1932

Abstract

How neurons detect the direction of motion is a prime example of neural computation: Motion vision is found in the visual systems of virtually all sighted animals, it is important for survival, and it requires interesting computations with well-defined linear and nonlinear processing steps—yet the whole process is of moderate complexity. The genetic methods available in the fruit fly and the charting of a connectome of its visual system have led to rapid progress and unprecedented detail in our understanding of how neurons compute the direction of motion in this organism. The picture that emerged incorporates not only the identity, morphology, and synaptic connectivity of each neuron involved but also its neurotransmitters, its receptors, and their subcellular localization. Together with the neurons’ membrane potential responses to visual stimulation, this information provides the basis for a biophysically realistic model of the circuit that computes the direction of visual motion.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-neuro-080422-111929
2023-07-10
2024-10-03
Loading full text...

Full text loading...

/deliver/fulltext/neuro/46/1/annurev-neuro-080422-111929.html?itemId=/content/journals/10.1146/annurev-neuro-080422-111929&mimeType=html&fmt=ahah

Literature Cited

  1. Ache JM, Polsky J, Alghailani S, Parekh R, Breads P et al. 2019. Neural basis for looming size and velocity encoding in the Drosophila giant fiber escape pathway. Curr. Biol. 29:61073–81
    [Google Scholar]
  2. Akerboom J, Chen TW, Wardill TJ, Tian L, Marvin JS, Mutlu S et al. 2012. Optimization of a GCaMP calcium indicator for neural activity imaging. J. Neurosci. 32:4013819–40
    [Google Scholar]
  3. Ammer G, Leonhardt A, Bahl A, Dickson BJ, Borst A. 2015. Functional specialization of neural input elements to the Drosophila ON motion detector. Curr. Biol. 25:172247–53
    [Google Scholar]
  4. Apitz H, Salecker I. 2018. Spatio-temporal relays control layer identity of direction-selective neuron subtypes in Drosophila. Nat. Commun. 9:12295
    [Google Scholar]
  5. Arenz A, Drews MS, Richter FG, Ammer G, Borst A. 2017. The temporal tuning of the Drosophila motion detectors is determined by the dynamics of their input elements. Curr. Biol. 27:7929–44
    [Google Scholar]
  6. Badwan BA, Creamer MS, Zavatone-Veth JA, Clark DA 2019. Dynamic nonlinearities enable direction opponency in Drosophila elementary motion detectors. Nat. Neurosci. 22:81318–26
    [Google Scholar]
  7. Bahl A, Ammer G, Schilling T, Borst A. 2013. Object tracking in motion-blind flies. Nat. Neurosci. 16:6730–38
    [Google Scholar]
  8. Barlow HB, Levick WR. 1965. The mechanism of directionally selective units in rabbit's retina. J. Physiol. 178:3477–504
    [Google Scholar]
  9. Bausenwein B, Dittrich APM, Fischbach K-F. 1992. The optic lobe of Drosophila melanogaster. II. Sorting of retinotopic pathways in the medulla. Cell Tissue Res. 267:117–28
    [Google Scholar]
  10. Bausenwein B, Fischbach K-F. 1992. Activity labeling patterns in the medulla of Drosophila melanogaster caused by motion stimuli. Cell Tissue Res. 270:125–35
    [Google Scholar]
  11. Behnia R, Clark DA, Carter AG, Clandinin TR, Desplan C. 2014. Processing properties of ON and OFF pathways for Drosophila motion detection. Nature 512:7515427–30
    [Google Scholar]
  12. Bishop LG, Keehn DG, McCann GD. 1968. Motion detection by interneurons of optic lobes and brain of the flies Calliphora phaenicia and Musca domestica. J. Neurophysiol. 31:4509–25
    [Google Scholar]
  13. Borst A. 2014. Fly visual course control: behaviour, algorithms and circuits. Nat. Rev. Neurosci. 15:9590–99
    [Google Scholar]
  14. Borst A. 2018. A biophysical mechanism for preferred direction enhancement in fly motion vision. PLOS Comput. Biol. 14:6e1006240
    [Google Scholar]
  15. Borst A, Bahde S. 1986. What kind of movement detector is triggering the landing response of the housefly?. Biol. Cybern. 55:159–69
    [Google Scholar]
  16. Borst A, Drews M, Meier M. 2020. The neural network behind the eyes of a fly. Curr. Opin. Physiol. 16:33–42
    [Google Scholar]
  17. Borst A, Egelhaaf M. 1989. Principles of visual motion detection. Trends Neurosci. 12:8297–306
    [Google Scholar]
  18. Borst A, Egelhaaf M. 1990. Direction selectivity of fly motion-sensitive neurons is computed in a two-stage process. PNAS 87:239363–67
    [Google Scholar]
  19. Borst A, Euler T. 2011. Seeing things in motion: models, circuits, and mechanisms. Neuron 71:6974–94
    [Google Scholar]
  20. Borst A, Helmstaedter M. 2015. Common circuit design in fly and mammalian motion vision. Nat. Neurosci. 18:81067–76
    [Google Scholar]
  21. Brand AH, Perrimon N. 1993. Targeted gene expression as a means of altering cell fates and generating dominant phenotypes. Development 118:2401–15
    [Google Scholar]
  22. Buchner E. 1976. Elementary movement detectors in an insect visual system. Biol. Cybern. 24:286–101
    [Google Scholar]
  23. Buchner E, Buchner S, Bülthoff I. 1984. Deoxyglucose mapping of nervous activity induced in Drosophila brain by visual movement. J. Comp. Physiol. A 155:471–83
    [Google Scholar]
  24. Clark DA, Bursztyn L, Horowitz MA, Schnitzer MJ, Clandinin TR. 2011. Defining the computational structure of the motion detector in Drosophila. Neuron 70:61165–77
    [Google Scholar]
  25. Creamer MS, Mano O, Clark DA. 2018. Visual control of walking speed in Drosophila. . Neuron 100:61460–73
    [Google Scholar]
  26. Cully DF, Paress PS, Liu KK, Schaeffer JM, Arena JP. 1996. Identification of a Drosophila melanogaster glutamate-gated chloride channel sensitive to the antiparasitic agent avermectin. J. Biol. Chem. 271:3320187–91
    [Google Scholar]
  27. Cuntz H, Forstner F, Schnell B, Ammer G, Raghu SV, Borst A. 2013. Preserving neural function under extreme scaling. PLOS ONE 8:8e71540
    [Google Scholar]
  28. Davis FP, Nern A, Picard S, Reiser MB, Rubin GM et al. 2020. A genetic, genomic, and computational resource for exploring neural circuit function. eLife 9:e50901
    [Google Scholar]
  29. Drews MS, Leonhardt A, Pirogova N, Richter FG, Schuetzenberger A et al. 2020. Dynamic signal compression for robust motion vision in flies. Curr. Biol. 30:2209–21
    [Google Scholar]
  30. Dvorak DR, Bishop LG, Eckert HE. 1975. On the identification of movement detectors in the fly optic lobe. J. Comp. Physiol. 100:15–23
    [Google Scholar]
  31. Egelhaaf M, Borst A. 1992. Are there separate ON- and OFF-channels in fly motion vision?. Vis. Neurosci. 8:2151–64
    [Google Scholar]
  32. Egelhaaf M, Borst A, Reichardt W. 1989. Computational structure of a biological motion detection system as revealed by local detector analysis in the fly's nervous system. J. Opt. Soc. Am. A 6:71070–87
    [Google Scholar]
  33. Eichner H, Joesch M, Schnell B, Reiff DF, Borst A. 2011. Internal structure of the fly elementary motion detector. Neuron 70:61155–64
    [Google Scholar]
  34. Exner S. 1894. Entwurf zu einer physiologischen Erklärung der psychischen Erscheinungen. I. Theil Vienna: Deuticke-Verlag
    [Google Scholar]
  35. Fendl S, Vieira RM, Borst A. 2020. Conditional protein tagging methods reveal highly specific subcellular distribution of ion channels in motion-sensing neurons. eLife 9:e62953
    [Google Scholar]
  36. Fenk LM, Avritzer SC, Weisman JL, Nair A, Randt LD et al. 2022. Muscles that move the retina augment compound eye vision in Drosophila. Nature 612:116–22
    [Google Scholar]
  37. Fischbach K-F, Dittrich APM. 1989. The optic lobe of Drosophila melanogaster. I. A Golgi analysis of wild-type structure. Cell Tissue Res. 258:441–75
    [Google Scholar]
  38. Fisher YE, Silies M, Clandinin TR. 2015. Orientation selectivity sharpens motion detection in Drosophila. Neuron 88:2390–402
    [Google Scholar]
  39. Gonzalez-Suarez AD, Zavatone-Veth JA, Chen J, Maulis CA, Badwan BA, Clark DA. 2022. Excitatory and inhibitory neural dynamics jointly tune motion detection. Curr. Biol. 32:173659–75.e8
    [Google Scholar]
  40. Götz K. 1964. Optomotorische Untersuchung des visuellen Systems einiger Augenmutanten der Fruchtfliege Drosophila. Kybernetik 2:277–92
    [Google Scholar]
  41. Groschner LN, Malis JG, Zuidinga B, Borst A. 2022. A biophysical account of multiplication by a single neuron. Nature 603:7899119–23
    [Google Scholar]
  42. Gruntman E, Romani S, Reiser MB. 2018. Simple integration of fast excitation and offset, delayed inhibition computes directional selectivity in Drosophila. Nat. Neurosci. 21:2250–57
    [Google Scholar]
  43. Gruntman E, Romani S, Reiser MB. 2019. The computation of directional selectivity in the Drosophila OFF motion pathway. eLife 8:e50706
    [Google Scholar]
  44. Haag J, Arenz A, Serbe E, Gabbiani F, Borst A. 2016. Complementary mechanisms create direction selectivity in the fly. eLife 5:e17421
    [Google Scholar]
  45. Haag J, Denk W, Borst A. 2004. Fly motion vision is based on Reichardt detectors regardless of the signal-to-noise ratio. PNAS 101:4616333–38
    [Google Scholar]
  46. Haag J, Mishra A, Borst A. 2017. A common directional tuning mechanism of Drosophila motion-sensing neurons in the ON and in the OFF pathway. eLife 6:e29044
    [Google Scholar]
  47. Harris WA, Stark WS, Walker JA. 1976. Genetic dissection of the photoreceptor system in the compound eye of Drosophila melanogaster. J. Physiol. 256:2415–39
    [Google Scholar]
  48. Hassenstein B, Reichardt W. 1956. Systemtheoretische Analyse der Zeit-, Reihenfolgen- und Vorzeichenauswertung bei der Bewegungsperzeption des Rüsselkäfers Chlorophanus. Z. Naturforsch. B 11:513–24
    [Google Scholar]
  49. Hausen K. 1976. Functional characterization and anatomical identification of motion sensitive neurons in the lobula plate of the blowfly Calliphora erythrocephala. Z. Naturforsch. C 31:9–10629–34
    [Google Scholar]
  50. Heisenberg M, Buchner E. 1977. The role of retinula cell types in visual behavior of Drosophila melanogaster. J. Comp. Physiol. A 117:127–62
    [Google Scholar]
  51. Hindmarsh Sten T, Li R, Otopalik A, Ruta V. 2021. Sexual arousal gates visual processing during Drosophila courtship. Nature 595:7868549–53
    [Google Scholar]
  52. Hörmann N, Schilling T, Haji Ali A, Serbe E, Mayer C et al. 2020. A combinatorial code of transcription factors specifies subtypes of visual motion-sensing neurons in Drosophila. Development 147:dev186296
    [Google Scholar]
  53. Jenett A, Rubin GM, Ngo T-TB, Shepherd D, Murphy C et al. 2012. A GAL4-driver line resource for Drosophila neurobiology. Cell Rep. 2:4991–1001
    [Google Scholar]
  54. Joesch M, Plett J, Borst A, Reiff DF. 2008. Response properties of motion-sensitive visual interneurons in the lobula plate of Drosophila melanogaster. Curr. Biol. 18:5368–74
    [Google Scholar]
  55. Joesch M, Schnell B, Raghu S, Reiff DF, Borst A. 2010. ON and OFF pathways in Drosophila motion vision. Nature 468:7321300–4
    [Google Scholar]
  56. Joesch M, Weber F, Eichner H, Borst A. 2013. Functional specialization of parallel motion detection circuits in the fly. J. Neurosci. 33:3902–5
    [Google Scholar]
  57. Koch C, Poggio T 1992. Multiplying with synapses and neurons. Single Neuron Computation T McKenna, J Davis, SF Zornetzer 315–45. San Diego: Academic
    [Google Scholar]
  58. Kohn JR, Portes JP, Christenson MP, Abbott LF, Behnia R. 2021. Flexible filtering by neural inputs supports motion computation across states and stimuli. Curr. Biol. 31:235249–60
    [Google Scholar]
  59. Krapp HG, Hengstenberg B, Hengstenberg R. 1998. Dendritic structure and receptive-field organization of optic flow processing interneurons in the fly. J. Neurophysiol. 79:41902–17
    [Google Scholar]
  60. Krapp HG, Hengstenberg R. 1996. Estimation of self-motion by optic flow processing in single visual interneurons. Nature 384:6608463–66
    [Google Scholar]
  61. Krapp HG, Hengstenberg R, Egelhaaf M. 2001. Binocular contributions to optic flow processing in the fly visual system. J. Neurophysiol. 85:2724–34
    [Google Scholar]
  62. Kurmangaliyev YZ, Yoo J, LoCascio SA, Zipursky SL. 2019. Modular transcriptional programs separately define axon and dendrite connectivity. eLife 8:e50822
    [Google Scholar]
  63. Leong JCS, Esch JJ, Poole B, Ganguli S, Clandinin TR. 2016. Direction selectivity in Drosophila emerges from preferred-direction enhancement and null-direction suppression. J. Neurosci. 36:318078–92
    [Google Scholar]
  64. Leonhardt A, Ammer G, Meier M, Serbe E, Bahl A, Borst A. 2016. Asymmetry of Drosophila ON and OFF motion detectors enhances real-world velocity estimation. Nat Neurosci. 19:5706–15
    [Google Scholar]
  65. Leonhardt A, Meier M, Serbe E, Eichner H, Borst A. 2017. Neural mechanisms underlying sensitivity to reverse-phi motion in the fly. PLOS ONE 12:12e0189019
    [Google Scholar]
  66. Leonte MB, Leonhardt A, Borst A, Mauss AS. 2021. Aerial course stabilization is impaired in motion-blind flies. J. Exp. Biol. 224:14jeb242219
    [Google Scholar]
  67. Liu WW, Wilson RI. 2013. Glutamate is an inhibitory neurotransmitter in the Drosophila olfactory system. PNAS 110:2510294–99
    [Google Scholar]
  68. Longden KD, Rogers EM, Nern A, Dionne H, Reiser MB. 2021. Synergy of color and motion vision for detecting approaching objects in Drosophila. bioRxiv 2021.11.03.467132. https://doi.org/10.1101/2021.11.03.467132
    [Crossref]
  69. Maisak MS, Haag J, Ammer G, Serbe E, Meier M et al. 2013. A directional tuning map of Drosophila elementary motion detectors. Nature 500:7461212–16
    [Google Scholar]
  70. Masland RH. 2012. The neuronal organization of the retina. Neuron 76:2266–80
    [Google Scholar]
  71. Matulis CA, Chen J, Gonzalez-Suarez AD, Behnia R, Clark DA. 2020. Heterogeneous temporal contrast adaptation in Drosophila direction-selective circuits. Curr. Biol. 30:2222–36
    [Google Scholar]
  72. Mauss AS, Meier M, Serbe E, Borst A. 2014. Optogenetic and pharmacologic dissection of feedforward inhibition in Drosophila motion vision. J. Neurosci. 34:62254–63
    [Google Scholar]
  73. Mauss AS, Pankova K, Arenz A, Nern A, Rubin GM, Borst A. 2015. Neural circuit to integrate opposing motions in the visual field. Cell 162:2351–62
    [Google Scholar]
  74. Meier M, Borst A. 2019. Extreme compartmentalization in a Drosophila amacrine cell. Curr. Biol. 29:91545–50
    [Google Scholar]
  75. Meier M, Serbe E, Maisak MS, Haag J, Dickson BJ, Borst A. 2014. Neural circuit components of the Drosophila OFF motion vision pathway. Curr. Biol. 24:4385–92
    [Google Scholar]
  76. Meinertzhagen IA, O'Neil SD. 1991. Synaptic organization of columnar elements in the lamina of the wild type in Drosophila melanogaster. J. Comp. Neurol. 305:2232–63
    [Google Scholar]
  77. Mishra A, Borst A, Haag J. 2022. Voltage to calcium transformation enhances direction selectivity in Drosophila T4 neurons. bioRxiv 2022.07.01.498438. https://doi.org/10.1101/2022.07.01.498438
  78. O'Tousa JE, Baehr W, Martin RL, Hirsh J, Pak WL, Applebury ML. 1985. The Drosophila ninaE gene encodes an opsin. Cell 40:4839–50
    [Google Scholar]
  79. Pankova K, Borst A. 2016. RNA-seq transcriptome analysis of direction-selective T4/T5 neurons in Drosophila. PLOS ONE 11:9e0163986
    [Google Scholar]
  80. Pankova K, Borst A. 2017. Transgenic line for the identification of cholinergic release sites in Drosophila melanogaster. . J. Exp. Biol. 220:81405–10
    [Google Scholar]
  81. Peek MY, Card GM. 2016. Comparative approaches to escape. Curr. Opin. Neurobiol. 41:167–73
    [Google Scholar]
  82. Pfeiffer BD, Jenett A, Hammonds AS, Ngo T-TB, Misra S et al. 2008. Tools for neuroanatomy and neurogenetics in Drosophila. PNAS 105:289715–20
    [Google Scholar]
  83. Pinto-Teixeira F, Koo C, Rossi AM, Neriec N, Bertet C et al. 2018. Development of concurrent retinotopic maps in the fly motion detection circuit. Cell 173:2485–98
    [Google Scholar]
  84. Raji JI, Potter CJ. 2021. The number of neurons in Drosophila and mosquito brains. PLOS ONE 16:5e0250381
    [Google Scholar]
  85. Ramón y Cajal SR, Sanchez D 1915. Contribucion al conocimiento de los centros nerviosos de los insectos Madrid: Imprenta de Hijos de Nicolás Moya
    [Google Scholar]
  86. Reichardt W 1961. Autocorrelation, a principle for the evaluation of sensory information by the central nervous system. Sensory Communication WA Rosenblith 303–17. New York: MIT Press, John Wiley & Sons
    [Google Scholar]
  87. Ribeiro IMA, Drews M, Bahl A, Machacek C, Borst A, Dickson BJ. 2018. Visual projection neurons mediating directed courtship in Drosophila. Cell 174:3607–621
    [Google Scholar]
  88. Richter FG, Fendl S, Haag J, Drews MS, Borst A. 2018. Glutamate signaling in the fly visual system. iScience 7:85–95
    [Google Scholar]
  89. Schiller PH, Sandell JH, Maunsell JHR. 1986. Functions of the ON and OFF channels of the visual system. Nature 322:6082824–25
    [Google Scholar]
  90. Schilling T, Borst A. 2015. Local motion detectors are required for the computation of expansion flow-fields. Biol. Open 4:91105–8
    [Google Scholar]
  91. Schnell B, Raghu S, Nern A, Borst A. 2012. Columnar cells necessary for motion responses of wide-field visual interneurons in Drosophila. J. Comp. Physiol. A 198:5389–95
    [Google Scholar]
  92. Schuetzenberger A, Borst A. 2020. Seeing natural images through the eye of a fly with remote focusing two-photon microscopy. iScience 23:6101170
    [Google Scholar]
  93. Serbe E, Meier M, Leonhardt A, Borst A. 2016. Comprehensive characterization of the major presynaptic elements to the Drosophila OFF motion detector. Neuron 89:4829–41
    [Google Scholar]
  94. Shinomiya K, Huang G, Lu Z, Parag T, Xu CS et al. 2019. Comparisons between the ON- and OFF-edge motion pathways in the Drosophila brain. eLife 8:e40025
    [Google Scholar]
  95. Shinomiya K, Karuppudurai T, Lin TY, Lu Z, Lee CH, Meinertzhagen IA. 2014. Candidate neural substrates of off-edge motion detection in Drosophila. Curr. Biol. 24:101062–70
    [Google Scholar]
  96. Shinomiya K, Nern A, Meinertzhagen IA, Plaza SM, Reiser MB. 2022. Neuronal circuits integrating visual motion information in Drosophila melanogaster. Curr. Biol. 32:163529–44.e2
    [Google Scholar]
  97. Silies M, Gohl DM, Fisher YE, Freifeld L, Clark DA, Clandinin TR. 2013. Modular use of peripheral input channels tunes motion-detecting circuitry. Neuron 79:1111–27
    [Google Scholar]
  98. Single S, Borst A. 1998. Dendritic integration and its role in computing image velocity. Science 281:53841848–50
    [Google Scholar]
  99. Single S, Haag J, Borst A. 1997. Dendritic computation of direction selectivity and gain control in visual interneurons. J. Neurosci. 17:166023–30
    [Google Scholar]
  100. Stavenga DG. 2003a. Angular and spectral sensitivity of fly photoreceptors. I. Integrated facet lens and rhabdomere optics. J. Comp. Physiol. A 189:11–17
    [Google Scholar]
  101. Stavenga DG. 2003b. Angular and spectral sensitivity of fly photoreceptors. II. Dependence on facet lens F-number and rhabdomere type in Drosophila. J. Comp. Physiol. A 189:3189–202
    [Google Scholar]
  102. Strausfeld NJ. 1971. The organization of the insect visual system (light microscopy). Z. Zellforsch. 121:377–441
    [Google Scholar]
  103. Strother JA, Nern A, Reiser MB. 2014. Direct observation of ON and OFF pathways in the Drosophila visual system. Curr. Biol. 24:9976–83
    [Google Scholar]
  104. Strother JA, Wu ST, Wong AM, Nern A, Rogers EM et al. 2017. The emergence of directional selectivity in the visual motion pathway of Drosophila. Neuron 94:1168–82
    [Google Scholar]
  105. Takemura S, Bharioke A, Lu Z, Nern A, Vitaladevuni S et al. 2013. A visual motion detection circuit suggested by Drosophila connectomics. Nature 500:7461175–81
    [Google Scholar]
  106. Takemura SY, Lu Z, Meinertzhagen IA. 2008. Synaptic circuits of the Drosophila optic lobe: the input terminals to the medulla. J. Comp. Neurol. 509:5493–513
    [Google Scholar]
  107. Takemura SY, Karuppudurai T, Ting CY, Lu Z, Lee CH, Meinertzhagen IA. 2011. Cholinergic circuits integrate neighboring visual signals in a Drosophila motion detection pathway. Curr. Biol. 21:242077–84
    [Google Scholar]
  108. Takemura SY, Nern A, Chklovskii DB, Scheffer LK, Rubin GM, Meinertzhagen IA. 2017. The comprehensive connectome of a neural substrate for ‘ON’ motion detection in Drosophila. eLife 6:e24394
    [Google Scholar]
  109. Tuthill JC, Chiappe ME, Reiser MB. 2011. Neural correlates of illusory motion perception in Drosophila. PNAS 108:239685–90
    [Google Scholar]
  110. Tuthill JC, Nern A, Holtz SL, Rubin GM, Reiser MB. 2013. Contributions of the 12 neuron classes in the fly lamina to motion vision. Neuron 79:1128–40
    [Google Scholar]
  111. Wardill TJ, List O, Li X, Dongre S, McCulloch M et al. 2012. Multiple spectral inputs improve motion discrimination in the Drosophila visual system. Science 336:6083925–31
    [Google Scholar]
  112. Wernet MF, Mazzoni EO, Çelik A, Duncan DM, Duncan I, Desplan C 2006. Stochastic spineless expression creates the retinal mosaic for colour vision. Nature 440:7081174–80
    [Google Scholar]
  113. Wienecke CFR, Leong JCS, Clandinin TR. 2018. Linear summation underlies direction selectivity in Drosophila. Neuron 99:4680–88
    [Google Scholar]
  114. Yamaguchi S, Wolf R, Desplan C, Heisenberg M. 2008. Motion vision is independent of color in Drosophila. PNAS 105:124910–15
    [Google Scholar]
  115. Yang HH, St-Pierre F, Sun X, Ding X, Lin MZ, Clandinin TR. 2016. Subcellular imaging of voltage and calcium signals reveals neural processing in vivo. Cell 166:1245–57
    [Google Scholar]
  116. Zavatone-Veth JA, Badwan BA, Clark DA. 2020. A minimal synaptic model for direction selective neurons in Drosophila. J. Vis. 20:22
    [Google Scholar]
/content/journals/10.1146/annurev-neuro-080422-111929
Loading
/content/journals/10.1146/annurev-neuro-080422-111929
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error