackman SL, Regehr WG 2016. Synaptic specializations support frequency-independent Purkinje cell output from the cerebellar cortex. Cell Rep 17:3256–68
    [Google Scholar]
  182. Turecek J, Jackman SL, Regehr WG 2017. Synaptotagmin 7 confers frequency invariance onto specialized depressing synapses. Nature 551:503–6
    [Google Scholar]
  183. Urbano FJ, Simpson JI, Llinas RR 2006. Somatomotor and oculomotor inferior olivary neurons have distinct electrophysiological phenotypes. PNAS 103:16550–55
    [Google Scholar]
  184. Valera AM, Binda F, Pawlowski SA, Dupont JL, Casella JF et al. 2016. Stereotyped spatial patterns of functional synaptic connectivity in the cerebellar cortex. eLife 5:e09862
    [Google Scholar]
  185. van Beugen BJ, Gao Z, Boele HJ, Hoebeek F, De Zeeuw CI 2013. High frequency burst firing of granule cells ensures transmission at the parallel fiber to Purkinje cell synapse at the cost of temporal coding. Front. Neural Circuits 7:95
    [Google Scholar]
  186. van Dorp S, De Zeeuw CI 2015. Forward signaling by unipolar brush cells in the mouse cerebellum. Cerebellum 14:528–33
    [Google Scholar]
  187. van Vreeswijk C, Sompolinsky H 1996. Chaos in neuronal networks with balanced excitatory and inhibitory activity. Science 274:1724–26
    [Google Scholar]
  188. Wadiche JI, Jahr CE 2005. Patterned expression of Purkinje cell glutamate transporters controls synaptic plasticity. Nat. Neurosci. 8:1329–34
    [Google Scholar]
  189. Wagner MJ, Kim TH, Savall J, Schnitzer MJ, Luo L 2017. Cerebellar granule cells encode the expectation of reward. Nature 544:96–100
    [Google Scholar]
  190. Walter JT, Khodakhah K 2006. The linear computational algorithm of cerebellar Purkinje cells. J. Neurosci. 26:12861–72
    [Google Scholar]
  191. Walter JT, Khodakhah K 2009. The advantages of linear information processing for cerebellar computation. PNAS 106:4471–76
    [Google Scholar]
  192. Wang SS-H, Denk W, Häusser M 2000. Coincidence detection in single dendritic spines mediated by calcium release. Nat. Neurosci. 3:1266–73
    [Google Scholar]
  193. Wang W, Nakadate K, Masugi-Tokita M, Shutoh F, Aziz W et al. 2014. Distinct cerebellar engrams in short-term and long-term motor learning. PNAS 111:E188–93
    [Google Scholar]
  194. Wei K, Kording K 2009. Relevance of error: What drives motor adaptation. J. Neurophysiol. 101:655–64
    [Google Scholar]
  195. Witter L, Rudolph S, Pressler RT, Lahlaf SI, Regehr WG 2016. Purkinje cell collaterals enable output signals from the cerebellar cortex to feed back to Purkinje cells and interneurons. Neuron 91:312–19
    [Google Scholar]
  196. Wolpert DM, Miall RC, Kawato M 1998. Internal models in the cerebellum. Trends Cogn. Sci. 2:338–47
    [Google Scholar]
  197. Xiao J, Cerminara NL, Kotsurovskyy Y, Aoki H, Burroughs A et al. 2014. Systematic regional variations in Purkinje cell spiking patterns. PLOS ONE 9:e105633
    [Google Scholar]
  198. Yamaguchi K, Itohara S, Ito M 2016. Reassessment of long-term depression in cerebellar Purkinje cells in mice carrying mutated GluA2 C terminus. PNAS 113:10192–97
    [Google Scholar]
  199. Yang Y, Lisberger SG 2010. Learning on multiple timescales in smooth pursuit eye movements. J. Neurophysiol. 104:2850–62
    [Google Scholar]
  200. Yang Y, Lisberger SG 2014a. Purkinje-cell plasticity and cerebellar motor learning are graded by complex-spike duration. Nature 510:529–32
    [Google Scholar]
  201. Yang Y, Lisberger SG 2014b. Role of plasticity at different sites across the time course of cerebellar motor learning. J. Neurosci. 34:7077–90
    [Google Scholar]
  202. Yang Y, Lisberger SG 2017. Modulation of complex-spike duration and probability during cerebellar motor learning in visually guided smooth-pursuit eye movements of monkeys. eNeuro 4:ENEURO.0115–17.2017
    [Google Scholar]
  203. Yassa MA, Stark CE 2011. Pattern separation in the hippocampus. Trends Neurosci 34:515–25
    [Google Scholar]
  204. Zheng N, Raman IM 2010. Synaptic inhibition, excitation, and plasticity in neurons of the cerebellar nuclei. Cerebellum 9:56–66
    [Google Scholar]
  205. Zhou H, Lin Z, Voges K, Ju C, Gao Z et al. 2014. Cerebellar modules operate at different frequencies. eLife 3:e02536
    [Google Scholar]
  206. Zhou H, Voges K, Lin Z, Ju C, Schonewille M 2015. Differential Purkinje cell simple spike activity and pausing behavior related to cerebellar modules. J. Neurophysiol. 113:2524–36
    [Google Scholar]
/content/journals/10.1146/annurev-neuro-080317-061948
Loading
/content/journals/10.1146/annurev-neuro-080317-061948
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error