1932

Abstract

Long-lasting changes of brain function in response to experience rely on diverse forms of activity-dependent synaptic plasticity. Chief among them are long-term potentiation and long-term depression of neurotransmitter release, which are widely expressed by excitatory and inhibitory synapses throughout the central nervous system and can dynamically regulate information flow in neural circuits. This review article explores recent advances in presynaptic long-term plasticity mechanisms and contributions to circuit function. Growing evidence indicates that presynaptic plasticity may involve structural changes, presynaptic protein synthesis, and transsynaptic signaling. Presynaptic long-term plasticity can alter the short-term dynamics of neurotransmitter release, thereby contributing to circuit computations such as novelty detection, modifications of the excitatory/inhibitory balance, and sensory adaptation. In addition, presynaptic long-term plasticity underlies forms of learning and its dysregulation participates in several neuropsychiatric conditions, including schizophrenia, autism, intellectual disabilities, neurodegenerative diseases, and drug abuse.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-neuro-080317-062155
2018-07-08
2024-10-09
Loading full text...

Full text loading...

/deliver/fulltext/neuro/41/1/annurev-neuro-080317-062155.html?itemId=/content/journals/10.1146/annurev-neuro-080317-062155&mimeType=html&fmt=ahah

Literature Cited

  1. Abbott LF, Regehr WG 2004. Synaptic computation. Nature 431:796–803
    [Google Scholar]
  2. Acuna C, Liu X, Gonzalez A, Südhof TC 2015. RIM-BPs mediate tight coupling of action potentials to Ca2+-triggered neurotransmitter release. Neuron 87:1234–47
    [Google Scholar]
  3. Ahmed MS, Siegelbaum SA 2009. Recruitment of N-type Ca2+ channels during LTP enhances low release efficacy of hippocampal CA1 perforant path synapses. Neuron 63:372–85
    [Google Scholar]
  4. Akins MR, Berk-Rauch HE, Kwan KY, Mitchell ME, Shepard KA et al. 2017. Axonal ribosomes and mRNAs associate with fragile X granules in adult rodent and human brains. Hum. Mol. Genet. 26:192–209
    [Google Scholar]
  5. Alvarez J, Giuditta A, Koenig E 2000. Protein synthesis in axons and terminals: significance for maintenance, plasticity and regulation of phenotype. With a critique of slow transport theory. Prog. Neurobiol. 62:1–62
    [Google Scholar]
  6. Anderson GR, Aoto J, Tabuchi K, Foldy C, Covy J et al. 2015. β-neurexins control neural circuits by regulating synaptic endocannabinoid signaling. Cell 162:593–606
    [Google Scholar]
  7. Andrade-Talavera Y, Duque-Feria P, Paulsen O, Rodríguez-Moreno A 2016. Presynaptic spike timing-dependent long-term depression in the mouse hippocampus. Cereb. Cortex 26:3637–54
    [Google Scholar]
  8. Atwood BK, Lovinger DM, Mathur BN 2014. Presynaptic long-term depression mediated by Gi/o-coupled receptors. Trends Neurosci 37:663–73
    [Google Scholar]
  9. Atwood HL, Wojtowicz JM 1999. Silent synapses in neural plasticity: current evidence. Learn. Mem. 6:542–71
    [Google Scholar]
  10. Azad SC, Monory K, Marsicano G, Cravatt BF, Lutz B et al. 2004. Circuitry for associative plasticity in the amygdala involves endocannabinoid signaling. J. Neurosci. 24:9953–61
    [Google Scholar]
  11. Basu J, Srinivas KV, Cheung SK, Taniguchi H, Huang ZJ, Siegelbaum SA 2013. A cortico-hippocampal learning rule shapes inhibitory microcircuit activity to enhance hippocampal information flow. Neuron 79:1208–21
    [Google Scholar]
  12. Bauer EP, LeDoux JE 2004. Heterosynaptic long-term potentiation of inhibitory interneurons in the lateral amygdala. J. Neurosci. 24:9507–12
    [Google Scholar]
  13. Becker N, Wierenga CJ, Fonseca R, Bonhoeffer T, Nagerl UV 2008. LTD induction causes morphological changes of presynaptic boutons and reduces their contacts with spines. Neuron 60:590–97
    [Google Scholar]
  14. Blundell J, Kaeser PS, Südhof TC, Powell CM 2010. RIM1α and interacting proteins involved in presynaptic plasticity mediate prepulse inhibition and additional behaviors linked to schizophrenia. J. Neurosci. 30:5326–33
    [Google Scholar]
  15. Bocklisch C, Pascoli V, Wong JC, House DR, Yvon C et al. 2013. Cocaine disinhibits dopamine neurons by potentiation of GABA transmission in the ventral tegmental area. Science 341:1521–25
    [Google Scholar]
  16. Bolshakov VY, Golan H, Kandel ER, Siegelbaum SA 1997. Recruitment of new sites of synaptic transmission during the cAMP-dependent late phase of LTP at CA3-CA1 synapses in the hippocampus. Neuron 19:635–51
    [Google Scholar]
  17. Bourne JN, Chirillo MA, Harris KM 2013. Presynaptic ultrastructural plasticity along CA3→CA1 axons during long-term potentiation in mature hippocampus. J. Comp. Neurol. 521:3898–912
    [Google Scholar]
  18. Broek JAC, Lin Z, de Gruiter HM, van't Spijker H, Haasdijk ED et al. 2016. Synaptic vesicle dynamic changes in a model of fragile X. Mol. Autism. 7:17
    [Google Scholar]
  19. Buonanno A 2010. The neuregulin signaling pathway and schizophrenia: from genes to synapses and neural circuits. Brain Res. Bull. 83:122–31
    [Google Scholar]
  20. Buzsaki G 2010. Neural syntax: cell assemblies, synapsembles, and readers. Neuron 68:362–85
    [Google Scholar]
  21. Castillo PE 2012. Presynaptic LTP and LTD of excitatory and inhibitory synapses. Cold Spring Harb. Perspect. Biol. 4:a005728
    [Google Scholar]
  22. Castillo PE, Chiu CQ, Carroll RC 2011. Long-term plasticity at inhibitory synapses. Curr. Opin. Neurobiol. 21:328–38
    [Google Scholar]
  23. Castillo PE, Younts TJ, Chávez AE, Hashimotodani Y 2012. Endocannabinoid signaling and synaptic function. Neuron 76:70–81
    [Google Scholar]
  24. Chaudhuri R, Fiete I 2016. Computational principles of memory. Nat. Neurosci. 19:394–403
    [Google Scholar]
  25. Chavan V, Willis J, Walker SK, Clark HR, Liu X et al. 2015. Central presynaptic terminals are enriched in ATP but the majority lack mitochondria. PLOS ONE 10:e0125185
    [Google Scholar]
  26. Cheng F, Vivacqua G, Yu S 2011. The role of α-synuclein in neurotransmission and synaptic plasticity. J. Chem. Neuroanat. 42:242–48
    [Google Scholar]
  27. Cho JH, Deisseroth K, Bolshakov VY 2013. Synaptic encoding of fear extinction in mPFC-amygdala circuits. Neuron 80:1491–507
    [Google Scholar]
  28. Cho RW, Buhl LK, Volfson D, Tran A, Li F et al. 2015. Phosphorylation of complexin by PKA regulates activity-dependent spontaneous neurotransmitter release and structural synaptic plasticity. Neuron 88:749–61
    [Google Scholar]
  29. Christie SB, Akins MR, Schwob JE, Fallon JR 2009. The FXG: a presynaptic fragile X granule expressed in a subset of developing brain circuits. J. Neurosci. 29:1514–24
    [Google Scholar]
  30. Cingolani LA, Goda Y 2008. Actin in action: the interplay between the actin cytoskeleton and synaptic efficacy. Nat. Rev. Neurosci. 9:344–56
    [Google Scholar]
  31. Contractor A, Rogers C, Maron C, Henkemeyer M, Swanson GT, Heinemann SF 2002. Trans-synaptic Eph receptor-ephrin signaling in hippocampal mossy fiber LTP. Science 296:1864–69
    [Google Scholar]
  32. Costa RP, Mizusaki BE, Sjöström PJ, van Rossum MC 2017. Functional consequences of pre- and postsynaptic expression of synaptic plasticity. Philos. Trans. R. Soc. B 372:20160153
    [Google Scholar]
  33. Crabtree GW, Gogos JA 2014. Synaptic plasticity, neural circuits, and the emerging role of altered short-term information processing in schizophrenia. Front. Synaptic Neurosci. 6:28
    [Google Scholar]
  34. Crawford DC, Chang CY, Hyrc KL, Mennerick S 2011. Calcium-independent inhibitory G-protein signaling induces persistent presynaptic muting of hippocampal synapses. J. Neurosci. 31:979–91
    [Google Scholar]
  35. Crawford DC, Mennerick S 2012. Presynaptically silent synapses: dormancy and awakening of presynaptic vesicle release. Neuroscientist 18:216–23
    [Google Scholar]
  36. Dalva MB, McClelland AC, Kayser MS 2007. Cell adhesion molecules: signalling functions at the synapse. Nat. Rev. Neurosci. 8:206–20
    [Google Scholar]
  37. Darnell JC, Klann E 2013. The translation of translational control by FMRP: therapeutic targets for FXS. Nat. Neurosci. 16:1530–36
    [Google Scholar]
  38. Davis GW, Müller M 2015. Homeostatic control of presynaptic neurotransmitter release. Annu. Rev. Physiol. 77:251–70
    [Google Scholar]
  39. Deguchi Y, Harada M, Shinohara R, Lazarus M, Cherasse Y et al. 2016. mDia and ROCK mediate actin-dependent presynaptic remodeling regulating synaptic efficacy and anxiety. Cell Rep 17:2405–17
    [Google Scholar]
  40. Deneve S, Alemi A, Bourdoukan R 2017. The brain as an efficient and robust adaptive learner. Neuron 94:969–77
    [Google Scholar]
  41. Deng PY, Rotman Z, Blundon JA, Cho Y, Cui J et al. 2013. FMRP regulates neurotransmitter release and synaptic information transmission by modulating action potential duration via BK channels. Neuron 77:696–711
    [Google Scholar]
  42. Earls LR, Zakharenko SS 2014. A synaptic function approach to investigating complex psychiatric diseases. Neuroscientist 20:257–71
    [Google Scholar]
  43. Eggermann E, Bucurenciu I, Goswami SP, Jonas P 2011. Nanodomain coupling between Ca2+ channels and sensors of exocytosis at fast mammalian synapses. Nat. Rev. Neurosci. 13:7–21
    [Google Scholar]
  44. Evstratova A, Tóth K 2014. Information processing and synaptic plasticity at hippocampal mossy fiber terminals. Front. Cell Neurosci. 8:28
    [Google Scholar]
  45. Fernandes HB, Riordan S, Nomura T, Remmers CL, Kraniotis S et al. 2015. Epac2 mediates cAMP-dependent potentiation of neurotransmission in the hippocampus. J. Neurosci. 35:6544–53
    [Google Scholar]
  46. Fernández-Busnadiego R, Asano S, Oprisoreanu AM, Sakata E, Doengi M et al. 2013. Cryo-electron tomography reveals a critical role of RIM1α in synaptic vesicle tethering. J. Cell Biol. 201:725–40
    [Google Scholar]
  47. Ferron L, Nieto-Rostro M, Cassidy JS, Dolphin AC 2014. Fragile X mental retardation protein controls synaptic vesicle exocytosis by modulating N-type calcium channel density. Nat. Commun. 5:3628
    [Google Scholar]
  48. Forner S, Baglietto-Vargas D, Martini AC, Trujillo-Estrada L, LaFerla FM 2017. Synaptic impairment in Alzheimer's disease: a dysregulated symphony. Trends Neurosci 40:347–57
    [Google Scholar]
  49. Fourcaudot E, Gambino F, Casassus G, Poulain B, Humeau Y, Luthi A 2009. L-type voltage-dependent Ca2+ channels mediate expression of presynaptic LTP in amygdala. Nat. Neurosci. 12:1093–95
    [Google Scholar]
  50. Fourgeaud L, Mato S, Bouchet D, Hemar A, Worley PF, Manzoni OJ 2004. A single in vivo exposure to cocaine abolishes endocannabinoid-mediated long-term depression in the nucleus accumbens. J. Neurosci. 24:6939–45
    [Google Scholar]
  51. Frias CP, Wierenga CJ 2013. Activity-dependent adaptations in inhibitory axons. Front. Cell Neurosci. 7:219
    [Google Scholar]
  52. Froemke RC 2015. Plasticity of cortical excitatory-inhibitory balance. Annu. Rev. Neurosci. 38:195–219
    [Google Scholar]
  53. Froemke RC, Carcea I, Barker AJ, Yuan K, Seybold BA et al. 2013. Long-term modification of cortical synapses improves sensory perception. Nat. Neurosci. 16:79–88
    [Google Scholar]
  54. Galimberti I, Gogolla N, Alberi S, Santos AF, Müller D, Caroni P 2006. Long-term rearrangements of hippocampal mossy fiber terminal connectivity in the adult regulated by experience. Neuron 50:749–63
    [Google Scholar]
  55. García-Morales V, Montero F, Moreno-López B 2015. Cannabinoid agonists rearrange synaptic vesicles at excitatory synapses and depress motoneuron activity in vivo. Neuropharmacology 92:69–79
    [Google Scholar]
  56. Gibson JR, Huber KM, Südhof TC 2009. Neuroligin-2 deletion selectively decreases inhibitory synaptic transmission originating from fast-spiking but not from somatostatin-positive interneurons. J. Neurosci. 29:13883–97
    [Google Scholar]
  57. Glebov OO, Jackson RE, Winterflood CM, Owen DM, Barker EA et al. 2017. Nanoscale structural plasticity of the active zone matrix modulates presynaptic function. Cell Rep 18:2715–28
    [Google Scholar]
  58. Gogolla N, Galimberti I, Caroni P 2007. Structural plasticity of axon terminals in the adult. Curr. Opin. Neurobiol. 17:516–24
    [Google Scholar]
  59. Gogolla N, Galimberti I, Deguchi Y, Caroni P 2009. Wnt signaling mediates experience-related regulation of synapse numbers and mossy fiber connectivities in the adult hippocampus. Neuron 62:510–25
    [Google Scholar]
  60. Gómez-Gonzalo M, Navarrete M, Perea G, Covelo A, Martín-Fernández M et al. 2015. Endocannabinoids induce lateral long-term potentiation of transmitter release by stimulation of gliotransmission. Cereb. Cortex 25:3699–712
    [Google Scholar]
  61. Graziane NM, Polter AM, Briand LA, Pierce RC, Kauer JA 2013. Kappa opioid receptors regulate stress-induced cocaine seeking and synaptic plasticity. Neuron 77:942–54
    [Google Scholar]
  62. Hagena H, Manahan-Vaughan D 2011. Learning-facilitated synaptic plasticity at CA3 mossy fiber and commissural-associational synapses reveals different roles in information processing. Cereb. Cortex 21:2442–49
    [Google Scholar]
  63. Han Y, Kaeser PS, Südhof TC, Schneggenburger R 2011. RIM determines Ca2+ channel density and vesicle docking at the presynaptic active zone. Neuron 69:304–16
    [Google Scholar]
  64. Harris JJ, Jolivet R, Attwell D 2012. Synaptic energy use and supply. Neuron 75:762–77
    [Google Scholar]
  65. Hayashi-Takagi A, Yagishita S, Nakamura M, Shirai F, Wu YI et al. 2015. Labelling and optical erasure of synaptic memory traces in the motor cortex. Nature 525:333–38
    [Google Scholar]
  66. Hebert-Chatelain E, Desprez T, Serrat R, Bellocchio L, Soria-Gomez E et al. 2016. A cannabinoid link between mitochondria and memory. Nature 539:555–59
    [Google Scholar]
  67. Hegde AN 2017. Proteolysis, synaptic plasticity and memory. Neurobiol. Learn. Mem. 138:98–110
    [Google Scholar]
  68. Hennequin G, Agnes EJ, Vogels TP 2017. Inhibitory plasticity: balance, control, and codependence. Annu. Rev. Neurosci. 40:557–79
    [Google Scholar]
  69. Hoffman AF, Oz M, Caulder T, Lupica CR 2003. Functional tolerance and blockade of long-term depression at synapses in the nucleus accumbens after chronic cannabinoid exposure. J. Neurosci. 23:4815–20
    [Google Scholar]
  70. Holtmaat A, Caroni P 2016. Functional and structural underpinnings of neuronal assembly formation in learning. Nat. Neurosci. 19:1553–62
    [Google Scholar]
  71. Hsiao K, Harony-Nicolas H, Buxbaum JD, Bozdagi-Gunal O, Benson DL 2016. Cyfip1 regulates presynaptic activity during development. J. Neurosci. 36:1564–76
    [Google Scholar]
  72. Huang YY, Kandel ER 1998. Postsynaptic induction and PKA-dependent expression of LTP in the lateral amygdala. Neuron 21:169–78
    [Google Scholar]
  73. Humeau Y, Shaban H, Bissiere S, Luthi A 2003. Presynaptic induction of heterosynaptic associative plasticity in the mammalian brain. Nature 426:841–45
    [Google Scholar]
  74. Jackman SL, Regehr WG 2017. The mechanisms and functions of synaptic facilitation. Neuron 94:447–64
    [Google Scholar]
  75. Jang S, Lee H, Kim E 2017. Synaptic adhesion molecules and excitatory synaptic transmission. Curr. Opin. Neurobiol. 45:45–50
    [Google Scholar]
  76. Jedlicka P, Hoon M, Papadopoulos T, Vlachos A, Winkels R et al. 2011. Increased dentate gyrus excitability in neuroligin-2-deficient mice in vivo. Cereb. Cortex 21:357–67
    [Google Scholar]
  77. Jiang X, Litkowski PE, Taylor AA, Lin Y, Snider BJ, Moulder KL 2010. A role for the ubiquitin-proteasome system in activity-dependent presynaptic silencing. J. Neurosci. 30:1798–809
    [Google Scholar]
  78. Jones BW, Deem J, Younts TJ, Weisenhaus M, Sanford CA et al. 2016. Targeted deletion of AKAP7 in dentate granule cells impairs spatial discrimination. eLife 5:e20695
    [Google Scholar]
  79. Jourdain P, Bergersen LH, Bhaukaurally K, Bezzi P, Santello M et al. 2007. Glutamate exocytosis from astrocytes controls synaptic strength. Nat. Neurosci. 10:331–39
    [Google Scholar]
  80. Jung KM, Sepers M, Henstridge CM, Lassalle O, Neuhofer D et al. 2012. Uncoupling of the endocannabinoid signalling complex in a mouse model of fragile X syndrome. Nat. Commun. 3:1080
    [Google Scholar]
  81. Kaeser-Woo YJ, Younts TJ, Yang X, Zhou P, Wu D et al. 2013. Synaptotagmin-12 phosphorylation by cAMP-dependent protein kinase is essential for hippocampal mossy fiber LTP. J. Neurosci. 33:9769–80
    [Google Scholar]
  82. Katayama N, Yamamori S, Fukaya M, Kobayashi S, Watanabe M et al. 2017. SNAP-25 phosphorylation at Ser187 regulates synaptic facilitation and short-term plasticity in an age-dependent manner. Sci. Rep. 7:7996
    [Google Scholar]
  83. Koga K, Liu MG, Qiu S, Song Q, O'Den G et al. 2015. Impaired presynaptic long-term potentiation in the anterior cingulate cortex of Fmr1 knock-out mice. J. Neurosci. 35:2033–43
    [Google Scholar]
  84. Kreitzer AC, Malenka RC 2007. Endocannabinoid-mediated rescue of striatal LTD and motor deficits in Parkinson's disease models. Nature 445:643–47
    [Google Scholar]
  85. Kreitzer AC, Malenka RC 2008. Striatal plasticity and basal ganglia circuit function. Neuron 60:543–54
    [Google Scholar]
  86. Krueger DD, Tuffy LP, Papadopoulos T, Brose N 2012. The role of neurexins and neuroligins in the formation, maturation, and function of vertebrate synapses. Curr. Opin. Neurobiol. 22:412–22
    [Google Scholar]
  87. Kvajo M, McKellar H, Drew LJ, Lepagnol-Bestel AM, Xiao L et al. 2011. Altered axonal targeting and short-term plasticity in the hippocampus of Disc1 mutant mice. PNAS 108:E1349–58
    [Google Scholar]
  88. Larsen RS, Sjöström PJ 2015. Synapse-type-specific plasticity in local circuits. Curr. Opin. Neurobiol. 35:127–35
    [Google Scholar]
  89. Li H, Penzo MA, Taniguchi H, Kopec CD, Huang ZJ, Li B 2013. Experience-dependent modification of a central amygdala fear circuit. Nat. Neurosci. 16:332–39
    [Google Scholar]
  90. Lisman JE 1997. Bursts as a unit of neural information: making unreliable synapses reliable. Trends Neurosci 20:38–43
    [Google Scholar]
  91. Liu QS, Pu L, Poo MM 2005. Repeated cocaine exposure in vivo facilitates LTP induction in midbrain dopamine neurons. Nature 437:1027–31
    [Google Scholar]
  92. Liu S, Ninan I, Antonova I, Battaglia F, Trinchese F et al. 2004. α-Synuclein produces a long-lasting increase in neurotransmitter release. EMBO J 23:4506–16
    [Google Scholar]
  93. Losonczy A, Biro AA, Nusser Z 2004. Persistently active cannabinoid receptors mute a subpopulation of hippocampal interneurons. PNAS 101:1362–67
    [Google Scholar]
  94. Lu Y, Sun XD, Hou FQ, Bi LL, Yin DM et al. 2014. Maintenance of GABAergic activity by neuregulin 1-ErbB4 in amygdala for fear memory. Neuron 84:835–46
    [Google Scholar]
  95. Lüscher C, Malenka RC 2011. Drug-evoked synaptic plasticity in addiction: from molecular changes to circuit remodeling. Neuron 69:650–63
    [Google Scholar]
  96. Lutz B 2007. The endocannabinoid system and extinction learning. Mol. Neurobiol. 36:92–101
    [Google Scholar]
  97. Ma L, Zablow L, Kandel ER, Siegelbaum SA 1999. Cyclic AMP induces functional presynaptic boutons in hippocampal CA3-CA1 neuronal cultures. Nat. Neurosci. 2:24–30
    [Google Scholar]
  98. Markram H, Tsodyks M 1996. Redistribution of synaptic efficacy between neocortical pyramidal neurons. Nature 382:807–10
    [Google Scholar]
  99. Maruo T, Mandai K, Takai Y, Mori M 2016. Activity-dependent alteration of the morphology of a hippocampal giant synapse. Mol. Cell Neurosci. 71:25–33
    [Google Scholar]
  100. Mato S, Chevaleyre V, Robbe D, Pazos A, Castillo PE, Manzoni OJ 2004. A single in-vivo exposure to Δ9THC blocks endocannabinoid-mediated synaptic plasticity. Nat. Neurosci. 7:585–86
    [Google Scholar]
  101. Mato S, Lafourcade M, Robbe D, Bakiri Y, Manzoni OJ 2008. Role of the cyclic-AMP/PKA cascade and of P/Q-type Ca2+ channels in endocannabinoid-mediated long-term depression in the nucleus accumbens. Neuropharmacology 54:87–94
    [Google Scholar]
  102. Mato S, Robbe D, Puente N, Grandes P, Manzoni OJ 2005. Presynaptic homeostatic plasticity rescues long-term depression after chronic Δ9-tetrahydrocannabinol exposure. J. Neurosci. 25:11619–27
    [Google Scholar]
  103. McKernan MG, Shinnick-Gallagher P 1997. Fear conditioning induces a lasting potentiation of synaptic currents in vitro. Nature 390:607–11
    [Google Scholar]
  104. Meyer D, Bonhoeffer T, Scheuss V 2014. Balance and stability of synaptic structures during synaptic plasticity. Neuron 82:430–43
    [Google Scholar]
  105. Michel K, Müller JA, Oprisoreanu AM, Schoch S 2015. The presynaptic active zone: a dynamic scaffold that regulates synaptic efficacy. Exp. Cell Res. 335:157–64
    [Google Scholar]
  106. Min R, Nevian T 2012. Astrocyte signaling controls spike timing-dependent depression at neocortical synapses. Nat. Neurosci. 15:746–53
    [Google Scholar]
  107. Min R, Santello M, Nevian T 2012. The computational power of astrocyte mediated synaptic plasticity. Front. Comput. Neurosci. 6:93
    [Google Scholar]
  108. Missler M, Zhang W, Rohlmann A, Kattenstroth G, Hammer RE et al. 2003. α-Neurexins couple Ca2+ channels to synaptic vesicle exocytosis. Nature 423:939–48
    [Google Scholar]
  109. Monday HR, Castillo PE 2017. Closing the gap: long-term presynaptic plasticity in brain function and disease. Curr. Opin. Neurobiol. 45:106–12
    [Google Scholar]
  110. Moulder KL, Jiang X, Chang C, Taylor AA, Benz AM et al. 2008. A specific role for Ca2+-dependent adenylyl cyclases in recovery from adaptive presynaptic silencing. J. Neurosci. 28:5159–68
    [Google Scholar]
  111. Moulder KL, Meeks JP, Shute AA, Hamilton CK, de Erausquin G, Mennerick S 2004. Plastic elimination of functional glutamate release sites by depolarization. Neuron 42:423–35
    [Google Scholar]
  112. Mukai J, Tamura M, Fenelon K, Rosen AM, Spellman TJ et al. 2015. Molecular substrates of altered axonal growth and brain connectivity in a mouse model of schizophrenia. Neuron 86:680–95
    [Google Scholar]
  113. Nakamura Y, Harada H, Kamasawa N, Matsui K, Rothman JS et al. 2015. Nanoscale distribution of presynaptic Ca2+ channels and its impact on vesicular release during development. Neuron 85:145–58
    [Google Scholar]
  114. Nugent FS, Penick EC, Kauer JA 2007. Opioids block long-term potentiation of inhibitory synapses. Nature 446:1086–90
    [Google Scholar]
  115. Orr AL, Hanson JE, Li D, Klotz A, Wright S et al. 2014. β-Amyloid inhibits E-S potentiation through suppression of cannabinoid receptor 1-dependent synaptic disinhibition. Neuron 82:1334–45
    [Google Scholar]
  116. Pan B, Hillard CJ, Liu QS 2008. Endocannabinoid signaling mediates cocaine-induced inhibitory synaptic plasticity in midbrain dopamine neurons. J. Neurosci. 28:1385–97
    [Google Scholar]
  117. Patel AB, Hays SA, Bureau I, Huber KM, Gibson JR 2013. A target cell-specific role for presynaptic Fmr1 in regulating glutamate release onto neocortical fast-spiking inhibitory neurons. J. Neurosci. 33:2593–604
    [Google Scholar]
  118. Pathak D, Shields LY, Mendelsohn BA, Haddad D, Lin W et al. 2015. The role of mitochondrially derived ATP in synaptic vesicle recycling. J. Biol. Chem. 290:22325–36
    [Google Scholar]
  119. Pelkey KA, Topolnik L, Lacaille JC, McBain CJ 2006. Compartmentalized Ca2+ channel regulation at divergent mossy-fiber release sites underlies target cell-dependent plasticity. Neuron 52:497–510
    [Google Scholar]
  120. Perea G, Araque A 2007. Astrocytes potentiate transmitter release at single hippocampal synapses. Science 317:1083–86
    [Google Scholar]
  121. Perea G, Navarrete M, Araque A 2009. Tripartite synapses: astrocytes process and control synaptic information. Trends Neurosci 32:421–31
    [Google Scholar]
  122. Petzoldt AG, Lutzkendorf J, Sigrist SJ 2016. Mechanisms controlling assembly and plasticity of presynaptic active zone scaffolds. Curr. Opin. Neurobiol. 39:69–76
    [Google Scholar]
  123. Picconi B, Centonze D, Hakansson K, Bernardi G, Greengard P et al. 2003. Loss of bidirectional striatal synaptic plasticity in l-DOPA-induced dyskinesia. Nat. Neurosci. 6:501–6
    [Google Scholar]
  124. Pilo Boyl P, Di Nardo A, Mulle C, Sassoè-Pognetto M, Panzanelli P et al. 2007. Profilin2 contributes to synaptic vesicle exocytosis, neuronal excitability, and novelty-seeking behavior. EMBO J 26:2991–3002
    [Google Scholar]
  125. Piskorowski RA, Nasrallah K, Diamantopoulou A, Mukai J, Hassan SI et al. 2016. Age-dependent specific changes in area CA2 of the hippocampus and social memory deficit in a mouse model of the 22q11.2 deletion syndrome. Neuron 89:163–76
    [Google Scholar]
  126. Polter AM, Bishop RA, Briand LA, Graziane NM, Pierce RC, Kauer JA 2014. Poststress block of κ opioid receptors rescues long-term potentiation of inhibitory synapses and prevents reinstatement of cocaine seeking. Biol. Psychiatry 76:785–93
    [Google Scholar]
  127. Poo MM, Pignatelli M, Ryan TJ, Tonegawa S, Bonhoeffer T et al. 2016. What is memory? The present state of the engram. BMC Biol 14:40
    [Google Scholar]
  128. Powell CM, Schoch S, Monteggia L, Barrot M, Matos MF et al. 2004. The presynaptic active zone protein RIM1α is critical for normal learning and memory. Neuron 42:143–53
    [Google Scholar]
  129. Ramírez-Franco J, Bartolomé-Martin D, Alonso B, Torres M, Sánchez-Prieto J 2014. Cannabinoid type 1 receptors transiently silence glutamatergic nerve terminals of cultured cerebellar granule cells. PLOS ONE 9:e88594
    [Google Scholar]
  130. Rangaraju V, Calloway N, Ryan TA 2014. Activity-driven local ATP synthesis is required for synaptic function. Cell 156:825–35
    [Google Scholar]
  131. Rebola N, Carta M, Mulle C 2017. Operation and plasticity of hippocampal CA3 circuits: implications for memory encoding. Nat. Rev. Neurosci. 18:208–20
    [Google Scholar]
  132. Regehr WG 2012. Short-term presynaptic plasticity. Cold Spring Harb. Perspect. Biol. 4:a005702
    [Google Scholar]
  133. Robbe D, Kopf M, Remaury A, Bockaert J, Manzoni OJ 2002. Endogenous cannabinoids mediate long-term synaptic depression in the nucleus accumbens. PNAS 99:8384–88
    [Google Scholar]
  134. Rost BR, Schneider F, Grauel MK, Wozny C, Bentz C et al. 2015. Optogenetic acidification of synaptic vesicles and lysosomes. Nat. Neurosci. 18:1845–52
    [Google Scholar]
  135. Ruediger S, Vittori C, Bednarek E, Genoud C, Strata P et al. 2011. Learning-related feedforward inhibitory connectivity growth required for memory precision. Nature 473:514–18
    [Google Scholar]
  136. Sankaranarayanan S, Atluri PP, Ryan TA 2003. Actin has a molecular scaffolding, not propulsive, role in presynaptic function. Nat. Neurosci. 6:127–35
    [Google Scholar]
  137. Schmitz SK, King C, Kortleven C, Huson V, Kroon T et al. 2016. Presynaptic inhibition upon CB1 or mGlu2/3 receptor activation requires ERK/MAPK phosphorylation of Munc18-1. EMBO J 35:1236–50
    [Google Scholar]
  138. Schuemann A, Klawiter A, Bonhoeffer T, Wierenga CJ 2013. Structural plasticity of GABAergic axons is regulated by network activity and GABAA receptor activation. Front. Neural Circuits 7:113
    [Google Scholar]
  139. Seshadri S, Faust T, Ishizuka K, Delevich K, Chung Y et al. 2015. Interneuronal DISC1 regulates NRG1-ErbB4 signalling and excitatory-inhibitory synapse formation in the mature cortex. Nat. Commun. 6:10118
    [Google Scholar]
  140. Shaban H, Humeau Y, Herry C, Cassasus G, Shigemoto R et al. 2006. Generalization of amygdala LTP and conditioned fear in the absence of presynaptic inhibition. Nat. Neurosci. 9:1028–35
    [Google Scholar]
  141. Shamir A, Kwon OB, Karavanova I, Vullhorst D, Leiva-Salcedo E et al. 2012. The importance of the NRG-1/ErbB4 pathway for synaptic plasticity and behaviors associated with psychiatric disorders. J. Neurosci. 32:2988–97
    [Google Scholar]
  142. Sheffler-Collins SI, Dalva MB 2012. EphBs: an integral link between synaptic function and synaptopathies. Trends Neurosci 35:293–304
    [Google Scholar]
  143. Sheng M, Sabatini BL, Südhof TC 2012. Synapses and Alzheimer's disease. Cold Spring Harb. Perspect. Biol. 4:a005777
    [Google Scholar]
  144. Shigeoka T, Jung H, Jung J, Turner-Bridger B, Ohk J et al. 2016. Dynamic axonal translation in developing and mature visual circuits. Cell 166:181–92
    [Google Scholar]
  145. Shin RM, Tully K, Li Y, Cho JH, Higuchi M et al. 2010. Hierarchical order of coexisting pre- and postsynaptic forms of long-term potentiation at synapses in amygdala. PNAS 107:19073–78
    [Google Scholar]
  146. Siegert S, Seo J, Kwon EJ, Rudenko A, Cho S et al. 2015. The schizophrenia risk gene product miR-137 alters presynaptic plasticity. Nat. Neurosci. 18:1008–16
    [Google Scholar]
  147. Sigrist SJ, Schmitz D 2011. Structural and functional plasticity of the cytoplasmic active zone. Curr. Opin. Neurobiol. 21:144–50
    [Google Scholar]
  148. Sigurdsson T, Stark KL, Karayiorgou M, Gogos JA, Gordon JA 2010. Impaired hippocampal-prefrontal synchrony in a genetic mouse model of schizophrenia. Nature 464:763–67
    [Google Scholar]
  149. Sinnen BL, Bowen AB, Forte JS, Hiester BG, Crosby KC et al. 2017. Optogenetic control of synaptic composition and function. Neuron 93:646–60.e5
    [Google Scholar]
  150. Sjöström PJ, Turrigiano GG, Nelson SB 2003. Neocortical LTD via coincident activation of presynaptic NMDA and cannabinoid receptors. Neuron 39:641–54
    [Google Scholar]
  151. Smith HL, Bourne JN, Cao G, Chirillo MA, Ostroff LE et al. 2016. Mitochondrial support of persistent presynaptic vesicle mobilization with age-dependent synaptic growth after LTP. eLife 5:e15275
    [Google Scholar]
  152. Spacek J, Harris K, Fiala J 2004. Atlas of Ultrastructural Neurocytology http://synapseweb.clm.utexas.edu/atlas
    [Google Scholar]
  153. Su B, Ji YS, Sun XL, Liu XH, Chen ZY 2014. Brain-derived neurotrophic factor (BDNF)-induced mitochondrial motility arrest and presynaptic docking contribute to BDNF-enhanced synaptic transmission. J. Biol. Chem. 289:1213–26
    [Google Scholar]
  154. Südhof TC 2017. Synaptic neurexin complexes: a molecular code for the logic of neural circuits. Cell 171:745–69
    [Google Scholar]
  155. Sun T, Qiao H, Pan PY, Chen Y, Sheng ZH 2013. Motile axonal mitochondria contribute to the variability of presynaptic strength. Cell Rep 4:413–19
    [Google Scholar]
  156. Takamori S, Holt M, Stenius K, Lemke EA, Gronborg M et al. 2006. Molecular anatomy of a trafficking organelle. Cell 127:831–46
    [Google Scholar]
  157. Tang AH, Chen H, Li TP, Metzbower SR, MacGillavry HD, Blanpied TA 2016. A trans-synaptic nanocolumn aligns neurotransmitter release to receptors. Nature 536:210–14
    [Google Scholar]
  158. Tovote P, Fadok JP, Luthi A 2015. Neuronal circuits for fear and anxiety. Nat. Rev. Neurosci. 16:317–31
    [Google Scholar]
  159. Turrigiano G 2012. Homeostatic synaptic plasticity: local and global mechanisms for stabilizing neuronal function. Cold Spring Harb. Perspect. Biol. 4:a005736
    [Google Scholar]
  160. Varoqueaux F, Jamain S, Brose N 2004. Neuroligin 2 is exclusively localized to inhibitory synapses. Eur. J. Cell Biol. 83:449–56
    [Google Scholar]
  161. Villa KL, Berry KP, Subramanian J, Cha JW, Oh WC et al. 2016. Inhibitory synapses are repeatedly assembled and removed at persistent sites in vivo. Neuron 89:756–69
    [Google Scholar]
  162. Volk L, Chiu SL, Sharma K, Huganir RL 2015. Glutamate synapses in human cognitive disorders. Annu. Rev. Neurosci. 38:127–49
    [Google Scholar]
  163. Voronin LL, Cherubini E 2004. ‘Deaf, mute and whispering’ silent synapses: their role in synaptic plasticity. J. Physiol. 557:3–12
    [Google Scholar]
  164. Waites CL, Garner CC 2011. Presynaptic function in health and disease. Trends Neurosci 34:326–37
    [Google Scholar]
  165. Wang H, Song L, Laird F, Wong PC, Lee HK 2008. BACE1 knock-outs display deficits in activity-dependent potentiation of synaptic transmission at mossy fiber to CA3 synapses in the hippocampus. J. Neurosci. 28:8677–81
    [Google Scholar]
  166. Wang W, Jia Y, Pham DT, Palmer LC, Jung KM et al. 2017. Atypical endocannabinoid signaling initiates a new form of memory-related plasticity at a cortical input to hippocampus. Cereb. Cortex 17:1–14
    [Google Scholar]
  167. Wang XS, Peng CZ, Cai WJ, Xia J, Jin D et al. 2014. Activity-dependent regulation of release probability at excitatory hippocampal synapses: a crucial role of fragile X mental retardation protein in neurotransmission. Eur. J. Neurosci. 39:1602–12
    [Google Scholar]
  168. Wang YC, Lauwers E, Verstreken P 2017. Presynaptic protein homeostasis and neuronal function. Curr. Opin. Genet. Dev. 44:38–46
    [Google Scholar]
  169. Wierenga CJ, Becker N, Bonhoeffer T 2008. GABAergic synapses are formed without the involvement of dendritic protrusions. Nat. Neurosci. 11:1044–52
    [Google Scholar]
  170. Wilhelm BG, Mandad S, Truckenbrodt S, Krohnert K, Schäfer C et al. 2014. Composition of isolated synaptic boutons reveals the amounts of vesicle trafficking proteins. Science 344:1023–28
    [Google Scholar]
  171. Witton J, Brown JT, Jones MW, Randall AD 2010. Altered synaptic plasticity in the mossy fibre pathway of transgenic mice expressing mutant amyloid precursor protein. Mol. Brain 3:32
    [Google Scholar]
  172. Woo RS, Li XM, Tao Y, Carpenter-Hyland E, Huang YZ et al. 2007. Neuregulin-1 enhances depolarization-induced GABA release. Neuron 54:599–610
    [Google Scholar]
  173. Woodin MA, Maffei AE 2010. Inhibitory Synaptic Plasticity New York: Springer
    [Google Scholar]
  174. Wu XS, Lee SH, Sheng J, Zhang Z, Zhao WD et al. 2016. Actin is crucial for all kinetically distinguishable forms of endocytosis at synapses. Neuron 92:1020–35
    [Google Scholar]
  175. Yang Y, Calakos N 2013. Presynaptic long-term plasticity. Front. Synaptic Neurosci. 5:8
    [Google Scholar]
  176. Yao J, Qi J, Chen G 2006. Actin-dependent activation of presynaptic silent synapses contributes to long-term synaptic plasticity in developing hippocampal neurons. J. Neurosci. 26:8137–47
    [Google Scholar]
  177. Younts TJ, Chevaleyre V, Castillo PE 2013. CA1 pyramidal cell theta-burst firing triggers endocannabinoid-mediated long-term depression at both somatic and dendritic inhibitory synapses. J. Neurosci. 33:13743–57
    [Google Scholar]
  178. Younts TJ, Monday HR, Dudok B, Klein ME, Jordan BA et al. 2016. Presynaptic protein synthesis is required for long-term plasticity of GABA release. Neuron 92:479–92
    [Google Scholar]
  179. Zhang C, Wu B, Beglopoulos V, Wines-Samuelson M, Zhang D et al. 2009. Presenilins are essential for regulating neurotransmitter release. Nature 460:632–36
    [Google Scholar]
  180. Zhang L, Alger BE 2010. Enhanced endocannabinoid signaling elevates neuronal excitability in fragile X syndrome. J. Neurosci. 30:5724–29
    [Google Scholar]
/content/journals/10.1146/annurev-neuro-080317-062155
Loading
/content/journals/10.1146/annurev-neuro-080317-062155
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error