1932

Abstract

Auditory processing in mammals begins in the peripheral inner ear and extends to the auditory cortex. Sound is transduced from mechanical stimuli into electrochemical signals of hair cells, which relay auditory information via the primary auditory neurons to cochlear nuclei. Information is subsequently processed in the superior olivary complex, lateral lemniscus, and inferior colliculus and projects to the auditory cortex via the medial geniculate body in the thalamus. Recent advances have provided valuable insights into the development and functioning of auditory structures, complementing our understanding of the physiological mechanisms underlying auditory processing. This comprehensive review explores the genetic mechanisms required for auditory system development from the peripheral cochlea to the auditory cortex. We highlight transcription factors and other genes with key recurring and interacting roles in guiding auditory system development and organization. Understanding these gene regulatory networks holds promise for developing novel therapeutic strategies for hearing disorders, benefiting millions globally.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-neuro-081423-093942
2024-08-08
2024-12-07
Loading full text...

Full text loading...

/deliver/fulltext/neuro/47/1/annurev-neuro-081423-093942.html?itemId=/content/journals/10.1146/annurev-neuro-081423-093942&mimeType=html&fmt=ahah

Literature Cited

  1. Agoston Z, Li N, Haslinger A, Wizenmann A, Schulte D. 2012.. Genetic and physical interaction of Meis2, Pax3 and Pax7 during dorsal midbrain development. . BMC Dev. Biol. 12::10
    [Crossref] [Google Scholar]
  2. Altman J, Bayer SA. 1989.. Development of the rat thalamus: V. The posterior lobule of the thalamic neuroepithelium and the time and site of origin and settling pattern of neurons of the medial geniculate body. . J. Comp. Neurol. 284::56780
    [Crossref] [Google Scholar]
  3. Arac A, Zhao P, Dobkin BH, Carmichael ST, Golshani P. 2019.. Deep Behavior: a deep learning toolbox for automated analysis of animal and human behavior imaging data. . Front. Syst. Neurosci. 13::20
    [Crossref] [Google Scholar]
  4. Arnold SJ, Huang G-J, Cheung AFP, Era T, Nishikawa S-I, et al. 2008.. The T-box transcription factor Eomes/Tbr2 regulates neurogenesis in the cortical subventricular zone. . Genes Dev. 22:(18):247984
    [Crossref] [Google Scholar]
  5. Bermingham NA, Hassan BA, Price SD, Vollrath MA, Ben-Arie N, et al. 1999.. Math1: an essential gene for the generation of inner ear hair cells. . Science 284::183741
    [Crossref] [Google Scholar]
  6. Blinkiewicz PV, Long MR, Stoner ZA, Ketchum EM, Sheltz-Kempf SN, Duncan JS. 2023.. Gata3 is required in late proneurosensory development for proper sensory cell formation and organization. . Sci. Rep. 13::12573
    [Crossref] [Google Scholar]
  7. Bordeynik-Cohen M, Sperber M, Ebbers L, Messika-Gold N, Krohs C, et al. 2023.. Shared and organ-specific gene-expression programs during the development of the cochlea and the superior olivary complex. . RNA Biol. 20::62940
    [Crossref] [Google Scholar]
  8. Bouchard M, de Caprona D, Busslinger M, Xu P, Fritzsch B. 2010.. Pax2 and Pax8 cooperate in mouse inner ear morphogenesis and innervation. . BMC Dev. Biol. 10::89
    [Crossref] [Google Scholar]
  9. Budinger E. 2020.. Primary auditory cortex and the thalamo-cortico-thalamic circuitry I. Anatomy. . In The Senses: A Comprehensive Reference, ed. B Fritzsch , pp. 62356. Oxford, UK:: Elsevier. , 2nd ed..
    [Google Scholar]
  10. Budinger E, Kanold PO. 2018.. Auditory cortex circuits. . In The Mammalian Auditory Pathways, ed. D Oliver, N Cant, R Fay, A Popper , pp. 199233. Cham, Switz.:: Springer
    [Google Scholar]
  11. Cai X, Kardon AP, Snyder LM, Kuzirian MS, Minestro S, et al. 2016.. Bhlhb5::flpo allele uncovers a requirement for Bhlhb5 for the development of the dorsal cochlear nucleus. . Dev. Biol. 414::14960
    [Crossref] [Google Scholar]
  12. Chizhikov VV, Iskusnykh IY, Fattakhov N, Fritzsch B. 2021.. Lmx1a and Lmx1b are redundantly required for the development of multiple components of the mammalian auditory system. . Neuroscience 452::24764
    [Crossref] [Google Scholar]
  13. Chonko KT, Jahan I, Stone J, Wright MC, Fujiyama T, et al. 2013.. Atoh1 directs hair cell differentiation and survival in the late embryonic mouse inner ear. . Dev. Biol. 381::40110
    [Crossref] [Google Scholar]
  14. Chumak T, Tothova D, Filova I, Bures Z, Popelar J, et al. 2021.. Overexpression of Isl1 under the Pax2 promoter, leads to impaired sound processing and increased inhibition in the inferior colliculus. . Int. J. Mol. Sci. 22::4507
    [Crossref] [Google Scholar]
  15. Cossart R, Garel S. 2022.. Step by step: cells with multiple functions in cortical circuit assembly. . Nat. Rev. Neurosci. 23::395410
    [Crossref] [Google Scholar]
  16. Cossart R, Khazipov R. 2022.. How development sculpts hippocampal circuits and function. . Physiol. Rev. 102::34378
    [Crossref] [Google Scholar]
  17. Dabdoub A, Fritzsch B, Popper AN, Fay RR, eds. 2016.. The Primary Auditory Neurons of the Mammalian Cochlea. New York:: Springer
    [Google Scholar]
  18. Dennis DJ, Han S, Schuurmans C. 2019.. bHLH transcription factors in neural development, disease, and reprogramming. . Brain Res. 1705::4865
    [Crossref] [Google Scholar]
  19. Di Bonito M, Studer M. 2017.. Cellular and molecular underpinnings of neuronal assembly in the central auditory system during mouse development. . Front. Neural Circuits 11::18
    [Crossref] [Google Scholar]
  20. Di Bonito M, Studer M, Puelles L. 2017.. Nuclear derivatives and axonal projections originating from rhombomere 4 in the mouse hindbrain. . Brain Struct. Funct. 222::350942
    [Crossref] [Google Scholar]
  21. Driscoll ME, Tadi P. 2022.. Neuroanatomy, Inferior Colliculus. Treasure Island, FL:: StatPearls Publ.
    [Google Scholar]
  22. Driver EC, Kelley MW. 2020.. Development of the cochlea. . Development 147::dev162263
    [Crossref] [Google Scholar]
  23. Duncan JS, Fritzsch B. 2013.. Continued expression of GATA3 is necessary for cochlear neurosensory development. . PLOS ONE 8::e62046
    [Crossref] [Google Scholar]
  24. Dvorakova M, Macova I, Bohuslavova R, Anderova M, Fritzsch B, Pavlinkova G. 2020.. Early ear neuronal development, but not olfactory or lens development, can proceed without SOX2. . Dev. Biol. 457::4356
    [Crossref] [Google Scholar]
  25. Eggenschwiler JT, Bulgakov OV, Qin J, Li T, Anderson KV. 2006.. Mouse Rab23 regulates hedgehog signaling from smoothened to Gli proteins. . Dev. Biol. 290::112
    [Crossref] [Google Scholar]
  26. Elliott KL, Fritzsch B, Duncan JS. 2018.. Evolutionary and developmental biology provide insights into the regeneration of organ of Corti hair cells. . Front. Cell. Neurosci. 12::252
    [Crossref] [Google Scholar]
  27. Elliott KL, Fritzsch B, Yamoah EN, Zine A. 2022.. Age-related hearing loss: sensory and neural etiology and their interdependence. . Front. Aging Neurosci. 14::814528
    [Crossref] [Google Scholar]
  28. Elliott KL, Iskusnykh IY, Chizhikov VV, Fritzsch B. 2023.. Ptf1a expression is necessary for correct targeting of spiral ganglion neurons within the cochlear nuclei. . Neurosci. Lett. 806::137244
    [Crossref] [Google Scholar]
  29. Elliott KL, Kersigo J, Lee JH, Jahan I, Pavlinkova G, et al. 2021a.. Developmental changes in peripherin-eGFP expression in spiral ganglion neurons. . Front. Cell. Neurosci. 15::678113
    [Crossref] [Google Scholar]
  30. Elliott KL, Kersigo J, Lee JH, Yamoah EN, Fritzsch B. 2021b.. Sustained loss of Bdnf affects peripheral but not central vestibular targets. . Front. Neurol. 12::768456
    [Crossref] [Google Scholar]
  31. Elliott KL, Kersigo J, Pan N, Jahan I, Fritzsch B. 2017.. Spiral ganglion neuron projection development to the hindbrain in mice lacking peripheral and/or central target differentiation. . Front. Neural Circuits 11::25
    [Crossref] [Google Scholar]
  32. Elliott KL, Pavlínková G, Chizhikov VV, Yamoah EN, Fritzsch B. 2021c.. Development in the mammalian auditory system depends on transcription factors. . Int. J. Mol. Sci. 22::4189
    [Crossref] [Google Scholar]
  33. Englund C, Fink A, Lau C, Pham D, Daza RA, et al. 2005.. Pax6, Tbr2, and Tbr1 are expressed sequentially by radial glia, intermediate progenitor cells, and postmitotic neurons in developing neocortex. . J. Neurosci. 25::24751
    [Crossref] [Google Scholar]
  34. Farago AF, Awatramani RB, Dymecki SM. 2006.. Assembly of the brainstem cochlear nuclear complex is revealed by intersectional and subtractive genetic fate maps. . Neuron 50::20518
    [Crossref] [Google Scholar]
  35. Felmy F, Meyer EM. 2020.. Lateral lemniscus. . In The Senses: A Comprehensive Reference, ed. B Fritzsch , pp. 55665. Oxford, UK:: Elsevier. , 2nd ed..
    [Google Scholar]
  36. Filova I, Bohuslavova R, Tavakoli M, Yamoah EN, Fritzsch B, Pavlinkova G. 2022a.. Early deletion of Neurod1 alters neuronal lineage potential and diminishes neurogenesis in the inner ear. . Front. Cell Dev. Biol. 10::845461
    [Crossref] [Google Scholar]
  37. Filova I, Dvorakova M, Bohuslavova R, Pavlinek A, Elliott KL, et al. 2020.. Combined Atoh1 and Neurod1 deletion reveals autonomous growth of auditory nerve fibers. . Mol. Neurobiol. 57::530723
    [Crossref] [Google Scholar]
  38. Filova I, Pysanenko K, Tavakoli M, Vochyanova S, Dvorakova M, et al. 2022b.. ISL1 is necessary for auditory neuron development and contributes toward tonotopic organization. . PNAS 119::e2207433119
    [Crossref] [Google Scholar]
  39. Fritzsch B. 2023.. Sensing Sound: Evolutionary Neurobiology of a Novel Sense of Hearing. Boca Raton, FL:: CRC Press
    [Google Scholar]
  40. Fritzsch B, Elliott KL, Pavlinkova G. 2019.. Primary sensory map formations reflect unique needs and molecular cues specific to each sensory system. . F1000Research 8::345
    [Crossref] [Google Scholar]
  41. Fritzsch B, Elliott KL, Yamoah EN. 2022.. Neurosensory development of the four brainstem-projecting sensory systems and their integration in the telencephalon. . Front. Neural Circuits 16::913480
    [Crossref] [Google Scholar]
  42. Fritzsch B, Kersigo J, Yang T, Jahan I, Pan N. 2016.. Neurotrophic factor function during ear development: expression changes define critical phases for neuronal viability. . In The Primary Auditory Neurons of the Mammalian Cochlea, ed. A Dabdoub, B Fritzsch, AN Popper, RR Fay , pp. 4984. New York:: Springer
    [Google Scholar]
  43. Fritzsch B, Martin PR. 2022.. Vision and retina evolution: how to develop a retina. . IBRO Neurosci. Rep. 12::24048
    [Crossref] [Google Scholar]
  44. Fujiyama T, Yamada M, Terao M, Terashima T, Hioki H, et al. 2009.. Inhibitory and excitatory subtypes of cochlear nucleus neurons are defined by distinct bHLH transcription factors, Ptf1a and Atoh1. . Development 136:204958
    [Google Scholar]
  45. García-Añoveros J, Clancy JC, Foo CZ, García-Gómez I, Zhou Y, et al. 2022.. Tbx2 is a master regulator of inner versus outer hair cell differentiation. . Nature 605::298303
    [Crossref] [Google Scholar]
  46. Glover JC, Elliott KL, Erives A, Chizhikov VV, Fritzsch B. 2018.. Wilhelm His’ lasting insights into hindbrain and cranial ganglia development and evolution. . Dev. Biol. 444::S1424
    [Crossref] [Google Scholar]
  47. Glover JC, Fritzsch B. 2022.. Molecular mechanisms governing development of the hindbrain choroid plexus and auditory projection: a validation of the seminal observations of Wilhelm His. . IBRO Neurosci. Rep. 13::30613
    [Crossref] [Google Scholar]
  48. Goodrich L, Kanold P. 2020.. Functional circuit development in the auditory system. . In Neural Circuit and Cognitive Development: Comprehensive Developmental Neuroscience, ed. J Rubenstein, P Rakic , pp. 2755. New York:: Elsevier. , 2nd ed..
    [Google Scholar]
  49. Grothe B. 2020.. The auditory system function—an integrative perspective. . In The Senses: A Comprehensive Reference, ed. B Fritzsch , pp. 117. Oxford, UK:: Elsevier. , 2nd ed..
    [Google Scholar]
  50. Gurung B, Fritzsch B. 2004.. Time course of embryonic midbrain and thalamic auditory connection development in mice as revealed by carbocyanine dye tracing. . J. Comp. Neurol. 479::30927
    [Crossref] [Google Scholar]
  51. Henke RM, Meredith DM, Borromeo MD, Savage TK, Johnson JE. 2009.. Ascl1 and Neurog2 form novel complexes and regulate Delta-like3 (Dll3) expression in the neural tube. . Dev. Biol. 328::52940
    [Crossref] [Google Scholar]
  52. Hernandez-Miranda LR, Müller T, Birchmeier C. 2017.. The dorsal spinal cord and hindbrain: from developmental mechanisms to functional circuits. . Dev. Biol. 432::3442
    [Crossref] [Google Scholar]
  53. Hevner RF. 2022.. Neurogenesis of cerebral cortex projection neurons. . In Neuroscience in the 21st Century: From Basic to Clinical, ed. DW Pfaff , pp. 27589. New York:: Springer
    [Google Scholar]
  54. Hevner RF, Shi L, Justice N, Hsueh Y-P, Sheng M, et al. 2001.. Tbr1 regulates differentiation of the preplate and layer 6. . Neuron 29::35366
    [Crossref] [Google Scholar]
  55. Holley M, Rhodes C, Kneebone A, Herde MK, Fleming M, Steel KP. 2010.. Emx2 and early hair cell development in the mouse inner ear. . Dev. Biol. 340::54756
    [Crossref] [Google Scholar]
  56. Horng S, Kreiman G, Ellsworth C, Page D, Blank M, et al. 2009.. Differential gene expression in the developing lateral geniculate nucleus and medial geniculate nucleus reveals novel roles for Zic4 and Foxp2 in visual and auditory pathway development. . J. Neurosci. 29::1367283
    [Crossref] [Google Scholar]
  57. Hoshino N, Altarshan Y, Alzein A, Fernando AM, Nguyen HT, et al. 2021.. Ephrin-A3 is required for tonotopic map precision and auditory functions in the mouse auditory brainstem. . J. Comp. Neurol. 529::363354
    [Crossref] [Google Scholar]
  58. Iskusnykh IY, Steshina EY, Chizhikov VV. 2016.. Loss of Ptf1a leads to a widespread cell-fate misspecification in the brainstem, affecting the development of somatosensory and viscerosensory nuclei. . J. Neurosci. 36::2691710
    [Crossref] [Google Scholar]
  59. Iyer AA, Groves AK. 2021.. Transcription factor reprogramming in the inner ear: turning on cell fate switches to regenerate sensory hair cells. . Front. Cell. Neurosci. 15::660748
    [Crossref] [Google Scholar]
  60. Jahan I, Elliott KL, Fritzsch B. 2018.. Understanding molecular evolution and development of the organ of Corti can provide clues for hearing restoration. . Integr. Comp. Biol. 58::35165
    [Crossref] [Google Scholar]
  61. Jahan I, Kersigo J, Elliott KL, Fritzsch B. 2021.. Smoothened overexpression causes trochlear motoneurons to reroute and innervate ipsilateral eyes. . Cell Tissue Res. 384::5972
    [Crossref] [Google Scholar]
  62. Kaiser M, Lüdtke TH, Deuper L, Rudat C, Christoffels VM, et al. 2022.. TBX2 specifies and maintains inner hair and supporting cell fate in the Organ of Corti. . Nat. Commun. 13:: 7628.
    [Google Scholar]
  63. Kaiser M, Wojahn I, Rudat C, Lüdtke TH, Christoffels VM, et al. 2021.. Regulation of otocyst patterning by Tbx2 and Tbx3 is required for inner ear morphogenesis in the mouse. . Development 148::dev195651
    [Crossref] [Google Scholar]
  64. Kandler K, Lee J, Pecka M. 2020.. The superior olivary complex. . In The Senses: A Comprehensive Reference, ed. B Fritzsch , pp. 53355. Oxford, UK:: Elsevier. , 2nd ed..
    [Google Scholar]
  65. Kanold PO, Luhmann HJ. 2010.. The subplate and early cortical circuits. . Annu. Rev. Neurosci. 33::2348
    [Crossref] [Google Scholar]
  66. Kanold PO, Nelken I, Polley DB. 2014.. Local versus global scales of organization in auditory cortex. . Trends Neurosci. 37::50210
    [Crossref] [Google Scholar]
  67. Karmakar K, Narita Y, Fadok J, Ducret S, Loche A, et al. 2017.. Hox2 genes are required for tonotopic map precision and sound discrimination in the mouse auditory brainstem. . Cell Rep. 18::18597
    [Crossref] [Google Scholar]
  68. Kersigo J, D'Angelo A, Gray BD, Soukup GA, Fritzsch B. 2011.. The role of sensory organs and the forebrain for the development of the craniofacial shape as revealed by Foxg1-cre-mediated microRNA loss. . Genesis 49::32641
    [Crossref] [Google Scholar]
  69. Kersigo J, Fritzsch B. 2015.. Inner ear hair cells deteriorate in mice engineered to have no or diminished innervation. . Front. Aging Neurosci. 7::33
    [Crossref] [Google Scholar]
  70. Kiernan AE, Pelling AL, Leung KK, Tang AS, Bell DM, et al. 2005.. Sox2 is required for sensory organ development in the mammalian inner ear. . Nature 434::103135
    [Crossref] [Google Scholar]
  71. Kopp-Scheinpflug C, Forsythe ID. 2018.. Integration of synaptic and intrinsic conductances shapes microcircuits in the superior olivary complex. . In The Mammalian Auditory Pathways, ed. D Oliver, N Cant, R Fay, A Popper , pp. 10126. Cham, Switz:.: Springer
    [Google Scholar]
  72. Kopp-Scheinpflug C, Linden JF. 2020.. Coding of temporal information. . In The Senses: A Comprehensive Reference, ed. B Fritzsch , pp. 691712. Oxford, UK:: Elsevier. , 2nd ed..
    [Google Scholar]
  73. Kral A, Pallas SL. 2011.. Development of the auditory cortex. . In The Auditory Cortex, ed. JA Winer, CE Schreiner , pp. 44363. New York:: Springer
    [Google Scholar]
  74. Krasewicz J, Yu WM. 2023.. Eph and ephrin signaling in the development of the central auditory system. . Dev. Dyn. 252::1026
    [Crossref] [Google Scholar]
  75. Li S, He S, Lu Y, Jia S, Liu Z. 2023.. Epistatic genetic interactions between Insm1 and Ikzf2 during cochlear outer hair cell development. . Cell Rep. 42::112504
    [Crossref] [Google Scholar]
  76. Liu M, Pleasure SJ, Collins AE, Noebels JL, Naya FJ, et al. 2000.. Loss of BETA2/NeuroD leads to malformation of the dentate gyrus and epilepsy. . PNAS 97::86570
    [Crossref] [Google Scholar]
  77. Lu H-W, Smith PH, Joris PX. 2022.. Mammalian octopus cells are direction selective to frequency sweeps by excitatory synaptic sequence detection. . PNAS 119::e2203748119
    [Crossref] [Google Scholar]
  78. Luhmann HJ, Kanold PO, Molnár Z, Vanhatalo S. 2022.. Early brain activity: translations between bedside and laboratory. . Prog. Neurobiol. 213::102268
    [Crossref] [Google Scholar]
  79. Ma Q, Anderson DJ, Fritzsch B. 2000.. Neurogenin 1 null mutant ears develop fewer, morphologically normal hair cells in smaller sensory epithelia devoid of innervation. . J. Assoc. Res. Otolaryngol. 1::12943
    [Crossref] [Google Scholar]
  80. Macova I, Pysanenko K, Chumak T, Dvorakova M, Bohuslavova R, et al. 2019.. Neurod1 is essential for the primary tonotopic organization and related auditory information processing in the midbrain. . J. Neurosci. 39::9841004
    [Crossref] [Google Scholar]
  81. Malmierca MS. 2015.. Auditory system. . In The Rat Nervous System, ed. G Paxinos , pp. 865946. London:: Elsevier
    [Google Scholar]
  82. Malone BJ, Hasenstaub AR, Schreiner CE. 2020.. Primary auditory cortex II. Some functional considerations. . In The Senses: A Comprehensive Reference, ed. B Fritzsch , pp. 65780. Oxford, UK:: Elsevier. , 2nd ed..
    [Google Scholar]
  83. Manuel M, Martynoga B, Yu T, West JD, Mason JO, Price DJ. 2010.. The transcription factor Foxg1 regulates the competence of telencephalic cells to adopt subpallial fates in mice. . Development 137::48797
    [Crossref] [Google Scholar]
  84. Manuel M, Tan KB, Kozic Z, Molinek M, Marcos TS, et al. 2022.. Pax6 limits the competence of developing cerebral cortical cells to respond to inductive intercellular signals. . PLOS Biol. 20::e3001563
    [Crossref] [Google Scholar]
  85. Mao Y, Reiprich S, Wegner M, Fritzsch B. 2014.. Targeted deletion of Sox10 by Wnt1-cre defects neuronal migration and projection in the mouse inner ear. . PLOS ONE 9::e94580
    [Crossref] [Google Scholar]
  86. Maricich SM, Xia A, Mathes EL, Wang VY, Oghalai JS, et al. 2009.. Atoh1-lineal neurons are required for hearing and for the survival of neurons in the spiral ganglion and brainstem accessory auditory nuclei. . J. Neurosci. 29::1112333
    [Crossref] [Google Scholar]
  87. Mastick GS, Fan CM, Tessier-Lavigne M, Serbedzija GN, McMahon AP, Easter SS Jr. 1996.. Early deletion of neuromeres in Wnt-1−/− mutant mice: evaluation by morphological and molecular markers. . J. Comp. Neurol. 374::24658
    [Crossref] [Google Scholar]
  88. Matei V, Pauley S, Kaing S, Rowitch D, Beisel K, et al. 2005.. Smaller inner ear sensory epithelia in Neurog1 null mice are related to earlier hair cell cycle exit. . Dev. Dyn. 234::63350
    [Crossref] [Google Scholar]
  89. Michalski N, Petit C. 2019.. Genes involved in the development and physiology of both the peripheral and central auditory systems. . Annu. Rev. Neurosci. 42::6786
    [Crossref] [Google Scholar]
  90. Michalski N, Petit C. 2022.. Central auditory deficits associated with genetic forms of peripheral deafness. . Hum. Genet. 141::33545
    [Crossref] [Google Scholar]
  91. Milinkeviciute G, Cramer K. 2020.. Development of the ascending auditory pathway. . In The Senses: A Comprehensive Reference, ed. B Fritzsch , pp. 33753. Oxford, UK:: Elsevier. , 2nd ed..
    [Google Scholar]
  92. Miyata T, Maeda T, Lee JE. 1999.. NeuroD is required for differentiation of the granule cells in the cerebellum and hippocampus. . Genes Dev. 13::164752
    [Crossref] [Google Scholar]
  93. Molnár Z, Luhmann HJ, Kanold PO. 2020.. Transient cortical circuits match spontaneous and sensory-driven activity during development. . Science 370::eabb2153
    [Crossref] [Google Scholar]
  94. Morris JK, Maklad A, Hansen LA, Feng F, Sorensen C, et al. 2006.. A disorganized innervation of the inner ear persists in the absence of ErbB2. . Brain Res. 1091::18699
    [Crossref] [Google Scholar]
  95. Mukherjee D, Meng X, Kao JPY, Kanold PO. 2022.. Impaired hearing and altered subplate circuits during the first and second postnatal weeks of otoferlin-deficient mice. . Cereb. Cortex 32::281630
    [Crossref] [Google Scholar]
  96. Muniak MA, Connelly CJ, Suthakar K, Milinkeviciute G, Ayeni FE, Ryugo DK. 2016.. Central projections of spiral ganglion neurons. . In The Primary Auditory Neurons of the Mammalian Cochlea, ed. A Dabdoub, B Fritzsch, AN Popper, RR Fay , pp. 15790. New York:: Springer
    [Google Scholar]
  97. Nakamura H. 2020.. Midbrain patterning: polarity formation of the tectum, midbrain regionalization, and isthmus organizer. . In Patterning and Cell Type Specification in the Developing CNS and PNS, ed. J Rubenstein, P Rakic, B Chen, KY Kwan, EA Grove, et al. , pp. 87106. London:: Elsevier. , 2nd ed..
    [Google Scholar]
  98. Nakano Y, Wiechert S, Fritzsch B, Banfi B. 2020.. Inhibition of a transcriptional repressor rescues hearing in a splicing factor-deficient mouse. . Life Sci. Alliance 3::e202000841
    [Crossref] [Google Scholar]
  99. Newman EA, Kim DW, Wan J, Wang J, Qian J, Blackshaw S. 2018.. Foxd1 is required for terminal differentiation of anterior hypothalamic neuronal subtypes. . Dev. Biol. 439::10211
    [Crossref] [Google Scholar]
  100. Ngodup T, Romero GE, Trussell LO. 2020.. Identification of an inhibitory neuron subtype, the L-stellate cell of the cochlear nucleus. . eLife 9::e54350
    [Crossref] [Google Scholar]
  101. Nothwang HG. 2016.. Evolution of mammalian sound localization circuits: a developmental perspective. . Progr. Neurobiol. 141::124
    [Crossref] [Google Scholar]
  102. Nusse R, Clevers H. 2017.. Wnt/β-catenin signaling, disease, and emerging therapeutic modalities. . Cell 169::98599
    [Crossref] [Google Scholar]
  103. Oertel D, Cao X-J. 2020.. The ventral cochlear nucleus. . In The Senses: A Comprehensive Reference, ed. B Fritzsch , pp. 51732. Oxford, UK:: Elsevier. , 2nd ed..
    [Google Scholar]
  104. Pan N, Jahan I, Kersigo J, Duncan JS, Kopecky B, Fritzsch B. 2012.. A novel Atoh1 “self-terminating” mouse model reveals the necessity of proper Atoh1 level and duration for hair cell differentiation and viability. . PLOS ONE 7::e30358
    [Crossref] [Google Scholar]
  105. Park Y, Page N, Salamon I, Li D, Rasin MR. 2022.. Making sense of mRNA landscapes: translation control in neurodevelopment. . Wiley Interdiscip. Rev. RNA 13::e1674
    [Crossref] [Google Scholar]
  106. Patisaul HB. 2020.. Achieving CLARITY on bisphenol A, brain and behaviour. . J. Neuroendocrinol. 32::e12730
    [Crossref] [Google Scholar]
  107. Pecka M, Encke J. 2020.. Coding of spatial information. . In The Senses: A Comprehensive Reference, ed. B Fritzsch , pp. 71331. Oxford, UK:: Elsevier. , 2nd ed..
    [Google Scholar]
  108. Petitpré C, Faure L, Uhl P, Fontanet P, Filova I, et al. 2022.. Single-cell RNA-sequencing analysis of the developing mouse inner ear identifies molecular logic of auditory neuron diversification. . Nat. Commun. 13::3878
    [Crossref] [Google Scholar]
  109. Petitpré C, Wu H, Sharma A, Tokarska A, Fontanet P, et al. 2018.. Neuronal heterogeneity and stereotyped connectivity in the auditory afferent system. . Nat. Commun. 9::3691
    [Crossref] [Google Scholar]
  110. Piwecka M, Glažar P, Hernandez-Miranda LR, Memczak S, Wolf SA, et al. 2017.. Loss of a mammalian circular RNA locus causes miRNA deregulation and affects brain function. . Science 357::eaam8526
    [Crossref] [Google Scholar]
  111. Polley DB, Read HL, Storace DA, Merzenich MM. 2007.. Multiparametric auditory receptive field organization across five cortical fields in the albino rat. . J. Neurophysiol. 97::362138
    [Crossref] [Google Scholar]
  112. Polley DB, Takesian AE. 2022.. Thalamocortical circuits for auditory processing, plasticity, and perception. . In The Thalamus, ed. MM Halassa , pp. 23768. Cambridge, UK:: Cambridge Univ. Press
    [Google Scholar]
  113. Puelles L. 2019.. Survey of midbrain, diencephalon, and hypothalamus neuroanatomic terms whose prosomeric definition conflicts with columnar tradition. . Front. Neuroanat. 13::20
    [Crossref] [Google Scholar]
  114. Puelles L, Martínez S, Martínez-De-La-Torre M, Rubenstein JL. 2015.. Gene maps and related histogenetic domains in the forebrain and midbrain. . In The Rat Nervous System, ed. G Paxinos , pp. 324. London:: Elsevier
    [Google Scholar]
  115. Puelles L, Martinez-de-la-Torre M, Ferran J-L, Watson C. 2012.. Diencephalon. . In The Mouse Nervous System, ed. C Watson, G Paxinos, L Puelles , pp. 31336. London:: Elsevier
    [Google Scholar]
  116. Pyott SJ, von Gersdorff H. 2020.. Auditory afferents: sound encoding in the cochlea. . In The Senses: A Comprehensive Reference, ed. B Fritzsch , pp. 487500. Oxford, UK:: Elsevier. , 2nd ed..
    [Google Scholar]
  117. Raft S, Nowotschin S, Liao J, Morrow BE. 2004.. Suppression of neural fate and control of inner ear morphogenesis by Tbx1. . Development 131::180112
    [Crossref] [Google Scholar]
  118. Rauschecker JP. 2020.. The auditory cortex of primates including man with reference to speech. . In The Senses: A Comprehensive Reference, ed. B Fritzsch , pp. 791811. Oxford, UK:: Elsevier. , 2nd ed..
    [Google Scholar]
  119. Rees A. 2020.. The inferior colliculus. . In The Senses: A Comprehensive Reference, ed. B Fritzsch , pp. 566600. Oxford, UK:: Elsevier. , 2nd ed..
    [Google Scholar]
  120. Rim EY, Clevers H, Nusse R. 2022.. The Wnt pathway: from signaling mechanisms to synthetic modulators. . Annu. Rev. Biochem. 91::57198
    [Crossref] [Google Scholar]
  121. Rolls ET, Rauschecker JP, Deco G, Huang C-C, Feng J. 2023.. Auditory cortical connectivity in humans. . Cereb. Cortex 33::620727
    [Crossref] [Google Scholar]
  122. Rubel EW, Fritzsch B. 2002.. Auditory system development: primary auditory neurons and their targets. . Annu. Rev. Neurosci. 25::51101
    [Crossref] [Google Scholar]
  123. Scharff C, Petri J. 2011.. Evo-devo, deep homology and FoxP2: implications for the evolution of speech and language. . Philos. Trans. R. Soc. B 366::212440
    [Crossref] [Google Scholar]
  124. Schinzel F, Seyfer H, Ebbers L, Nothwang HG. 2021.. The Lbx1 lineage differentially contributes to inhibitory cell types of the dorsal cochlear nucleus, a cerebellum-like structure, and the cerebellum. . J. Comp. Neurol. 529::303245
    [Crossref] [Google Scholar]
  125. Schmidt H, Fritzsch B. 2019.. Npr2 null mutants show initial overshooting followed by reduction of spiral ganglion axon projections combined with near-normal cochleotopic projection. . Cell Tissue Res. 378::1532
    [Crossref] [Google Scholar]
  126. Shrestha BR, Chia C, Wu L, Kujawa SG, Liberman MC, Goodrich LV. 2018.. Sensory neuron diversity in the inner ear is shaped by activity. . Cell 174::122946.e17
    [Crossref] [Google Scholar]
  127. Shrestha BR, Wu L, Goodrich LV. 2023.. Runx1 controls auditory sensory neuron diversity in mice. . Dev. Cell 58::30619.e5
    [Crossref] [Google Scholar]
  128. Siebald C, Vincent PFY, Bottom RT, Sun S, Reijntjes DOJ, et al. 2023.. Molecular signatures define subtypes of auditory afferents with distinct peripheral projection patterns and physiological properties. . PNAS 120::e2217033120
    [Crossref] [Google Scholar]
  129. Song H, Morrow BE. 2023.. Tbx2 and Tbx3 regulate cell fate progression of the otic vesicle for inner ear development. . Dev. Biol. 494::7184
    [Crossref] [Google Scholar]
  130. Sun S, Babola T, Pregernig G, So KS, Nguyen M, et al. 2018.. Hair cell mechanotransduction regulates spontaneous activity and spiral ganglion subtype specification in the auditory system. . Cell 174::124763.e15
    [Crossref] [Google Scholar]
  131. Sun Y, Liu Z. 2023.. Recent advances in molecular studies on cochlear development and regeneration. . Curr. Opin. Neurobiol. 81::102745
    [Crossref] [Google Scholar]
  132. Tang P-C, Chen L, Singh S, Groves AK, Koehler KR, et al. 2023.. Early Wnt signaling activation promotes inner ear differentiation via cell caudalization in mouse stem cell-derived organoids. . Stem Cells 41::2638
    [Crossref] [Google Scholar]
  133. ten Donkelaar HJ, Copp AJ, Bekker M, Renier WO, Hori A, Shiota K. 2023a.. Neurulation and neural tube defects. . In Clinical Neuroembryology: Development and Developmental Disorders of the Human Central Nervous System, ed. H ten Donkelaar, M Lammens, A Hori , pp. 249312. Berlin:: Springer
    [Google Scholar]
  134. ten Donkelaar HJ, Fritzsch B, Cruysberg JR, Pennings RJ, Smits JJ, Lammens M. 2023b.. Development and developmental disorders of the brain stem. . In Clinical Neuroembryology: Development and Developmental Disorders of the Human Central Nervous System, ed. H ten Donkelaar, M Lammens, A Hori , pp. 445521. Berlin:: Springer
    [Google Scholar]
  135. Thawani A, Maunsell HR, Zhang H, Ankamreddy H, Groves AK. 2023.. The Foxi3 transcription factor is necessary for the fate restriction of placodal lineages at the neural plate border. . Development 150::dev202047
    [Crossref] [Google Scholar]
  136. Tran H-N, Nguyen Q-H, Jeong J-E, Loi D-L, Nam YH, et al. 2023.. The embryonic patterning gene Dbx1 governs the survival of the auditory midbrain via Tcf7l2-Ap2δ transcriptional cascade. . Cell Death Differ. 30::156374
    [Crossref] [Google Scholar]
  137. Trussell LO, Oertel D. 2018.. Microcircuits of the dorsal cochlear nucleus. . In The Mammalian Auditory Pathways, ed. D Oliver, N Cant, R Fay, A Popper , pp. 7399. Cham, Switz.:: Springer
    [Google Scholar]
  138. Urbánek P, Fetka I, Meisler MH, Busslinger M. 1997.. Cooperation of Pax2 and Pax5 in midbrain and cerebellum development. . PNAS 94::57038
    [Crossref] [Google Scholar]
  139. Wang VY, Rose MF, Zoghbi HY. 2005.. Math1 expression redefines the rhombic lip derivatives and reveals novel lineages within the brainstem and cerebellum. . Neuron 48::3143
    [Crossref] [Google Scholar]
  140. Watson C, Shimogori T, Puelles L. 2017.. Mouse Fgf8-Cre-LacZ lineage analysis defines the territory of the postnatal mammalian isthmus. . J. Comp. Neurol. 525::278299
    [Crossref] [Google Scholar]
  141. Wiwatpanit T, Lorenzen SM, Cantú JA, Foo CZ, Hogan AK, et al. 2018.. Trans-differentiation of outer hair cells into inner hair cells in the absence of INSM1. . Nature 563::69195
    [Crossref] [Google Scholar]
  142. Xu J, Li J, Zhang T, Jiang H, Ramakrishnan A, et al. 2021.. Chromatin remodelers and lineage-specific factors interact to target enhancers to establish proneurosensory fate within otic ectoderm. . PNAS 118::e2025196118
    [Crossref] [Google Scholar]
  143. Yamoah EN, Li M, Shah A, Elliott KL, Cheah K, et al. 2020.. Using Sox2 to alleviate the hallmarks of age-related hearing loss. . Ageing Res. Rev. 59::101042
    [Crossref] [Google Scholar]
  144. Yamoah EN, Pavlinkova G, Fritzsch B. 2023.. The development of speaking and singing in infants may play a role in genomics and dementia in humans. . Brain Sci. 13::1190
    [Crossref] [Google Scholar]
  145. You D, Ni W, Huang Y, Zhou Q, Zhang Y, et al. 2023.. The proper timing of Atoh1 expression is pivotal for hair cell subtype differentiation and the establishment of inner ear function. . Res. Sq. 3118124. https://www.researchsquare.com/article/rs-3118124/v1
  146. Yu X, Wang Y. 2022.. Tonotopic differentiation of presynaptic neurotransmitter-releasing machinery in the auditory brainstem during the prehearing period and its selective deficits in Fmr1 knockout mice. . J. Comp. Neurol. 530::324869
    [Crossref] [Google Scholar]
  147. Żak M, Daudet N. 2021.. A gradient of Wnt activity positions the neurosensory domains of the inner ear. . eLife 10::e59540
    [Crossref] [Google Scholar]
  148. Zine A, Fritzsch B. 2023.. Early steps towards hearing: placodes and sensory development. . Int. J. Mol. Sci. 24::6994
    [Crossref] [Google Scholar]
/content/journals/10.1146/annurev-neuro-081423-093942
Loading
/content/journals/10.1146/annurev-neuro-081423-093942
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error