1932

Abstract

Over 40% of the human genome is composed of retrotransposons, DNA species that hold the potential to replicate via an RNA intermediate and are evolutionarily related to retroviruses. Retrotransposons are most studied for their ability to jump within a genome, which can cause DNA damage and novel insertional mutations. Retrotransposon-encoded products, including viral-like proteins, double-stranded RNAs, and extrachromosomal circular DNAs, can also be potent activators of the innate immune system. A growing body of evidence suggests that retrotransposons are activated in age-related neurodegenerative disorders and that such activation causally contributes to neurotoxicity. Here we provide an overview of retrotransposon biology and outline evidence of retrotransposon activation in age-related neurodegenerative disorders, with an emphasis on those involving TAR-DNA binding protein-43 (TDP-43) and tau. Studies to date provide the basis for ongoing clinical trials and hold promise for innovative strategies to ameliorate the adverse effects of retrotransposon dysregulation in neurodegenerative disorders.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-neuro-082823-020615
2024-08-08
2025-04-19
Loading full text...

Full text loading...

/deliver/fulltext/neuro/47/1/annurev-neuro-082823-020615.html?itemId=/content/journals/10.1146/annurev-neuro-082823-020615&mimeType=html&fmt=ahah

Literature Cited

  1. Al-Sarraj S, King A, Troakes C, Smith B, Maekawa S, et al. 2011.. p62 Positive, TDP-43 negative, neuronal cytoplasmic and intranuclear inclusions in the cerebellum and hippocampus define the pathology of C9orf72-linked FTLD and MND/ALS. . Acta Neuropathol. 122:(6):691702
    [Crossref] [Google Scholar]
  2. Amod F, Holla VV, Ojha R, Pandey S, Yadav R, Pal PK. 2023.. A review of movement disorders in persons living with HIV. . Parkinsonism Relat. Disord. 114::105774
    [Crossref] [Google Scholar]
  3. Ashley J, Cordy B, Lucia D, Fradkin LG, Budnik V, Thomson T. 2018.. Retrovirus-like Gag protein Arc1 binds RNA and traffics across synaptic boutons. . Cell 172:(1–2):26274.e11
    [Crossref] [Google Scholar]
  4. Bizzotto S, Walsh CA. 2022.. Genetic mosaicism in the human brain: from lineage tracing to neuropsychiatric disorders. . Nat. Rev. Neurosci. 23:(5):27586
    [Crossref] [Google Scholar]
  5. Bodea GO, McKelvey EGZ, Faulkner GJ. 2018.. Retrotransposon-induced mosaicism in the neural genome. . Open Biol. 8:(7):180074
    [Crossref] [Google Scholar]
  6. Bollati V, Galimberti D, Pergoli L, Dalla Valle E, Barretta F, et al. 2011.. DNA methylation in repetitive elements and Alzheimer disease. . Brain Behav. Immun. 25:(6):107883
    [Crossref] [Google Scholar]
  7. Brennecke J, Aravin AA, Stark A, Dus M, Kellis M, et al. 2007.. Discrete small RNA-generating loci as master regulators of transposon activity in Drosophila. . Cell 128:(6):1089103
    [Crossref] [Google Scholar]
  8. Brouha B, Schustak J, Badge RM, Lutz-Prigge S, Farley AH, et al. 2003.. Hot L1s account for the bulk of retrotransposition in the human population. . PNAS 100:(9):528085
    [Crossref] [Google Scholar]
  9. Brower-Toland B, Findley SD, Jiang L, Liu L, Yin H, et al. 2007.. Drosophila PIWI associates with chromatin and interacts directly with HP1a. . Genes Dev. 21:(18):230011
    [Crossref] [Google Scholar]
  10. Burns KH. 2017.. Transposable elements in cancer. . Nat. Rev. Cancer 17:(7):41524
    [Crossref] [Google Scholar]
  11. Bussian TJ, Aziz A, Meyer CF, Swenson BL, van Deursen JM, Baker DJ. 2018.. Clearance of senescent glial cells prevents tau-dependent pathology and cognitive decline. . Nature 562:(7728):57882
    [Crossref] [Google Scholar]
  12. Carlson GA, Prusiner SB. 2021.. How an infection of sheep revealed prion mechanisms in Alzheimer's disease and other neurodegenerative disorders. . Int. J. Mol. Sci. 22:(9):4861
    [Crossref] [Google Scholar]
  13. Chang Y-H, Dubnau J. 2019.. The Gypsy endogenous retrovirus drives non-cell-autonomous propagation in a Drosophila TDP-43 model of neurodegeneration. . Curr. Biol. 29:(19):313552.e4
    [Crossref] [Google Scholar]
  14. Chang Y-H, Dubnau J. 2023.. Endogenous retroviruses and TDP-43 proteinopathy form a sustaining feedback driving intercellular spread of Drosophila neurodegeneration. . Nat. Commun. 14:(1):966
    [Crossref] [Google Scholar]
  15. Chang Y-H, Keegan RM, Prazak L, Dubnau J. 2019.. Cellular labeling of endogenous retrovirus replication (CLEVR) reveals de novo insertions of the gypsy retrotransposable element in cell culture and in both neurons and glial cells of aging fruit flies. . PLOS Biol. 17:(5):e3000278
    [Crossref] [Google Scholar]
  16. Chornenkyy Y, Fardo DW, Nelson PT. 2019.. Tau and TDP-43 proteinopathies: kindred pathologic cascades and genetic pleiotropy. . Lab. Investig. 99:(7):9931007
    [Crossref] [Google Scholar]
  17. Chuong EB, Elde NC, Feschotte C. 2016.. Regulatory evolution of innate immunity through co-option of endogenous retroviruses. . Science 351:(6277):108387
    [Crossref] [Google Scholar]
  18. Clarke BE, Patani R. 2020.. The microglial component of amyotrophic lateral sclerosis. . Brain J. Neurol. 143:(12):352639
    [Crossref] [Google Scholar]
  19. Colin M, Dujardin S, Schraen-Maschke S, Meno-Tetang G, Duyckaerts C, et al. 2020.. From the prion-like propagation hypothesis to therapeutic strategies of anti-tau immunotherapy. . Acta Neuropathol. 139:(1):325
    [Crossref] [Google Scholar]
  20. Contreras-Galindo R, Kaplan MH, Dube D, Gonzalez-Hernandez MJ, Chan S, et al. 2015.. Human endogenous retrovirus type K (HERV-K) particles package and transmit HERV-K-related sequences. . J. Virol. 89:(14):7187201
    [Crossref] [Google Scholar]
  21. Copley KE, Shorter J. 2023.. Repetitive elements in aging and neurodegeneration. . Trends Genet. 39:(5):381400
    [Crossref] [Google Scholar]
  22. De Cecco M, Criscione SW, Peckham EJ, Hillenmeyer S, Hamm EA, et al. 2013.. Genomes of replicatively senescent cells undergo global epigenetic changes leading to gene silencing and activation of transposable elements. . Aging Cell 12:(2):24756
    [Crossref] [Google Scholar]
  23. De Cecco M, Ito T, Petrashen AP, Elias AE, Skvir NJ, et al. 2019a.. L1 drives IFN in senescent cells and promotes age-associated inflammation. . Nature 566:(7742):7378
    [Crossref] [Google Scholar]
  24. De Cecco M, Ito T, Petrashen AP, Elias AE, Skvir NJ, et al. 2019b.. Author correction: L1 drives IFN in senescent cells and promotes age-associated inflammation. . Nature 572:(7767):E5
    [Crossref] [Google Scholar]
  25. de Rivero Vaccari JP, Brand FJ, Sedaghat C, Mash DC, Dietrich WD, Keane RW. 2014.. RIG-1 receptor expression in the pathology of Alzheimer's disease. . J. Neuroinflammation 11:(1):67
    [Crossref] [Google Scholar]
  26. Dembny P, Newman AG, Singh M, Hinz M, Szczepek M, et al. 2020.. Human endogenous retrovirus HERV-K(HML-2) RNA causes neurodegeneration through Toll-like receptors. . JCI Insight 5:(7):e131093
    [Crossref] [Google Scholar]
  27. Dewannieux M, Harper F, Richaud A, Letzelter C, Ribet D, et al. 2006.. Identification of an infectious progenitor for the multiple-copy HERV-K human endogenous retroelements. . Genome Res. 16:(12):154856
    [Crossref] [Google Scholar]
  28. Di Giorgio E, Xodo LE. 2022.. Endogenous retroviruses (ERVs): Does RLR (RIG-I-like receptors)-MAVS pathway directly control senescence and aging as a consequence of ERV de-repression?. Front. Immunol. 13::917998
    [Crossref] [Google Scholar]
  29. Di Stefano L. 2022.. All quiet on the TE front? The role of chromatin in transposable element silencing. . Cells 11:(16):2501
    [Crossref] [Google Scholar]
  30. Douville R, Liu J, Rothstein J, Nath A. 2011.. Identification of active loci of a human endogenous retrovirus in neurons of patients with amyotrophic lateral sclerosis. . Ann. Neurol. 69:(1):14151
    [Crossref] [Google Scholar]
  31. Feiler MS, Strobel B, Freischmidt A, Helferich AM, Kappel J, et al. 2015.. TDP-43 is intercellularly transmitted across axon terminals. . J. Cell Biol. 211:(4):897911
    [Crossref] [Google Scholar]
  32. Fernández-Nogales M, Santos-Galindo M, Merchán-Rubira J, Hoozemans JJM, Rábano A, et al. 2017.. Tau-positive nuclear indentations in P301S tauopathy mice. . Brain Pathol. 27:(3):31422
    [Crossref] [Google Scholar]
  33. Ferrari R, Hernandez DG, Nalls MA, Rohrer JD, Ramasamy A, et al. 2014.. Frontotemporal dementia and its subtypes: a genome-wide association study. . Lancet Neurol. 13:(7):68699
    [Crossref] [Google Scholar]
  34. Floreani L, Ansaloni F, Mangoni D, Agostoni E, Sanges R, et al. 2021.. Analysis of LINE1 retrotransposons in Huntington's disease. . Front. Cell. Neurosci. 15::743797
    [Crossref] [Google Scholar]
  35. Franceschi C, Garagnani P, Parini P, Giuliani C, Santoro A. 2018.. Inflammaging: a new immune-metabolic viewpoint for age-related diseases. . Nat. Rev. Endocrinol. 14:(10):57690
    [Crossref] [Google Scholar]
  36. Freeman MR. 2015.. Drosophila central nervous system glia. . Cold Spring Harb. Perspect. Biol. 7:(11):a020552
    [Crossref] [Google Scholar]
  37. Fröhlich A, Pfaff AL, Bubb VJ, Koks S, Quinn JP. 2022.. Characterisation of the function of a SINE-VNTR-Alu retrotransposon to modulate isoform expression at the MAPT locus. . Front. Mol. Neurosci. 15::815695
    [Crossref] [Google Scholar]
  38. Frost B, Bardai FH, Feany MB. 2016.. Lamin dysfunction mediates neurodegeneration in tauopathies. . Curr. Biol. 26:(1):12936
    [Crossref] [Google Scholar]
  39. Frost B, Hemberg M, Lewis J, Feany MB. 2014.. Tau promotes neurodegeneration through global chromatin relaxation. . Nat. Neurosci. 17:(3):35766
    [Crossref] [Google Scholar]
  40. Frost B, Jacks RL, Diamond MI. 2009.. Propagation of tau misfolding from the outside to the inside of a cell. . J. Biol. Chem. 284:(19):1284552
    [Crossref] [Google Scholar]
  41. Gamdzyk M, Doycheva DM, Araujo C, Ocak U, Luo Y, et al. 2020.. cGAS/STING pathway activation contributes to delayed neurodegeneration in neonatal hypoxia-ischemia rat model: possible involvement of LINE-1. . Mol. Neurobiol. 57:(6):2600619
    [Crossref] [Google Scholar]
  42. Geser F, Lee VM-Y, Trojanowski JQ. 2010.. Amyotrophic lateral sclerosis and frontotemporal lobar degeneration: a spectrum of TDP-43 proteinopathies. . Neuropathology 30:(2):10312
    [Crossref] [Google Scholar]
  43. Gold J, Rowe DB, Kiernan MC, Vucic S, Mathers S, et al. 2019.. Safety and tolerability of Triumeq in amyotrophic lateral sclerosis: the Lighthouse trial. . Amyotroph. Lateral Scler. Frontotemporal Degener. 20:(7–8):595604
    [Crossref] [Google Scholar]
  44. Grassi DA, Jönsson ME, Brattås PL, Jakobsson J. 2019.. TRIM28 and the control of transposable elements in the brain. . Brain Res. 1705::4347
    [Crossref] [Google Scholar]
  45. Grundman J, Spencer B, Sarsoza F, Rissman RA. 2021.. Transcriptome analyses reveal tau isoform-driven changes in transposable element and gene expression. . PLOS ONE 16:(9):e0251611
    [Crossref] [Google Scholar]
  46. Gulen MF, Samson N, Keller A, Schwabenland M, Liu C, et al. 2023.. cGAS-STING drives ageing-related inflammation and neurodegeneration. . Nature 620:(7973):37480
    [Crossref] [Google Scholar]
  47. Guo C, Jeong H-H, Hsieh Y-C, Klein H-U, Bennett DA, et al. 2018.. Tau activates transposable elements in Alzheimer's disease. . Cell Rep. 23:(10):287480
    [Crossref] [Google Scholar]
  48. Hancks DC, Kazazian HH. 2012.. Active human retrotransposons: variation and disease. . Curr. Opin. Genet. Dev. 22:(3):191203
    [Crossref] [Google Scholar]
  49. Hernández HG, Mahecha MF, Mejía A, Arboleda H, Forero DA. 2014.. Global long interspersed nuclear element 1 DNA methylation in a Colombian sample of patients with late-onset Alzheimer's disease. . Am. J. Alzheimer's Dis. Other Demen. 29:(1):5053
    [Crossref] [Google Scholar]
  50. Hohn O, Hanke K, Bannert N. 2013.. HERV-K(HML-2), the best preserved family of HERVs: endogenization, expression, and implications in health and disease. . Front. Oncol. 3::246
    [Crossref] [Google Scholar]
  51. Hutton M, Lendon CL, Rizzu P, Baker M, Froelich S, et al. 1998.. Association of missense and 5′-splice-site mutations in tau with the inherited dementia FTDP-17. . Nature 393:(6686):7025
    [Crossref] [Google Scholar]
  52. Irwin DJ, Cairns NJ, Grossman M, McMillan CT, Lee EB, et al. 2015.. Frontotemporal lobar degeneration: defining phenotypic diversity through personalized medicine. . Acta Neuropathol. 129:(4):46991
    [Crossref] [Google Scholar]
  53. Izrael M, Slutsky SG, Revel M. 2020.. Rising stars: astrocytes as a therapeutic target for ALS disease. . Front. Neurosci. 14::824
    [Crossref] [Google Scholar]
  54. Jahangir M, Li L, Zhou J-S, Lang B, Wang X-P. 2022.. L1 retrotransposons: a potential endogenous regulator for schizophrenia. . Front. Genet. 13::878508
    [Crossref] [Google Scholar]
  55. Janssen A, Colmenares SU, Karpen GH. 2018.. Heterochromatin: guardian of the genome. . Annu. Rev. Cell Dev. Biol. 34::26588
    [Crossref] [Google Scholar]
  56. Jansz N, Faulkner GJ. 2021.. Endogenous retroviruses in the origins and treatment of cancer. . Genome Biol. 22:(1):147
    [Crossref] [Google Scholar]
  57. Jellinger KA. 2020.. Pathobiological subtypes of Alzheimer disease. . Dement. Geriatr. Cogn. Disord. 49:(4):32133
    [Crossref] [Google Scholar]
  58. Jeong B-H, Lee Y-J, Carp RI, Kim Y-S. 2010.. The prevalence of human endogenous retroviruses in cerebrospinal fluids from patients with sporadic Creutzfeldt-Jakob disease. . J. Clin. Virol. 47:(2):13642
    [Crossref] [Google Scholar]
  59. Jiang L, Lin W, Zhang C, Ash PEA, Verma M, et al. 2021.. Interaction of tau with HNRNPA2B1 and N6-methyladenosine RNA mediates the progression of tauopathy. . Mol. Cell. 81:(20):420927.e12
    [Crossref] [Google Scholar]
  60. Jin M, Shiwaku H, Tanaka H, Obita T, Ohuchi S, et al. 2021.. Tau activates microglia via the PQBP1-cGAS-STING pathway to promote brain inflammation. . Nat. Commun. 12:(1):6565
    [Crossref] [Google Scholar]
  61. Jones BC, Wood JG, Chang C, Tam AD, Franklin MJ, et al. 2016.. A somatic piRNA pathway in the Drosophila fat body ensures metabolic homeostasis and normal lifespan. . Nat. Commun. 7::13856
    [Crossref] [Google Scholar]
  62. Jönsson ME, Garza R, Sharma Y, Petri R, Södersten E, et al. 2021.. Activation of endogenous retroviruses during brain development causes an inflammatory response. . EMBO J. 40:(9):e106423
    [Crossref] [Google Scholar]
  63. Karch CM, Wen N, Fan CC, Yokoyama JS, Kouri N, et al. 2018.. Selective genetic overlap between amyotrophic lateral sclerosis and diseases of the frontotemporal dementia spectrum. . JAMA Neurol. 75:(7):86075
    [Crossref] [Google Scholar]
  64. Kazazian HH, Moran JV. 2017.. Mobile DNA in health and disease. . N. Engl. J. Med. 377:(4):36170
    [Crossref] [Google Scholar]
  65. Keegan RM, Talbot LR, Chang Y-H, Metzger MJ, Dubnau J. 2021.. Intercellular viral spread and intracellular transposition of Drosophila gypsy. . PLOS Genet. 17:(4):e1009535
    [Crossref] [Google Scholar]
  66. Kiesel P, Gibson TJ, Ciesielczyk B, Bodemer M, Kaup F-J, et al. 2010.. Transcription of Alu DNA elements in blood cells of sporadic Creutzfeldt-Jakob disease (sCJD). . Prion 4:(2):8793
    [Crossref] [Google Scholar]
  67. Kiesel P, Gibson TJ, Ciesielczyk B, Bodemer M, Kaup F-J, et al. 2011.. Possible editing of Alu transcripts in blood cells of sporadic Creutzfeldt-Jakob disease (sCJD). . J. Toxicol. Environ. Health A 74:(2–4):8895
    [Crossref] [Google Scholar]
  68. Kõks S, Pfaff AL, Singleton LM, Bubb VJ, Quinn JP. 2022.. Non-reference genome transposable elements (TEs) have a significant impact on the progression of the Parkinson's disease. . Exp. Biol. Med. 247:(18):168090
    [Crossref] [Google Scholar]
  69. Krug L, Chatterjee N, Borges-Monroy R, Hearn S, Liao W-W, et al. 2017.. Retrotransposon activation contributes to neurodegeneration in a Drosophila TDP-43 model of ALS. . PLOS Genet. 13:(3):e1006635
    [Crossref] [Google Scholar]
  70. Lander ES, Linton LM, Birren B, Nusbaum C, Zody MC, et al. 2001.. Initial sequencing and analysis of the human genome. . Nature 409:(6822):860921
    [Crossref] [Google Scholar]
  71. Lee H-J, Yoon Y-S, Lee S-J. 2023.. Molecular mechanisms of cellular senescence in neurodegenerative diseases. . J. Mol. Biol. 435:(12):168114
    [Crossref] [Google Scholar]
  72. Lee YN, Bieniasz PD. 2007.. Reconstitution of an infectious human endogenous retrovirus. . PLOS Pathog. 3:(1):e10
    [Crossref] [Google Scholar]
  73. Li W, Jin Y, Prazak L, Hammell M, Dubnau J. 2012.. Transposable elements in TDP-43-mediated neurodegenerative disorders. . PLOS ONE 7:(9):e44099
    [Crossref] [Google Scholar]
  74. Li W, Lee M-H, Henderson L, Tyagi R, Bachani M, et al. 2015.. Human endogenous retrovirus-K contributes to motor neuron disease. . Sci. Transl. Med. 7:(307):307ra153
    [Crossref] [Google Scholar]
  75. Li W, Prazak L, Chatterjee N, Grüninger S, Krug L, et al. 2013.. Activation of transposable elements during aging and neuronal decline in Drosophila. . Nat. Neurosci. 16:(5):52931
    [Crossref] [Google Scholar]
  76. Liu EY, Russ J, Cali CP, Phan JM, Amlie-Wolf A, Lee EB. 2019.. Loss of nuclear TDP-43 is associated with decondensation of LINE retrotransposons. . Cell Rep. 27:(5):140921.e6
    [Crossref] [Google Scholar]
  77. Liu S, Heumüller S-E, Hossinger A, Müller SA, Buravlova O, et al. 2023.. Reactivated endogenous retroviruses promote protein aggregate spreading. . Nat. Commun. 14:(1):5034
    [Crossref] [Google Scholar]
  78. Liu S, Hossinger A, Heumüller S-E, Hornberger A, Buravlova O, et al. 2021.. Highly efficient intercellular spreading of protein misfolding mediated by viral ligand-receptor interactions. . Nat. Commun. 12:(1):5739
    [Crossref] [Google Scholar]
  79. Macciardi F, Bacalini MG, Miramontes R, Boattini A, Taccioli C, et al. 2022.. A retrotransposon storm marks clinical phenoconversion to late-onset Alzheimer's disease. . GeroScience 44:(3):152550
    [Crossref] [Google Scholar]
  80. Maggiore A, Casale AM, Toscanelli W, Cappucci U, Rotili D, et al. 2022.. Neuroprotective effects of PARP inhibitors in Drosophila models of Alzheimer's disease. . Cells 11:(8):1284
    [Crossref] [Google Scholar]
  81. Martins F, Sousa J, Pereira CD, da Cruz e Silva OAB, Rebelo S. 2020.. Nuclear envelope dysfunction and its contribution to the aging process. . Aging Cell 19:(5):e13143
    [Crossref] [Google Scholar]
  82. Maxwell PH, Burhans WC, Curcio MJ. 2011.. Retrotransposition is associated with genome instability during chronological aging. . PNAS 108:(51):2037681
    [Crossref] [Google Scholar]
  83. Mayer J, Harz C, Sanchez L, Pereira GC, Maldener E, et al. 2018.. Transcriptional profiling of HERV-K(HML-2) in amyotrophic lateral sclerosis and potential implications for expression of HML-2 proteins. . Mol. Neurodegener. 13:(1):39
    [Crossref] [Google Scholar]
  84. McClintock B. 1950.. The origin and behavior of mutable loci in maize. . PNAS 36:(6):34455
    [Crossref] [Google Scholar]
  85. McCormick AL, Brown RH, Cudkowicz ME, Al-Chalabi A, Garson JA. 2008.. Quantification of reverse transcriptase in ALS and elimination of a novel retroviral candidate. . Neurology 70:(4):27883
    [Crossref] [Google Scholar]
  86. Montalbano M, McAllen S, Puangmalai N, Sengupta U, Bhatt N, et al. 2020.. RNA-binding proteins Musashi and tau soluble aggregates initiate nuclear dysfunction. . Nat. Commun. 11:(1):4305
    [Crossref] [Google Scholar]
  87. Muotri AR, Marchetto MCN, Coufal NG, Oefner R, Yeo G, et al. 2010.. L1 retrotransposition in neurons is modulated by MeCP2. . Nature 468:(7322):44346
    [Crossref] [Google Scholar]
  88. Musi N, Valentine JM, Sickora KR, Baeuerle E, Thompson CS, et al. 2018.. Tau protein aggregation is associated with cellular senescence in the brain. . Aging Cell 17:(6):e12840
    [Crossref] [Google Scholar]
  89. Ochoa E, Ramirez P, Gonzalez E, De Mange J, Ray WJ, et al. 2023.. Pathogenic tau-induced transposable element-derived dsRNA drives neuroinflammation. . Sci. Adv. 9:(1):eabq5423
    [Crossref] [Google Scholar]
  90. Paonessa F, Evans LD, Solanki R, Larrieu D, Wray S, et al. 2019.. Microtubules deform the nuclear membrane and disrupt nucleocytoplasmic transport in tau-mediated frontotemporal dementia. . Cell Rep. 26:(3):58293.e5
    [Crossref] [Google Scholar]
  91. Paquola ACM, Erwin JA, Gage FH. 2017.. Insights into the role of somatic mosaicism in the brain. . Curr. Opin. Syst. Biol. 1::9094
    [Crossref] [Google Scholar]
  92. Pastuzyn ED, Day CE, Kearns RB, Kyrke-Smith M, Taibi AV, et al. 2018.. The neuronal gene Arc encodes a repurposed retrotransposon Gag protein that mediates intercellular RNA transfer. . Cell 173:(1):27588.e18
    [Crossref] [Google Scholar]
  93. Patterson MN, Scannapieco AE, Au PH, Dorsey S, Royer CA, Maxwell PH. 2015.. Preferential retrotransposition in aging yeast mother cells is correlated with increased genome instability. . DNA Repair 34::1827
    [Crossref] [Google Scholar]
  94. Peifer AC, Maxwell PH. 2018.. Preferential Ty1 retromobility in mother cells and nonquiescent stationary phase cells is associated with increased concentrations of total Gag or processed Gag and is inhibited by exposure to a high concentration of calcium. . Aging 10:(3):40224
    [Crossref] [Google Scholar]
  95. Pfaff AL, Bubb VJ, Quinn JP, Koks S. 2020.. An increased burden of highly active retrotransposition competent L1s is associated with Parkinson's disease risk and progression in the PPMI cohort. . Int. J. Mol. Sci. 21:(18):6562
    [Crossref] [Google Scholar]
  96. Pfaff AL, Bubb VJ, Quinn JP, Koks S. 2021.. Reference SVA insertion polymorphisms are associated with Parkinson's disease progression and differential gene expression. . NPJ Parkinson's Dis. 7:(1):44
    [Crossref] [Google Scholar]
  97. Poorkaj P, Bird TD, Wijsman E, Nemens E, Garruto RM, et al. 1998.. Tau is a candidate gene for chromosome 17 frontotemporal dementia. . Ann. Neurol. 43:(6):81525
    [Crossref] [Google Scholar]
  98. Porta S, Xu Y, Restrepo CR, Kwong LK, Zhang B, et al. 2018.. Patient-derived frontotemporal lobar degeneration brain extracts induce formation and spreading of TDP-43 pathology in vivo. . Nat. Commun. 9:(1):4220
    [Crossref] [Google Scholar]
  99. Protasova MS, Gusev FE, Grigorenko AP, Kuznetsova IL, Rogaev EI, Andreeva TV. 2017.. Quantitative analysis of L1-retrotransposons in Alzheimer's disease and aging. . Biochemistry 82:(8):96271
    [Google Scholar]
  100. Prudencio M, Gonzales PK, Cook CN, Gendron TF, Daughrity LM, et al. 2017.. Repetitive element transcripts are elevated in the brain of C9orf72 ALS/FTLD patients. . Hum. Mol. Genet. 26:(17):342131
    [Crossref] [Google Scholar]
  101. Pugazhendhi A, Hubbell M, Jairam P, Ambati B. 2021.. Neovascular macular degeneration: a review of etiology, risk factors, and recent advances in research and therapy. . Int. J. Mol. Sci. 22:(3):1170
    [Crossref] [Google Scholar]
  102. Ramirez P, Zuniga G, Sun W, Beckmann A, Ochoa E, et al. 2022.. Pathogenic tau accelerates aging-associated activation of transposable elements in the mouse central nervous system. . Prog. Neurobiol. 208::102181
    [Crossref] [Google Scholar]
  103. Rigal J, Martin Anduaga A, Bitman E, Rivellese E, Kadener S, Marr MT. 2022.. Artificially stimulating retrotransposon activity increases mortality and accelerates a subset of aging phenotypes in Drosophila. . eLife 11::e80169
    [Crossref] [Google Scholar]
  104. Romano G, Klima R, Feiguin F. 2020.. TDP-43 prevents retrotransposon activation in the Drosophila motor system through regulation of Dicer-2 activity. . BMC Biol. 18:(1):82
    [Crossref] [Google Scholar]
  105. Saberi S, Stauffer JE, Jiang J, Garcia SD, Taylor AE, et al. 2018.. Sense-encoded poly-GR dipeptide repeat proteins correlate to neurodegeneration and uniquely co-localize with TDP-43 in dendrites of repeat-expanded C9orf72 amyotrophic lateral sclerosis. . Acta Neuropathol. 135:(3):45974
    [Crossref] [Google Scholar]
  106. Saldi TK, Ash PE, Wilson G, Gonzales P, Garrido-Lecca A, et al. 2014.. TDP-1, the Caenorhabditis elegans ortholog of TDP-43, limits the accumulation of double-stranded RNA. . EMBO J. 33:(24):294766
    [Crossref] [Google Scholar]
  107. Saldi TK, Gonzales P, Garrido-Lecca A, Dostal V, Roberts CM, et al. 2018.. The Caenorhabditis elegans ortholog of TDP-43 regulates the chromatin localization of the heterochromatin protein 1 homolog HPL-2. . Mol. Cell. Biol. 38:(15):e00668-17
    [Crossref] [Google Scholar]
  108. Saleh A, Macia A, Muotri AR. 2019.. Transposable elements, inflammation, and neurological disease. . Front. Neurol. 10::894
    [Crossref] [Google Scholar]
  109. Salmina AB, Komleva YK, Lopatina OL, Kuvacheva NV, Gorina YV, et al. 2015.. Astroglial control of neuroinflammation: TLR3-mediated dsRNA-sensing pathways are in the focus. . Rev. Neurosci. 26:(2):14359
    [Crossref] [Google Scholar]
  110. Sato K, Takayama K, Inoue S. 2023.. Role of piRNA biogenesis and its neuronal function in the development of neurodegenerative diseases. . Front. Aging Neurosci. 15::1157818
    [Crossref] [Google Scholar]
  111. Schulz L, Ramirez P, Lemieux A, Gonzalez E, Thomson T, Frost B. 2023.. Tau-induced elevation of the activity-regulated cytoskeleton associated protein Arc1 causally mediates neurodegeneration in the adult Drosophila brain. . Neuroscience 518::10111
    [Crossref] [Google Scholar]
  112. Shimonaka S, Nonaka T, Suzuki G, Hisanaga S, Hasegawa M. 2016.. Templated aggregation of TAR DNA-binding protein of 43 kDa (TDP-43) by seeding with TDP-43 peptide fibrils. . J. Biol. Chem. 291:(17):8896907
    [Crossref] [Google Scholar]
  113. Simon M, Van Meter M, Ablaeva J, Ke Z, Gonzalez RS, et al. 2019.. LINE1 derepression in aged wild-type and SIRT6-deficient mice drives inflammation. . Cell Metab. 29:(4):87185.e5
    [Crossref] [Google Scholar]
  114. Slotkin RK, Martienssen R. 2007.. Transposable elements and the epigenetic regulation of the genome. . Nat. Rev. Genet. 8:(4):27285
    [Crossref] [Google Scholar]
  115. Sousa-Victor P, Ayyaz A, Hayashi R, Qi Y, Madden DT, et al. 2017.. Piwi is required to limit exhaustion of aging somatic stem cells. . Cell Rep. 20:(11):252737
    [Crossref] [Google Scholar]
  116. Spillantini MG, Crowther RA, Kamphorst W, Heutink P, van Swieten JC. 1998.. Tau pathology in two Dutch families with mutations in the microtubule-binding region of tau. . Am. J. Pathol. 153:(5):135963
    [Crossref] [Google Scholar]
  117. Stamidis N, Żylicz JJ. 2023.. RNA-mediated heterochromatin formation at repetitive elements in mammals. . EMBO J. 42:(8):e111717
    [Crossref] [Google Scholar]
  118. Steele AJ, Al-Chalabi A, Ferrante K, Cudkowicz ME, Brown RH, Garson JA. 2005.. Detection of serum reverse transcriptase activity in patients with ALS and unaffected blood relatives. . Neurology 64:(3):45458
    [Crossref] [Google Scholar]
  119. Sudmant PH, Rausch T, Gardner EJ, Handsaker RE, Abyzov A, et al. 2015.. An integrated map of structural variation in 2,504 human genomes. . Nature 526:(7571):7581
    [Crossref] [Google Scholar]
  120. Sun W, Samimi H, Gamez M, Zare H, Frost B. 2018.. Pathogenic tau-induced piRNA depletion promotes neuronal death through transposable element dysregulation in neurodegenerative tauopathies. . Nat. Neurosci. 21:(8):103848
    [Crossref] [Google Scholar]
  121. Sun Z, Kwon J-S, Ren Y, Chen S, Cates K, et al. 2023.. Endogenous recapitulation of Alzheimer's disease neuropathology through human 3D direct neuronal reprogramming. . bioRxiv 2023.05.24.542155. https://doi.org/10.1101/2023.05.24.542155
  122. Tam OH, Rozhkov NV, Shaw R, Kim D, Hubbard I, et al. 2019.. Postmortem cortex samples identify distinct molecular subtypes of ALS: retrotransposon activation, oxidative stress, and activated glia. . Cell Rep. 29:(5):116477.e5
    [Crossref] [Google Scholar]
  123. Udeochu JC, Amin S, Huang Y, Fan L, Torres ERS, et al. 2023.. Tau activation of microglial cGAS-IFN reduces MEF2C-mediated cognitive resilience. . Nat. Neurosci. 26:(5):73750
    [Crossref] [Google Scholar]
  124. Vahsen BF, Gray E, Thompson AG, Ansorge O, Anthony DC, et al. 2021.. Non-neuronal cells in amyotrophic lateral sclerosis—from pathogenesis to biomarkers. . Nat. Rev. Neurol. 17:(6):33348
    [Crossref] [Google Scholar]
  125. Vallés-Saiz L, Ávila J, Hernández F. 2023.. Lamivudine (3TC), a nucleoside reverse transcriptase inhibitor, prevents the neuropathological alterations present in mutant tau transgenic mice. . Int. J. Mol. Sci. 24:(13):11144
    [Crossref] [Google Scholar]
  126. Wahl D, Smith ME, McEntee CM, Cavalier AN, Osburn SC, et al. 2023.. The reverse transcriptase inhibitor 3TC protects against age-related cognitive dysfunction. . Aging Cell 22:(5):e13798
    [Crossref] [Google Scholar]
  127. Wang SH, Elgin SCR. 2011.. Drosophila Piwi functions downstream of piRNA production mediating a chromatin-based transposon silencing mechanism in female germ line. . PNAS 108:(52):2116469
    [Crossref] [Google Scholar]
  128. Wells JN, Feschotte C. 2020.. A field guide to eukaryotic transposable elements. . Annu. Rev. Genet. 54::53961
    [Crossref] [Google Scholar]
  129. Wood JG, Jones BC, Jiang N, Chang C, Hosier S, et al. 2016.. Chromatin-modifying genetic interventions suppress age-associated transposable element activation and extend life span in Drosophila. . PNAS 113:(40):1127782
    [Crossref] [Google Scholar]
  130. Wu J, Petralia RS, Kurushima H, Patel H, Jung M, et al. 2011.. Arc/Arg3.1 regulates an endosomal pathway essential for activity-dependent β-amyloid generation. . Cell 147:(3):61528
    [Crossref] [Google Scholar]
  131. Yamanaka S, Siomi MC, Siomi H. 2014.. piRNA clusters and open chromatin structure. . Mob. DNA 5::22
    [Crossref] [Google Scholar]
  132. Yang P, Wang Y, Macfarlan TS. 2017.. The role of KRAB-ZFPs in transposable element repression and mammalian evolution. . Trends Genet. 33:(11):87181
    [Crossref] [Google Scholar]
  133. Yousefzadeh M, Henpita C, Vyas R, Soto-Palma C, Robbins P, Niedernhofer L. 2021.. DNA damage—how and why we age?. eLife 10::e62852
    [Crossref] [Google Scholar]
  134. Zhao K, Du J, Peng Y, Li P, Wang S, et al. 2018.. LINE1 contributes to autoimmunity through both RIG-I- and MDA5-mediated RNA sensing pathways. . J. Autoimmun. 90::10515
    [Crossref] [Google Scholar]
  135. Zierhut C, Funabiki H. 2020.. Regulation and consequences of cGAS activation by self-DNA. . Trends Cell Biol. 30:(8):594605
    [Crossref] [Google Scholar]
  136. Zuniga G, Levy S, Ramirez P, De Mange J, Gonzalez E, et al. 2023.. Tau-induced deficits in nonsense-mediated mRNA decay contribute to neurodegeneration. . Alzheimer's Dement. J. 19:(2):40520
    [Crossref] [Google Scholar]
/content/journals/10.1146/annurev-neuro-082823-020615
Loading
/content/journals/10.1146/annurev-neuro-082823-020615
Loading

Data & Media loading...

Supplemental Materials

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error