1932

Abstract

Although Lorente de No’ recognized the anatomical distinction of the hippocampal Cornu Ammonis (CA) 2 region, it had, until recently, been assigned no unique function. Its location between the key players of the circuit, CA3 and CA1, which along with the entorhinal cortex and dentate gyrus compose the classic trisynaptic circuit, further distracted research interest. However, the connectivity of CA2 pyramidal cells, together with unique patterns of gene expression, hints at a much larger contribution to hippocampal information processing than has been ascribed. Here we review recent advances that have identified new roles for CA2 in hippocampal centric processing, together with specialized functions in social memory and, potentially, as a broadcaster of novelty. These new data, together with CA2's role in disease, justify a closer look at how this small region exerts its influence and how it might best be exploited to understand and treat disease-related circuit dysfunctions.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-neuro-080719-100343
2020-07-08
2024-12-04
Loading full text...

Full text loading...

/deliver/fulltext/neuro/43/1/annurev-neuro-080719-100343.html?itemId=/content/journals/10.1146/annurev-neuro-080719-100343&mimeType=html&fmt=ahah

Literature Cited

  1. Alexander GM, Farris S, Pirone JR, Zheng C, Colgin LL, Dudek SM 2016. Social and novel contexts modify hippocampal CA2 representations of space. Nat. Commun. 7:10300
    [Google Scholar]
  2. Andrioli A, Alonso-Nanclares L, Arellano JI, Defelipe J 2007. Quantitative analysis of parvalbumin-immunoreactive cells in the human epileptic hippocampus. Neuroscience 149:131–43
    [Google Scholar]
  3. Bartesaghi R, Gessi T. 2004. Parallel activation of field CA2 and dentate gyrus by synaptically elicited perforant path volleys. Hippocampus 14:948–63
    [Google Scholar]
  4. Bender F, Gorbati M, Cadavieco MC, Denisova N, Gao X et al. 2015. Theta oscillations regulate the speed of locomotion via a hippocampus to lateral septum pathway. Nat. Commun. 6:8521
    [Google Scholar]
  5. Benes FM, Kwok EW, Vincent SL, Todtenkopf MS 1998. A reduction of nonpyramidal cells in sector CA2 of schizophrenics and manic depressives. Biol. Psychiatry 44:88–97
    [Google Scholar]
  6. Benes FM, Lim B, Matzilevich D, Walsh JP, Subburaju S, Minns M 2007. Regulation of the GABA cell phenotype in hippocampus of schizophrenics and bipolars. PNAS 104:10164–69
    [Google Scholar]
  7. Berretta S, Gisabella B, Benes FM 2009. A rodent model of schizophrenia derived from postmortem studies. Behav. Brain Res. 204:363–68
    [Google Scholar]
  8. Bieri KW, Bobbitt KN, Colgin LL 2014. Slow and fast gamma rhythms coordinate different spatial coding modes in hippocampal place cells. Neuron 82:670–81
    [Google Scholar]
  9. Boehringer R, Polygalov D, Huang AJY, Middleton SJ, Robert V et al. 2017. Chronic loss of CA2 transmission leads to hippocampal hyperexcitability. Neuron 94:642–55.e9
    [Google Scholar]
  10. Botcher NA, Falck JE, Thomson AM, Mercer A 2014. Distribution of interneurons in the CA2 region of the rat hippocampus. Front. Neuroanat. 8:104
    [Google Scholar]
  11. Burgess N, Maguire EA, O'Keefe J 2002. The human hippocampus and spatial and episodic memory. Neuron 35:625–41
    [Google Scholar]
  12. Buzsáki G. 2015. Hippocampal sharp wave-ripple: a cognitive biomarker for episodic memory and planning. Hippocampus 25:1073–188
    [Google Scholar]
  13. Buzsáki G, Horvath Z, Urioste R, Hetke J, Wise K 1992. High-frequency network oscillation in the hippocampus. Science 256:1025–27
    [Google Scholar]
  14. Carr MF, Jadhav SP, Frank LM 2011. Hippocampal replay in the awake state: a potential substrate for memory consolidation and retrieval. Nat. Neurosci. 14:147–53
    [Google Scholar]
  15. Carstens KE, Dudek SM. 2019. Regulation of synaptic plasticity in hippocampal area CA2. Curr. Opin. Neurobiol. 54:194–99
    [Google Scholar]
  16. Chee S-SA, Menard JL, Dringenberg HC 2015. The lateral septum as a regulator of hippocampal theta oscillations and defensive behavior in rats. J. Neurophysiol. 113:1831–41
    [Google Scholar]
  17. Chevaleyre V, Siegelbaum SA. 2010. Strong CA2 pyramidal neuron synapses define a powerful disynaptic cortico-hippocampal loop. Neuron 66:560–72
    [Google Scholar]
  18. Chiang MC, Huang AJY, Wintzer ME, Ohshima T, McHugh TJ 2018. A role for CA3 in social recognition memory. Behav. Brain Res. 354:22–30
    [Google Scholar]
  19. Choi WK, Wirtshafter D, Park HJ, Lee MS, Her S, Shim I 2012. The characteristics of supramammillary cells projecting to the hippocampus in stress response in the rat. Korean J. Physiol. Pharmacol. 16:17–24
    [Google Scholar]
  20. Colgin LL, Denninger T, Fyhn M, Hafting T, Bonnevie T et al. 2009. Frequency of gamma oscillations routes flow of information in the hippocampus. Nature 462:353–57
    [Google Scholar]
  21. Colgin LL, Moser EI, Moser MB 2008. Understanding memory through hippocampal remapping. Trends Neurosci 31:469–77
    [Google Scholar]
  22. Cui Z, Gerfen CR, Young WS 3rd 2013. Hypothalamic and other connections with dorsal CA2 area of the mouse hippocampus. J. Comp. Neurol. 521:1844–66
    [Google Scholar]
  23. Dannenberg H, Pabst M, Braganza O, Schoch S, Niediek J et al. 2015. Synergy of direct and indirect cholinergic septo-hippocampal pathways coordinates firing in hippocampal networks. J. Neurosci. 35:8394–410
    [Google Scholar]
  24. Diba K, Buzsáki G. 2007. Forward and reverse hippocampal place-cell sequences during ripples. Nat. Neurosci. 10:1241–42
    [Google Scholar]
  25. Ding SL, Van Hoesen GW 2015. Organization and detailed parcellation of human hippocampal head and body regions based on a combined analysis of cyto- and chemoarchitecture. J. Comp. Neurol. 523:2233–53
    [Google Scholar]
  26. Dragoi G, Carpi D, Recce M, Csicsvari J, Buzsáki G 1999. Interactions between hippocampus and medial septum during sharp waves and theta oscillation in the behaving rat. J. Neurosci. 19:6191–99
    [Google Scholar]
  27. Dudek SM, Alexander GM, Farris S 2016. Rediscovering area CA2: unique properties and functions. Nat. Rev. Neurosci. 17:89–102
    [Google Scholar]
  28. Ego-Stengel V, Wilson MA. 2010. Disruption of ripple-associated hippocampal activity during rest impairs spatial learning in the rat. Hippocampus 20:1–10
    [Google Scholar]
  29. Farris S, Ward JM, Carstens KE, Samadi M, Wang Y, Dudek SM 2019. Hippocampal subregions express distinct dendritic transcriptomes that reveal differences in mitochondrial function in CA2. Cell Rep 29:522–39.e6
    [Google Scholar]
  30. Fernandez-Lamo I, Gomez-Dominguez D, Sanchez-Aguilera A, Oliva A, Morales AV et al. 2019. Proximodistal organization of the CA2 hippocampal area. Cell Rep 26:1734–46.e6
    [Google Scholar]
  31. Foster DJ. 2017. Replay comes of age. Annu. Rev. Neurosci. 40:581–602
    [Google Scholar]
  32. Foster DJ, Wilson MA. 2006. Reverse replay of behavioural sequences in hippocampal place cells during the awake state. Nature 440:680–83
    [Google Scholar]
  33. Girardeau G, Benchenane K, Wiener SI, Buzsaki G, Zugaro MB 2009. Selective suppression of hippocampal ripples impairs spatial memory. Nat. Neurosci. 12:1222–23
    [Google Scholar]
  34. Grossberg S. 1971. Pavlovian pattern learning by nonlinear neural networks. PNAS 68:828–31
    [Google Scholar]
  35. Hasselmo ME. 1999. Neuromodulation: acetylcholine and memory consolidation. Trends Cogn. Sci. 3:351–59
    [Google Scholar]
  36. Hasselmo ME, Bower JM. 1992. Cholinergic suppression specific to intrinsic not afferent fiber synapses in rat piriform (olfactory) cortex. J. Neurophysiol. 67:1222–29
    [Google Scholar]
  37. Hasselmo ME, McGaughy J. 2004. High acetylcholine levels set circuit dynamics for attention and encoding and low acetylcholine levels set dynamics for consolidation. Acetylcholine Cereb. Cortex 145:207–31
    [Google Scholar]
  38. Henke PG. 1990. Hippocampal pathway to the amygdala and stress-ulcer development. Brain Res. Bull. 25:691–95
    [Google Scholar]
  39. Hitti FL, Siegelbaum SA. 2014. The hippocampal CA2 region is essential for social memory. Nature 508:88–92
    [Google Scholar]
  40. Ito M, Shirao T, Doya K, Sekino Y 2009. Three-dimensional distribution of Fos-positive neurons in the supramammillary nucleus of the rat exposed to novel environment. Neurosci. Res. 64:397–402
    [Google Scholar]
  41. Karlsson MP, Frank LM. 2009. Awake replay of remote experiences in the hippocampus. Nat. Neurosci. 12:913–18
    [Google Scholar]
  42. Kay K, Sosa M, Chung JE, Karlsson MP, Larkin MC, Frank LM 2016. A hippocampal network for spatial coding during immobility and sleep. Nature 531:185–90
    [Google Scholar]
  43. Klausberger T, Somogyi P. 2008. Neuronal diversity and temporal dynamics: the unity of hippocampal circuit operations. Science 321:53–57
    [Google Scholar]
  44. Kocsis B, Vertes RP. 1994. Characterization of neurons of the supramammillary nucleus and mammillary body that discharge rhythmically with the hippocampal theta-rhythm in the rat. J. Neurosci. 14:7040–52
    [Google Scholar]
  45. Kohara K, Pignatelli M, Rivest AJ, Jung HY, Kitamura T et al. 2014. Cell type–specific genetic and optogenetic tools reveal hippocampal CA2 circuits. Nat. Neurosci. 17:269–79
    [Google Scholar]
  46. Lee I, Hunsaker MR, Kesner RP 2005. The role of hippocampal subregions in detecting spatial novelty. Behav. Neurosci. 119:145–53
    [Google Scholar]
  47. Lein ES, Zhao X, Gage FH 2004. Defining a molecular atlas of the hippocampus using DNA microarrays and high-throughput in situ hybridization. J. Neurosci. 24:3879–89
    [Google Scholar]
  48. Leranth C, Ribak CE. 1991. Calcium-binding proteins are concentrated in the CA2 field of the monkey hippocampus: a possible key to this region's resistance to epileptic damage. Exp. Brain Res. 85:129–36
    [Google Scholar]
  49. Leroy F, Park J, Asok A, Brann DH, Meira T et al. 2018. A circuit from hippocampal CA2 to lateral septum disinhibits social aggression. Nature 564:213–18
    [Google Scholar]
  50. Lisman JE. 1999. Relating hippocampal circuitry to function: recall of memory sequences by reciprocal dentate-CA3 interactions. Neuron 22:233–42
    [Google Scholar]
  51. Llorens-Martin M, Jurado-Arjona J, Avila J, Hernandez F 2015. Novel connection between newborn granule neurons and the hippocampal CA2 field. Exp. Neurol. 263:285–92
    [Google Scholar]
  52. Lorente de Nó R. 1934. Studies on the structure of the cerebral cortex. II. Continuation of the study of the ammonic system. J. Psychol. Neurol. 46:113–77
    [Google Scholar]
  53. Lu L, Igarashi KM, Witter MP, Moser EI, Moser MB 2015. Topography of place maps along the CA3-to-CA2 axis of the hippocampus. Neuron 87:1078–92
    [Google Scholar]
  54. Mankin EA, Diehl GW, Sparks FT, Leutgeb S, Leutgeb JK 2015. Hippocampal CA2 activity patterns change over time to a larger extent than between spatial contexts. Neuron 85:190–201
    [Google Scholar]
  55. McClelland JL, Goddard NH. 1996. Considerations arising from a complementary learning systems perspective on hippocampus and neocortex. Hippocampus 6:654–65
    [Google Scholar]
  56. McClelland JL, Rumelhart DE. 1985. Distributed memory and the representation of general and specific information. J. Exp. Psychol. Gen. 114:159–97
    [Google Scholar]
  57. McNaughton BL, Morris RGM. 1987. Hippocampal synaptic enhancement and information-storage within a distributed memory system. Trends Neurosci 10:408–15
    [Google Scholar]
  58. Meira T, Leroy F, Buss EW, Oliva A, Park J, Siegelbaum SA 2018. A hippocampal circuit linking dorsal CA2 to ventral CA1 critical for social memory dynamics. Nat. Commun. 9:4163
    [Google Scholar]
  59. Mercer A, Botcher NA, Eastlake K, Thomson AM 2012. SP-SR interneurones: a novel class of neurones of the CA2 region of the hippocampus. Hippocampus 22:1758–69
    [Google Scholar]
  60. Mercer A, Trigg HL, Thomson AM 2007. Characterization of neurons in the CA2 subfield of the adult rat hippocampus. J. Neurosci. 27:7329–38
    [Google Scholar]
  61. Middleton SJ, Kneller EM, Chen S, Ogiwara I, Montal M et al. 2018. Altered hippocampal replay is associated with memory impairment in mice heterozygous for the Scn2a gene. Nat. Neurosci. 21:996–1003
    [Google Scholar]
  62. Middleton SJ, McHugh TJ. 2016. Silencing CA3 disrupts temporal coding in the CA1 ensemble. Nat. Neurosci. 19:945–51
    [Google Scholar]
  63. Moser MB, Moser EI. 1998. Functional differentiation in the hippocampus. Hippocampus 8:608–19
    [Google Scholar]
  64. Moser MB, Moser EI, Forrest E, Andersen P, Morris RGM 1995. Spatial learning with a minislab in the dorsal hippocampus. PNAS 92:9697–701
    [Google Scholar]
  65. Nakashiba T, Young JZ, McHugh TJ, Buhl DL, Tonegawa S 2008. Transgenic inhibition of synaptic transmission reveals role of CA3 output in hippocampal learning. Science 319:1260–64
    [Google Scholar]
  66. Narr KL, Thompson PM, Szeszko P, Robinson D, Jang S et al. 2004. Regional specificity of hippocampal volume reductions in first-episode schizophrenia. NeuroImage 21:1563–75
    [Google Scholar]
  67. Nasrallah K, Piskorowski RA, Chevaleyre V 2015. Inhibitory plasticity permits the recruitment of CA2 pyramidal neurons by CA3. eNeuro 2: ENEURO.0049-15.2015
    [Google Scholar]
  68. Nokia MS, Mikkonen JE, Penttonen M, Wikgren J 2012. Disrupting neural activity related to awake-state sharp wave-ripple complexes prevents hippocampal learning. Front. Behav. Neurosci. 6:84
    [Google Scholar]
  69. Norimoto H, Makino K, Gao M, Shikano Y, Okamoto K et al. 2018. Hippocampal ripples down-regulate synapses. Science 359:1524–27
    [Google Scholar]
  70. O'Keefe J, Dostrovsky J. 1971. The hippocampus as a spatial map. Preliminary evidence from unit activity in the freely-moving rat. Brain Res 34:171–75
    [Google Scholar]
  71. O'Reilly RC, Rudy JW. 2001. Conjunctive representations in learning and memory: principles of cortical and hippocampal function. Psychol. Rev. 108:311–45
    [Google Scholar]
  72. Ochiishi T, Saitoh Y, Yukawa A, Saji M, Ren Y et al. 1999. High level of adenosine A1 receptor-like immunoreactivity in the CA2/CA3a region of the adult rat hippocampus. Neuroscience 93:955–67
    [Google Scholar]
  73. Okamoto K, Ikegaya Y. 2019. Recurrent connections between CA2 pyramidal cells. Hippocampus 29:305–12
    [Google Scholar]
  74. Okuyama T, Kitamura T, Roy DS, Itohara S, Tonegawa S 2016. Ventral CA1 neurons store social memory. Science 353:1536–41
    [Google Scholar]
  75. Olafsdottir HF, Bush D, Barry C 2018. The role of hippocampal replay in memory and planning. Curr. Biol. 28:R37–50
    [Google Scholar]
  76. Oliva A, Fernandez-Ruiz A, Buzsáki G, Berenyi A 2016a. Role of hippocampal CA2 region in triggering sharp-wave ripples. Neuron 91:1342–55
    [Google Scholar]
  77. Oliva A, Fernandez-Ruiz A, Buzsáki G, Berenyi A 2016b. Spatial coding and physiological properties of hippocampal neurons in the Cornu Ammonis subregions. Hippocampus 26:1593–607
    [Google Scholar]
  78. Pagani JH, Zhao M, Cui Z, Avram SK, Caruana DA et al. 2015. Role of the vasopressin 1b receptor in rodent aggressive behavior and synaptic plasticity in hippocampal area CA2. Mol. Psychiatry 20:490–99
    [Google Scholar]
  79. Pan WX, McNaughton N. 2002. The role of the medial supramammillary nucleus in the control of hippocampal theta activity and behaviour in rats. Eur. J. Neurosci. 16:1797–809
    [Google Scholar]
  80. Pfeiffer BE, Foster DJ. 2013. Hippocampal place-cell sequences depict future paths to remembered goals. Nature 497:74–79
    [Google Scholar]
  81. Piskorowski RA, Chevaleyre V. 2013. Delta-opioid receptors mediate unique plasticity onto parvalbumin-expressing interneurons in area CA2 of the hippocampus. J. Neurosci. 33:14567–78
    [Google Scholar]
  82. Piskorowski RA, Chevaleyre V. 2018. Memory circuits: CA2. Curr. Opin. Neurobiol. 52:54–59
    [Google Scholar]
  83. Piskorowski RA, Nasrallah K, Diamantopoulou A, Mukai J, Hassan SI et al. 2016. Age-dependent specific changes in area CA2 of the hippocampus and social memory deficit in a mouse model of the 22q11.2 deletion syndrome. Neuron 89:163–76
    [Google Scholar]
  84. Rao RP, von Heimendahl M, Bahr V, Brecht M 2019. Neuronal responses to conspecifics in the ventral CA1. Cell Rep 27:3460–72.e3
    [Google Scholar]
  85. Rolls ET. 2010. A computational theory of episodic memory formation in the hippocampus. Behav. Brain Res. 215:180–96
    [Google Scholar]
  86. Rowland DC, Weible AP, Wickersham IR, Wu HY, Mayford M et al. 2013. Transgenically targeted rabies virus demonstrates a major monosynaptic projection from hippocampal area CA2 to medial entorhinal layer II neurons. J. Neurosci. 33:14889–98
    [Google Scholar]
  87. Schomburg EW, Fernandez-Ruiz A, Mizuseki K, Berenyi A, Anastassiou CA et al. 2014. Theta phase segregation of input-specific gamma patterns in entorhinal-hippocampal networks. Neuron 84:470–85
    [Google Scholar]
  88. Scoville WB, Milner B. 1957. Loss of recent memory after bilateral hippocampal lesions. J. Neurol. Neurosurg. Psychiatry 20:11–21
    [Google Scholar]
  89. Sekino Y, Obata K, Tanifuji M, Mizuno M, Murayama J 1997. Delayed signal propagation via CA2 in rat hippocampal slices revealed by optical recording. J. Neurophysiol. 78:1662–68
    [Google Scholar]
  90. Shinohara Y, Hosoya A, Yahagi K, Ferecsko AS, Yaguchi K et al. 2012. Hippocampal CA3 and CA2 have distinct bilateral innervation patterns to CA1 in rodents. Eur. J. Neurosci. 35:702–10
    [Google Scholar]
  91. Smith AS, Williams Avram SK, Cymerblit-Sabba A, Song J, Young WS 2016. Targeted activation of the hippocampal CA2 area strongly enhances social memory. Mol. Psychiatry 21:1137–44
    [Google Scholar]
  92. Stevenson EL, Caldwell HK. 2014. Lesions to the CA2 region of the hippocampus impair social memory in mice. Eur. J. Neurosci. 40:3294–301
    [Google Scholar]
  93. Sun Q, Srinivas KV, Sotayo A, Siegelbaum SA 2014. Dendritic Na+ plus spikes enable cortical input to drive action potential output from hippocampal CA2 pyramidal neurons. eLife 3:e04551
    [Google Scholar]
  94. Tamamaki N, Abe K, Nojyo Y 1988. Three-dimensional analysis of the whole axonal arbors originating from single CA2 pyramidal neurons in the rat hippocampus with the aid of a computer graphic technique. Brain Res 452:255–72
    [Google Scholar]
  95. Teng E, Squire LR. 1999. Memory for places learned long ago is intact after hippocampal damage. Nature 400:675–77
    [Google Scholar]
  96. Tosches MA, Yamawaki TM, Naumann RK, Jacobi AA, Tushev G, Laurent G 2018. Evolution of pallium, hippocampus, and cortical cell types revealed by single-cell transcriptomics in reptiles. Science 360:881–88
    [Google Scholar]
  97. Wersinger SR, Ginns EI, O'Carroll AM, Lolait SJ, Young WS 3rd 2002. Vasopressin V1b receptor knockout reduces aggressive behavior in male mice. Mol. Psychiatry 7:975–84
    [Google Scholar]
  98. Wintzer ME, Boehringer R, Polygalov D, McHugh TJ 2014. The hippocampal CA2 ensemble is sensitive to contextual change. J. Neurosci. 34:3056–66
    [Google Scholar]
  99. Wirtshafter D, Stratford TR, Shim I 1998. Placement in a novel environment induces Fos-like immunoreactivity in supramammillary cells projecting to the hippocampus and midbrain. Brain Res 789:331–34
    [Google Scholar]
  100. Wong RK, Traub RD. 1983. Synchronized burst discharge in disinhibited hippocampal slice. I. Initiation in CA2-CA3 region. J. Neurophysiol. 49:442–58
    [Google Scholar]
  101. Young D, Dragunow M. 1995. Neuronal injury following electrically-induced status epilepticus with and without adenosine receptor antagonism. Exp. Neurol. 133:125–37
    [Google Scholar]
  102. Young WS, Li J, Wersinger SR, Palkovits M 2006. The vasopressin 1b receptor is prominent in the hippocampal area CA2 where it is unaffected by restraint stress or adrenalectomy. Neuroscience 143:1031–39
    [Google Scholar]
  103. Zhang ZJ, Reynolds GP. 2002. A selective decrease in the relative density of parvalbumin-immunoreactive neurons in the hippocampus in schizophrenia. Schizophr. Res. 55:1–10
    [Google Scholar]
  104. Zhao M, Choi YS, Obrietan K, Dudek SM 2007. Synaptic plasticity (and the lack thereof) in hippocampal CA2 neurons. J. Neurosci. 27:12025–32
    [Google Scholar]
  105. Zheng C, Bieri KW, Hsiao YT, Colgin LL 2016. Spatial sequence coding differs during slow and fast gamma rhythms in the hippocampus. Neuron 89:398–408
    [Google Scholar]
/content/journals/10.1146/annurev-neuro-080719-100343
Loading
/content/journals/10.1146/annurev-neuro-080719-100343
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error