1932

Abstract

The thalamus has long been suspected to have an important role in cognition, yet recent theories have favored a more corticocentric view. According to this view, the thalamus is an excitatory feedforward relay to or between cortical regions, and cognitively relevant computations are exclusively cortical. Here, we review anatomical, physiological, and behavioral studies along evolutionary and theoretical dimensions, arguing for essential and unique thalamic computations in cognition. Considering their architectural features as well as their ability to initiate, sustain, and switch cortical activity, thalamic circuits appear uniquely suited for computing contextual signals that rapidly reconfigure task-relevant cortical representations. We introduce a framework that formalizes this notion, show its consistency with several findings, and discuss its prediction of thalamic roles in perceptual inference and behavioral flexibility. Overall, our framework emphasizes an expanded view of the thalamus in cognitive computations and provides a roadmap to test several of its theoretical and experimental predictions.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-neuro-080317-062144
2018-07-08
2024-06-22
Loading full text...

Full text loading...

/deliver/fulltext/neuro/41/1/annurev-neuro-080317-062144.html?itemId=/content/journals/10.1146/annurev-neuro-080317-062144&mimeType=html&fmt=ahah

Literature Cited

  1. Aboitiz F, Montiel J, Morales D, Concha M 2002. Evolutionary divergence of the reptilian and the mammalian brains: considerations on connectivity and development. Brain Res. Brain Res. Rev. 39:141–53
    [Google Scholar]
  2. Bar M 2004. Visual objects in context. Nat. Rev. Neurosci. 5:617–29
    [Google Scholar]
  3. Bar M, Ullman S 1996. Spatial context in recognition. Perception 25:343–52
    [Google Scholar]
  4. Bastos AM, Usrey WM, Adams RA, Mangun GR, Fries P, Friston KJ 2012. Canonical microcircuits for predictive coding. Neuron 76:695–711
    [Google Scholar]
  5. Berger TK, Silberberg G, Perin R, Markram H 2010. Brief bursts self-inhibit and correlate the pyramidal network. PLOS Biol 8:e1000473
    [Google Scholar]
  6. Biederman I, Mezzanotte RJ, Rabinowitz JC 1982. Scene perception: detecting and judging objects undergoing relational violations. Cogn. Psychol. 14:143–77
    [Google Scholar]
  7. Bisley JW, Goldberg ME 2003. The role of the parietal cortex in the neural processing of saccadic eye movements. Adv. Neurol. 93:141–57
    [Google Scholar]
  8. Blasdel GG, Lund JS 1983. Termination of afferent axons in macaque striate cortex. J. Neurosci. 3:1389–413
    [Google Scholar]
  9. Bolam JP, Bevan MD 2001. Microcircuits of the striatum. Basal Ganglia and Thalamus in Health and Movement Disorders K Kultas-Ilinsky, IA Ilinsky 29–39 Boston: Springer
    [Google Scholar]
  10. Bold EL, Castro AJ, Neafsey EJ 1984. Cytoarchitecture of the dorsal thalamus of the rat. Brain Res. Bull. 12:521–27
    [Google Scholar]
  11. Butler AB 2008. Evolution of brains, cognition, and consciousness. Brain Res. Bull. 75:442–49
    [Google Scholar]
  12. Butler AB 2009. Evolution of the dorsal thalamus. Encyclopedia of Neuroscience MD Binder, N Hirokawa, U Windhorst 1346–51 Berlin: Springer
    [Google Scholar]
  13. Butler AB, Hodos W 2005. Comparative Vertebrate Neuroanatomy: Evolution and Adaptation Hoboken, NJ: Wiley. , 2nd ed..
    [Google Scholar]
  14. Butts DA, Desbordes G, Weng C, Jin J, Alonso J-M, Stanley GB 2010. The episodic nature of spike trains in the early visual pathway. J. Neurophysiol. 104:3371–87
    [Google Scholar]
  15. Cadieu CF, Hong H, Yamins DLK, Pinto N, Ardila D et al. 2014. Deep neural networks rival the representation of primate IT cortex for core visual object recognition. PLOS Comput. Biol. 10:e1003963
    [Google Scholar]
  16. Chalupa LM, Werner JS 2003. The Visual Neurosciences Cambridge, MA: MIT Press
    [Google Scholar]
  17. Crandall SR, Cruikshank SJ, Connors BW 2015. A corticothalamic switch: controlling the thalamus with dynamic synapses. Neuron 86:768–82
    [Google Scholar]
  18. Curry MJ 1972. The exteroceptive properties of neurones in the somatic part of the posterior group (PO). Brain Res 44:439–62
    [Google Scholar]
  19. De Valois RL, De Valois KK 1980. Spatial vision. Annu. Rev. Psychol. 31:309–41
    [Google Scholar]
  20. den Ouden HEM, Kok P, de Lange FP 2012. How prediction errors shape perception, attention, and motivation. Front. Psychol. 3:548
    [Google Scholar]
  21. DiCarlo JJ, Cox DD 2007. Untangling invariant object recognition. Trends Cogn. Sci. 11:333–41
    [Google Scholar]
  22. DiCarlo JJ, Zoccolan D, Rust NC 2012. How does the brain solve visual object recognition. Neuron 73:415–34
    [Google Scholar]
  23. Douglas RJ, Martin KAC 2004. Neuronal circuits of the neocortex. Annu. Rev. Neurosci. 27:419–51
    [Google Scholar]
  24. Emery NJ, Clayton NS 2004. The mentality of crows: convergent evolution of intelligence in corvids and apes. Science 306:1903–7
    [Google Scholar]
  25. Felleman DJ, Van Essen DC 1991. Distributed hierarchical processing in the primate cerebral cortex. Cereb. Cortex 1:1–47
    [Google Scholar]
  26. Fino E, Yuste R 2011. Dense inhibitory connectivity in neocortex. Neuron 69:1188–203
    [Google Scholar]
  27. Fiser A, Mahringer D, Oyibo HK, Petersen AV, Leinweber M, Keller GB 2016. Experience-dependent spatial expectations in mouse visual cortex. Nat. Neurosci. 19:1658–64
    [Google Scholar]
  28. Friston K, Kiebel S 2009. Predictive coding under the free-energy principle. Philos. Trans. R. Soc. B 364:1211–21
    [Google Scholar]
  29. Fuhrmann G, Segev I, Markram H, Tsodyks M 2002. Coding of temporal information by activity-dependent synapses. J. Neurophysiol. 87:140–48
    [Google Scholar]
  30. Gaudry KS, Reinagel P 2008. Information measure for analyzing specific spiking patterns and applications to LGN bursts. Network 19:69–94
    [Google Scholar]
  31. Grant E, Hoerder-Suabedissen A, Molnár Z 2012. Development of the corticothalamic projections. Front. Neurosci. 6:53
    [Google Scholar]
  32. Griffiths TL, Tenenbaum JB 2006. Optimal predictions in everyday cognition. Psychol. Sci. 17:767–73
    [Google Scholar]
  33. Guido W, Lu SM, Vaughan JW, Godwin DW, Sherman SM 1995. Receiver operating characteristic (ROC) analysis of neurons in the cat's lateral geniculate nucleus during tonic and burst response mode. Vis. Neurosci. 12:723–41
    [Google Scholar]
  34. Guillery RW, Sherman SM 2002. Thalamic relay functions and their role in corticocortical communication: generalizations from the visual system. Neuron 33:163–75
    [Google Scholar]
  35. Haefner RM, Berkes P, Fiser J 2016. Perceptual decision-making as probabilistic inference by neural sampling. Neuron 90:649–60
    [Google Scholar]
  36. Halassa MM, Acsady L 2016. Thalamic inhibition: diverse sources, diverse scales. Trends Neurosci 39:680–93
    [Google Scholar]
  37. Hanks TD, Kopec CD, Brunton BW, Duan CA, Erlich JC, Brody CD 2015. Distinct relationships of parietal and prefrontal cortices to evidence accumulation. Nature 520:220–23
    [Google Scholar]
  38. Harris KD, Mrsic-Flogel TD 2013. Cortical connectivity and sensory coding. Nature 503:51–58
    [Google Scholar]
  39. Harris KD, Shepherd GMG 2015. The neocortical circuit: themes and variations. Nat. Neurosci. 18:170–81
    [Google Scholar]
  40. Hassabis D, Kumaran D, Summerfield C, Botvinick M 2017. Neuroscience-inspired artificial intelligence. Neuron 95:245–58
    [Google Scholar]
  41. Hellier JL 2014. The Brain, the Nervous System, and Their Diseases, Volume 1: A–F Santa Barbara, CA: ABC-CLIO
    [Google Scholar]
  42. Hubel DH, Wiesel TN 1962. Receptive fields, binocular interaction and functional architecture in the cat's visual cortex. J. Physiol. 160:106–54
    [Google Scholar]
  43. Ibos G, Duhamel J-R, Ben Hamed S 2013. A functional hierarchy within the parietofrontal network in stimulus selection and attention control. J. Neurosci. 33:8359–69
    [Google Scholar]
  44. Jahnsen H, Llinás R 1984. Ionic basis for the electro-responsiveness and oscillatory properties of guinea-pig thalamic neurones in vitro. J. Physiol. 349:227–47
    [Google Scholar]
  45. Jarvis ED, Güntürkün O, Bruce L, Csillag A, Karten H et al. 2005. Avian brains and a new understanding of vertebrate brain evolution. Nat. Rev. Neurosci. 6:151–59
    [Google Scholar]
  46. Johnson-Laird PN 2010. Mental models and human reasoning. PNAS 107:18243–50
    [Google Scholar]
  47. Jones EG 1998. Viewpoint: the core and matrix of thalamic organization. Neuroscience 85:331–45
    [Google Scholar]
  48. Jones EG 2002. Thalamic circuitry and thalamocortical synchrony. Philos. Trans. R. Soc. B 357:1659–73
    [Google Scholar]
  49. Jones EG 2007. The Thalamus Cambridge, MA: Cambridge Univ. Press. , 2nd ed..
    [Google Scholar]
  50. Jordan MI, Rumelhart DE 1992. Forward models: supervised learning with a distal teacher. Cogn. Sci. 16:307–54
    [Google Scholar]
  51. Kalman M 2009. Evolution of the brain: at the reptile-bird transition. Encyclopedia of Neuroscience MD Binder, N Hirokawa, U Windhorst 1305–12 Berlin: Springer
    [Google Scholar]
  52. Kanai R, Komura Y, Shipp S, Friston K 2015. Cerebral hierarchies: predictive processing, precision and the pulvinar. Philos. Trans. R. Soc. B 370:20140169
    [Google Scholar]
  53. Karnani MM, Jackson J, Ayzenshtat I, Tucciarone J, Manoocheri K et al. 2016. Cooperative subnetworks of molecularly similar interneurons in mouse neocortex. Neuron 90:86–100
    [Google Scholar]
  54. Kiani R, Shadlen MN 2009. Representation of confidence associated with a decision by neurons in the parietal cortex. Science 324:759–64
    [Google Scholar]
  55. Kim J, Kim Y, Nakajima R, Shin A, Jeong M et al. 2017. Inhibitory basal ganglia inputs induce excitatory motor signals in the thalamus. Neuron 95:1181–96
    [Google Scholar]
  56. Ko H, Hofer SB, Pichler B, Buchanan KA, Sjostrom PJ, Mrsic-Flogel TD 2011. Functional specificity of local synaptic connections in neocortical networks. Nature 473:87–91
    [Google Scholar]
  57. Kok P, Brouwer GJ, van Gerven MAJ, de Lange FP 2013. Prior expectations bias sensory representations in visual cortex. J. Neurosci. 33:16275–84
    [Google Scholar]
  58. Komura Y, Nikkuni A, Hirashima N, Uetake T, Miyamoto A 2013. Responses of pulvinar neurons reflect a subject's confidence in visual categorization. Nat. Neurosci. 16:749–55
    [Google Scholar]
  59. Kuramoto E, Pan S, Furuta T, Tanaka YR, Iwai H et al. 2017. Individual mediodorsal thalamic neurons project to multiple areas of the rat prefrontal cortex: a single neuron-tracing study using virus vectors. J. Comp. Neurol. 525:166–85
    [Google Scholar]
  60. LeCun Y, Bengio Y, Hinton G 2015. Deep learning. Nature 521:436–44
    [Google Scholar]
  61. Lee CK, Huguenard JR 2011. Martinotti cells: community organizers. Neuron 69:1042–45
    [Google Scholar]
  62. Lee S, Ahmed T, Lee S, Kim H, Choi S et al. 2011. Bidirectional modulation of fear extinction by mediodorsal thalamic firing in mice. Nat. Neurosci. 15:308–14
    [Google Scholar]
  63. Lee TS 2015. The visual system's internal model of the world. Proc. IEEE. Inst. Electr. Electron. Eng. 103:1359–78
    [Google Scholar]
  64. Lee TS, Mumford D 2003. Hierarchical Bayesian inference in the visual cortex. J. Opt. Soc. Am. A. Opt. Image Sci. Vis. 20:1434–48
    [Google Scholar]
  65. Lefebvre L, Reader SM, Sol D 2004. Brains, innovations and evolution in birds and primates. Brain Behav. Evol. 63:233–46
    [Google Scholar]
  66. Lerner TN, Ye L, Deisseroth K 2016. Communication in neural circuits: tools, opportunities, and challenges. Cell 164:1136–50
    [Google Scholar]
  67. Lesica NA, Stanley GB 2004. Encoding of natural scene movies by tonic and burst spikes in the lateral geniculate nucleus. J. Neurosci. 24:10731–40
    [Google Scholar]
  68. Livingstone MS, Hubel DH 1988. Do the relative mapping densities of the magno- and parvocellular systems vary with eccentricity. J. Neurosci. 8:4334–39
    [Google Scholar]
  69. Losonczy A, Makara JK, Magee JC 2008. Compartmentalized dendritic plasticity and input feature storage in neurons. Nature 452:436–41
    [Google Scholar]
  70. Marino AC, Mazer JA 2016. Perisaccadic updating of visual representations and attentional states: linking behavior and neurophysiology. Front. Syst. Neurosci. 10:3
    [Google Scholar]
  71. Matesz K, Kecskes S, Bácskai T, Rácz É, Birinyi A 2014. Brainstem circuits underlying the prey-catching behavior of the frog. Brain Behav. Evol. 83:104–11
    [Google Scholar]
  72. McCotter M, Gosselin F, Sowden P, Schyns P 2005. The use of visual information in natural scenes. Vis. Cogn. 12:938–53
    [Google Scholar]
  73. Mease RA, Kuner T, Fairhall AL, Groh A 2017. Multiplexed spike coding and adaptation in the thalamus. Cell Rep 19:1130–40
    [Google Scholar]
  74. Miller EK, Cohen JD 2001. An integrative theory of prefrontal cortex function. Annu. Rev. Neurosci. 24:167–202
    [Google Scholar]
  75. Mitchell AS, Chakraborty S 2013. What does the mediodorsal thalamus do. Front. Syst. Neurosci. 7:37
    [Google Scholar]
  76. Mlynarski W, Hermundstad AM 2017. Adaptive coding for dynamic sensory inference. bioRxiv https://doi.org/10.1101/189506
    [Crossref] [Google Scholar]
  77. Molnár Z, Butler AB 2002. The corticostriatal junction: a crucial region for forebrain development and evolution. Bioessays 24:530–41
    [Google Scholar]
  78. Montagnini A, Treves A 2003. The evolution of mammalian cortex, from lamination to arealization. Brain Res. Bull. 60:387–93
    [Google Scholar]
  79. Muñoz W, Tremblay R, Levenstein D, Rudy B 2017. Layer-specific modulation of neocortical dendritic inhibition during active wakefulness. Science 355:954–59
    [Google Scholar]
  80. Naud R, Sprekeler H 2017. Burst ensemble multiplexing: a neural code connecting dendritic spikes with microcircuits. bioRxiv https://doi.org/10.1101/143636
    [Crossref] [Google Scholar]
  81. Naumann RK, Ondracek JM, Reiter S, Shein-Idelson M, Tosches MA et al. 2015. The reptilian brain. Curr. Biol. 25:R317–21
    [Google Scholar]
  82. Oliva A, Torralba A 2006. Building the gist of a scene: the role of global image features in recognition. Prog. Brain Res. 155:23–36
    [Google Scholar]
  83. Oliva A, Torralba A 2007. The role of context in object recognition. Trends Cogn. Sci. 11:520–27
    [Google Scholar]
  84. Orban GA 2008. Higher order visual processing in macaque extrastriate cortex. Physiol. Rev. 88:59–89
    [Google Scholar]
  85. O'Reilly RC, Wyatte DR, Rohrlich J 2017. Deep predictive learning: a comprehensive model of three visual streams. arXiv:1709.04654 [q-bio.EP]
  86. Paul A, Crow M, Raudales R, He M, Gillis J, Huang ZJ 2017. Transcriptional architecture of synaptic communication delineates GABAergic neuron identity. Cell 171:522–39.e20
    [Google Scholar]
  87. Paxinos G, Franklin KBJ 2004. The Mouse Brain in Stereotaxic Coordinates Houston: Gulf Professional Publishing
    [Google Scholar]
  88. Peebles D, Cooper RP 2015. Thirty years after Marr's vision: levels of analysis in cognitive science. Top. Cogn. Sci. 7:187–90
    [Google Scholar]
  89. Phillips JW, Schulmann A, Hara E, Liu C, Shields B et al. 2017. A topographic axis of transcriptional identity in thalamus. bioRxiv 241315. https://doi.org/10.1101/241315
  90. Pritz MB 1995. The thalamus of reptiles and mammals: similarities and differences. Brain Behav. Evol. 46:197–208
    [Google Scholar]
  91. Purushothaman G, Marion R, Li K, Casagrande VA 2012. Gating and control of primary visual cortex by pulvinar. Nat. Neurosci. 15:905–12
    [Google Scholar]
  92. Ramcharan EJ, Gnadt JW, Sherman SM 2000. Burst and tonic firing in thalamic cells of unanesthetized, behaving monkeys. Vis. Neurosci. 17:55–62
    [Google Scholar]
  93. Ramsay ZJ, Ikura J, Laberge F 2013. Modification of a prey catching response and the development of behavioral persistence in the fire-bellied toad (Bombina orientalis). J. Comp. Psychol. 127:399–411
    [Google Scholar]
  94. Rao HM, Mayo JP, Sommer MA 2016. Circuits for presaccadic visual remapping. J. Neurophysiol. 116:2624–36
    [Google Scholar]
  95. Rao RP, Ballard DH 1999. Predictive coding in the visual cortex: a functional interpretation of some extra-classical receptive-field effects. Nat. Neurosci. 2:79–87
    [Google Scholar]
  96. Reinagel P, Godwin D, Sherman SM, Koch C 1999. Encoding of visual information by LGN bursts. J. Neurophysiol. 81:2558–69
    [Google Scholar]
  97. Reinagel P, Reid RC 2000. Temporal coding of visual information in the thalamus. J. Neurosci. 20:5392–400
    [Google Scholar]
  98. Rockland KS, Andresen J, Cowie RJ, Robinson DL 1999. Single axon analysis of pulvinocortical connections to several visual areas in the macaque. J. Comp. Neurol. 406:221–50
    [Google Scholar]
  99. Rohe T, Noppeney U 2015. Cortical hierarchies perform Bayesian causal inference in multisensory perception. PLOS Biol 13:e1002073
    [Google Scholar]
  100. Roth MM, Dahmen JC, Muir DR, Imhof F, Martini FJ, Hofer SB 2016. Thalamic nuclei convey diverse contextual information to layer 1 of visual cortex. Nat. Neurosci. 19:299–307
    [Google Scholar]
  101. Roth MM, Helmchen F, Kampa BM 2012. Distinct functional properties of primary and posteromedial visual area of mouse neocortex. J. Neurosci. 32:9716–26
    [Google Scholar]
  102. Rouiller EM, Welker E 2000. A comparative analysis of the morphology of corticothalamic projections in mammals. Brain Res. Bull. 53:727–41
    [Google Scholar]
  103. Rovo Z, Ulbert I, Acsady L 2012. Drivers of the primate thalamus. J. Neurosci. 32:17894–908
    [Google Scholar]
  104. Sasaki E 2015. Prospects for genetically modified non-human primate models, including the common marmoset. Neurosci. Res. 93:110–15
    [Google Scholar]
  105. Schall JD, Thompson KG 1999. Neural selection and control of visually guided eye movements. Annu. Rev. Neurosci. 22:241–59
    [Google Scholar]
  106. Schmitt LI, Wimmer RD, Nakajima M, Happ M, Mofakham S, Halassa MM 2017. Thalamic amplification of cortical connectivity sustains attentional control. Nature 545:219–23
    [Google Scholar]
  107. Seabrook TA, Burbridge TJ, Crair MC, Huberman AD 2017. Architecture, function, and assembly of the mouse visual system. Annu. Rev. Neurosci. 40:499–538
    [Google Scholar]
  108. Seidemann E, Chen Y, Bai Y, Chen SC, Mehta P et al. 2016. Calcium imaging with genetically encoded indicators in behaving primates. eLife 5:e16178
    [Google Scholar]
  109. Shadlen MN, Shohamy D 2016. Decision making and sequential sampling from memory. Neuron 90:927–39
    [Google Scholar]
  110. Sherman SM 2001. Tonic and burst firing: dual modes of thalamocortical relay. Trends Neurosci 24:122–26
    [Google Scholar]
  111. Shin S, Sommer MA 2012. Division of labor in frontal eye field neurons during presaccadic remapping of visual receptive fields. J. Neurophysiol. 108:2144–59
    [Google Scholar]
  112. Shipp S 2004. The brain circuitry of attention. Trends Cogn. Sci. 8:223–30
    [Google Scholar]
  113. Sommer MA, Wurtz RH 2004a. What the brain stem tells the frontal cortex. I. Oculomotor signals sent from superior colliculus to frontal eye field via mediodorsal thalamus. J. Neurophysiol. 91:1381–402
    [Google Scholar]
  114. Sommer MA, Wurtz RH 2004b. What the brain stem tells the frontal cortex. II. Role of the SC-MD-FEF pathway in corollary discharge. J. Neurophysiol. 91:1403–23
    [Google Scholar]
  115. Sommer MA, Wurtz RH 2008. Brain circuits for the internal monitoring of movements. Annu. Rev. Neurosci. 31:317–38
    [Google Scholar]
  116. Stauffer WR, Lak A, Yang A, Borel M, Paulsen O et al. 2016. Dopamine neuron-specific optogenetic stimulation in rhesus macaques. Cell 166:1564–71.e6
    [Google Scholar]
  117. Steriade M, McCormick DA, Sejnowski TJ 1993. Thalamocortical oscillations in the sleeping and aroused brain. Science 262:679–85
    [Google Scholar]
  118. Striedter GF 2006. Précis of principles of brain evolution. Behav. Brain Sci. 29:1–12
    [Google Scholar]
  119. Tolman EC 1948. Cognitive maps in rats and men. Psychol. Rev. 55:189–208
    [Google Scholar]
  120. Tremblay R, Lee S, Rudy B 2016. GABAergic interneurons in the neocortex: from cellular properties to circuits. Neuron 91:260–92
    [Google Scholar]
  121. Tsodyks M, Pawelzik K, Markram H 1998. Neural networks with dynamic synapses. Neural Comput 10:821–35
    [Google Scholar]
  122. Unzai T, Kuramoto E, Kaneko T, Fujiyama F 2017. Quantitative analyses of the projection of individual neurons from the midline thalamic nuclei to the striosome and matrix compartments of the rat striatum. Cereb. Cortex 27:1164–81
    [Google Scholar]
  123. Usrey WM, Muly EC, Fitzpatrick D 1992. Lateral geniculate projections to the superficial layers of visual cortex in the tree shrew. J. Comp. Neurol. 319:159–71
    [Google Scholar]
  124. Vertes RP, Linley SB, Groenewegen HJ, Witter MP, Paxinos G 2015. Thalamus. The Rat Nervous System G Paxinos 335–90 Oxford, UK: Elsevier. , 4th ed..
    [Google Scholar]
  125. Whitmire CJ, Waiblinger C, Schwarz C, Stanley GB 2016. Information coding through adaptive gating of synchronized thalamic bursting. Cell Rep 14:795–807
    [Google Scholar]
  126. Wimmer RD, Schmitt LI, Davidson TJ, Nakajima M, Deisseroth K, Halassa MM 2015. Thalamic control of sensory selection in divided attention. Nature 526:705–9
    [Google Scholar]
  127. Wolpert DM, Miall RC 1996. Forward models for physiological motor control. Neural Netw 9:1265–79
    [Google Scholar]
  128. Wyder MT, Massoglia DP, Stanford TR 2004. Contextual modulation of central thalamic delay-period activity: representation of visual and saccadic goals. J. Neurophysiol. 91:2628–48
    [Google Scholar]
  129. Xie Y, Dorsky RI 2017. Development of the hypothalamus: conservation, modification and innovation. Development 144:1588–99
    [Google Scholar]
  130. Yamins DLK, DiCarlo JJ 2016. Using goal-driven deep learning models to understand sensory cortex. Nat. Neurosci. 19:356–65
    [Google Scholar]
  131. Zhan XJ, Cox CL, Sherman SM 2000. Dendritic depolarization efficiently attenuates low-threshold calcium spikes in thalamic relay cells. J. Neurosci. 20:3909–14
    [Google Scholar]
  132. Zhou H, Schafer RJ, Desimone R 2016. Pulvinar-cortex interactions in vision and attention. Neuron 89:209–20
    [Google Scholar]
/content/journals/10.1146/annurev-neuro-080317-062144
Loading
/content/journals/10.1146/annurev-neuro-080317-062144
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error