1932

Abstract

It is a common view that the intricate array of specialized domains in the ventral visual pathway is innately prespecified. What this review postulates is that it is not. We explore the origins of domain specificity, hypothesizing that the adult brain emerges from an interplay between a domain-general map-based architecture, shaped by intrinsic mechanisms, and experience. We argue that the most fundamental innate organization of cortex in general, and not just the visual pathway, is a map-based topography that governs how the environment maps onto the brain, how brain areas interconnect, and ultimately, how the brain processes information.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-neuro-082823-073701
2024-08-08
2025-02-19
Loading full text...

Full text loading...

/deliver/fulltext/neuro/47/1/annurev-neuro-082823-073701.html?itemId=/content/journals/10.1146/annurev-neuro-082823-073701&mimeType=html&fmt=ahah

Literature Cited

  1. Aflalo TN, Graziano MSA. 2011.. Organization of the macaque extrastriate visual cortex re-examined using the principle of spatial continuity of function. . J. Neurophysiol. 105::30520
    [Crossref] [Google Scholar]
  2. Arcaro M. 2023.. The building blocks of vision: evidence for a hierarchical, retinotopic organization in the human neonate brain. . J. Vis. 23::5535
    [Crossref] [Google Scholar]
  3. Arcaro M, Schade P, Livingstone M. 2018.. Preserved cortical organization in the absence of early visual input. . J. Vis. 18::27
    [Crossref] [Google Scholar]
  4. Arcaro MJ, Livingstone MS. 2017a.. A hierarchical, retinotopic proto-organization of the primate visual system at birth. . eLife 6::e26196
    [Crossref] [Google Scholar]
  5. Arcaro MJ, Livingstone MS. 2017b.. Retinotopic organization of scene areas in macaque inferior temporal cortex. . J. Neurosci. 37::737389
    [Crossref] [Google Scholar]
  6. Arcaro MJ, Livingstone MS. 2021.. On the relationship between maps and domains in inferotemporal cortex. . Nat. Rev. Neurosci. 22::57383
    [Crossref] [Google Scholar]
  7. Arcaro MJ, Livingstone MS, Kay KN, Weiner KS. 2022.. The retrocalcarine sulcus maps different retinotopic representations in macaques and humans. . Brain Struct. Funct. 227::122745
    [Crossref] [Google Scholar]
  8. Arcaro MJ, McMains SA, Singer BD, Kastner S. 2009.. Retinotopic organization of human ventral visual cortex. . J. Neurosci. 29::1063852
    [Crossref] [Google Scholar]
  9. Arcaro MJ, Schade PF, Livingstone MS. 2019a.. Body map proto-organization in newborn macaques. . PNAS 116::2486171
    [Crossref] [Google Scholar]
  10. Arcaro MJ, Schade PF, Livingstone MS. 2019b.. Universal mechanisms and the development of the face network: What you see is what you get. . Annu. Rev. Vis. Sci. 5::34172
    [Crossref] [Google Scholar]
  11. Arcaro MJ, Schade PF, Vincent JL, Ponce CR, Livingstone MS. 2017.. Seeing faces is necessary for face-domain formation. . Nat. Neurosci. 20::140412
    [Crossref] [Google Scholar]
  12. Attneave F. 1954.. Some informational aspects of visual perception. . Psychol. Rev. 61::18393
    [Crossref] [Google Scholar]
  13. Badde S, Ley P, Rajendran SS, Shareef I, Kekunnaya R, Roder B. 2020.. Sensory experience during early sensitive periods shapes cross-modal temporal biases. . eLife 9::e1238
    [Crossref] [Google Scholar]
  14. Baek S, Song M, Jang J, Kim G, Paik SB. 2021.. Face detection in untrained deep neural networks. . Nat. Commun. 12::7328
    [Crossref] [Google Scholar]
  15. Baldwin MK, Kaskan PM, Zhang B, Chino YM, Kaas JH. 2012.. Cortical and subcortical connections of V1 and V2 in early postnatal macaque monkeys. . J. Comp. Neurol. 520::54469
    [Crossref] [Google Scholar]
  16. Bao P, She L, McGill M, Tsao DY. 2020.. A map of object space in primate inferotemporal cortex. . Nature 583::1038
    [Crossref] [Google Scholar]
  17. Barber M, Arai Y, Morishita Y, Vigier L, Causeret F, et al. 2015.. Migration speed of Cajal-Retzius cells modulated by vesicular trafficking controls the size of higher-order cortical areas. . Curr. Biol. 25::246678
    [Crossref] [Google Scholar]
  18. Batardiere A, Barone P, Knoblauch K, Giroud P, Berland M, et al. 2002.. Early specification of the hierarchical organization of visual cortical areas in the macaque monkey. . Cereb. Cortex 12::45365
    [Crossref] [Google Scholar]
  19. Bedny M, Pascual-Leone A, Dodell-Feder D, Fedorenko E, Saxe R. 2011.. Language processing in the occipital cortex of congenitally blind adults. . PNAS 108::442934
    [Crossref] [Google Scholar]
  20. Bedny M, Pascual-Leone A, Dravida S, Saxe R. 2012.. A sensitive period for language in the visual cortex: distinct patterns of plasticity in congenitally versus late blind adults. . Brain Lang. 122::16270
    [Crossref] [Google Scholar]
  21. Bishop KM, Rubenstein JLR, O'Leary DDM. 2002.. Distinct actions of Emx1, Emx2, and Pax6 in regulating the specification of areas in the developing neocortex. . J. Neurosci. 22::762738
    [Crossref] [Google Scholar]
  22. Blauch NM, Behrmann M, Plaut DC. 2022.. A connectivity-constrained computational account of topographic organization in primate high-level visual cortex. . PNAS 119::e2112566119
    [Crossref] [Google Scholar]
  23. Bola L, Matuszewski J, Szczepanik M, Drozdziel D, Sliwinska MW, et al. 2019.. Functional hierarchy for tactile processing in the visual cortex of sighted adults. . NeuroImage 202::116084
    [Crossref] [Google Scholar]
  24. Bruce C, Desimone R, Gross CG. 1981.. Visual properties of neurons in a polysensory area in superior temporal sulcus of the macaque. . J. Neurophysiol. 46::36984
    [Crossref] [Google Scholar]
  25. Burkhalter A. 1993.. Development of forward and feedback connections between areas V1 and V2 of human visual cortex. . Cereb. Cortex 3::47687
    [Crossref] [Google Scholar]
  26. Bushnell IWR. 2001.. Mother's face recognition in newborn infants: learning and memory. . Infant Child Dev. 10::6774
    [Crossref] [Google Scholar]
  27. Butt OH, Benson NC, Datta R, Aguirre GK. 2013.. The fine-scale functional correlation of striate cortex in sighted and blind people. . J. Neurosci. 33::1620919
    [Crossref] [Google Scholar]
  28. Campus C, Sandini G, Concetta Morrone M, Gori M. 2017.. Spatial localization of sound elicits early responses from occipital visual cortex in humans. . Sci. Rep. 7::10415
    [Crossref] [Google Scholar]
  29. Cang J, Kaneko M, Yamada J, Woods G, Stryker MP, Feldheim DA. 2005a.. Ephrin-As guide the formation of functional maps in the visual cortex. . Neuron 48::57789
    [Crossref] [Google Scholar]
  30. Cang J, Renteria RC, Kaneko M, Liu X, Copenhagen DR, Stryker MP. 2005b.. Development of precise maps in visual cortex requires patterned spontaneous activity in the retina. . Neuron 48::797809
    [Crossref] [Google Scholar]
  31. Chino Y, Smith EL 3rd, Zhang B, Matsuura K, Mori T, Kaas JH. 2001.. Recovery of binocular responses by cortical neurons after early monocular lesions. . Nat. Neurosci. 4::68990
    [Crossref] [Google Scholar]
  32. Chomsky N. 1965.. Aspects of the Theory of Syntax. Cambridge, MA:: MIT Press
    [Google Scholar]
  33. Coggan DD, Tong F. 2023.. Spikiness and animacy as potential organizing principles of human ventral visual cortex. . Cereb. Cortex 33::8194217
    [Crossref] [Google Scholar]
  34. Cohen L, Dehaene S, Naccache L, Lehericy S, Dehaene-Lambertz G, et al. 2000.. The visual word form area: spatial and temporal characterization of an initial stage of reading in normal subjects and posterior split-brain patients. . Brain 123:(Pt. 2):291307
    [Crossref] [Google Scholar]
  35. Collignon O, Dormal G, Albouy G, Vandewalle G, Voss P, et al. 2013.. Impact of blindness onset on the functional organization and the connectivity of the occipital cortex. . Brain 136::276983
    [Crossref] [Google Scholar]
  36. Dall'Orso S, Steinweg J, Allievi AG, Edwards AD, Burdet E, Arichi T. 2018.. Somatotopic mapping of the developing sensorimotor cortex in the preterm human brain. . Cereb. Cortex 28::250715
    [Crossref] [Google Scholar]
  37. Deen B, Richardson H, Dilks DD, Takahashi A, Keil B, et al. 2017.. Organization of high-level visual cortex in human infants. . Nat. Commun. 8::13995
    [Crossref] [Google Scholar]
  38. Dehaene S, Pegado F, Braga LW, Ventura P, Filho GN, et al. 2010.. How learning to read changes the cortical networks for vision and language. . Science 330::135964
    [Crossref] [Google Scholar]
  39. Distler C, Bachevalier J, Kennedy C, Mishkin M, Ungerleider LG. 1996.. Functional development of the corticocortical pathway for motion analysis in the macaque monkey: a 14C-2-deoxyglucose study. . Cereb. Cortex 6::18495
    [Crossref] [Google Scholar]
  40. Downing PE, Chan AW, Peelen MV, Dodds CM, Kanwisher N. 2006.. Domain specificity in visual cortex. . Cereb. Cortex 16::145361
    [Crossref] [Google Scholar]
  41. Duhamel JR, Colby CL, Goldberg ME. 1998.. Ventral intraparietal area of the macaque: congruent visual and somatic response properties. . J. Neurophysiol. 79::12636
    [Crossref] [Google Scholar]
  42. Everett DL. 2005.. Cultural constraints on grammar and cognition in Pirahã: another look at the design features of human language. . Curr. Anthropol. 46::62134
    [Crossref] [Google Scholar]
  43. Feng X, Monzalvo K, Dehaene S, Dehaene-Lambertz G. 2022.. Evolution of reading and face circuits during the first three years of reading acquisition. . NeuroImage 259::119394
    [Crossref] [Google Scholar]
  44. Flanagan JG. 2006.. Neural map specification by gradients. . Curr. Opin. Neurobiol. 16::5966
    [Crossref] [Google Scholar]
  45. Golarai G, Ghahremani DG, Greenwood AC, Gabrieli JDE, Eberhardt JL. 2021.. The development of race effects in face processing from childhood through adulthood: neural and behavioral evidence. . Dev. Sci. 24::e13058
    [Crossref] [Google Scholar]
  46. Golarai G, Ghahremani DG, Whitfield-Gabrieli S, Reiss A, Eberhardt JL, et al. 2007.. Differential development of high-level visual cortex correlates with category-specific recognition memory. . Nat. Neurosci. 10::51222
    [Crossref] [Google Scholar]
  47. Goldberg AE. 2008.. Universal grammar? Or prerequisites for natural language?. Behav. Brain Sci. 31::52223
    [Crossref] [Google Scholar]
  48. Goldstein A, Zada Z, Buchnik E, Schain M, Price A, et al. 2022.. Shared computational principles for language processing in humans and deep language models. . Nat. Neurosci. 25::36980
    [Crossref] [Google Scholar]
  49. Gomez J, Barnett M, Grill-Spector K. 2019.. Extensive childhood experience with Pokémon suggests eccentricity drives organization of visual cortex. . Nat. Hum. Behav. 3::61124
    [Crossref] [Google Scholar]
  50. Gomez J, Natu V, Jeska B, Barnett M, Grill-Spector K. 2018.. Development differentially sculpts receptive fields across early and high-level human visual cortex. . Nat. Commun. 9::788
    [Crossref] [Google Scholar]
  51. Grill-Spector K, Weiner KS. 2014.. The functional architecture of the ventral temporal cortex and its role in categorization. . Nat. Rev. Neurosci. 15::53648
    [Crossref] [Google Scholar]
  52. Harvey BM, Fracasso A, Petridou N, Dumoulin SO. 2015.. Topographic representations of object size and relationships with numerosity reveal generalized quantity processing in human parietal cortex. . PNAS 112::1352530
    [Crossref] [Google Scholar]
  53. Harvey BM, Klein BP, Petridou N, Dumoulin SO. 2013.. Topographic representation of numerosity in the human parietal cortex. . Science 341::112326
    [Crossref] [Google Scholar]
  54. Hasson U, Levy I, Behrmann M, Hendler T, Malach R. 2002.. Eccentricity bias as an organizing principle for human high-order object areas. . Neuron 34::47990
    [Crossref] [Google Scholar]
  55. Hauser MD, Chomsky N, Fitch WT. 2002.. The faculty of language: What is it, who has it, and how did it evolve?. Science 298::156979
    [Crossref] [Google Scholar]
  56. He C, Peelen MV, Han Z, Lin N, Caramazza A, Bi Y. 2013.. Selectivity for large nonmanipulable objects in scene-selective visual cortex does not require visual experience. . NeuroImage 79::19
    [Crossref] [Google Scholar]
  57. Hikosaka K, Iwai E, Saito H, Tanaka K. 1988.. Polysensory properties of neurons in the anterior bank of the caudal superior temporal sulcus of the macaque monkey. . J. Neurophysiol. 60::161537
    [Crossref] [Google Scholar]
  58. Hubel DH, Livingstone MS. 1987.. Segregation of form, color, and stereopsis in primate area 18. . J. Neurosci. 7::3378415
    [Crossref] [Google Scholar]
  59. Hubel DH, Wiesel TN. 1965.. Receptive fields and functional architecture in two nonstriate visual areas (18 and 19) of the cat. . J. Neurophysiol. 28::22989
    [Crossref] [Google Scholar]
  60. Ibrahim LA, Huang S, Fernandez-Otero M, Sherer M, Qiu Y, et al. 2021.. Bottom-up inputs are required for establishment of top-down connectivity onto cortical layer 1 neurogliaform cells. . Neuron 109::347385
    [Crossref] [Google Scholar]
  61. Imam N, Finlay B. 2020.. Self-organization of cortical areas in the development and evolution of neocortex. . PNAS 117::2921220
    [Crossref] [Google Scholar]
  62. Janssens T, Zhu Q, Popivanov ID, Vanduffel W. 2014.. Probabilistic and single-subject retinotopic maps reveal the topographic organization of face patches in the macaque cortex. . J. Neurosci. 34::1015667
    [Crossref] [Google Scholar]
  63. Jayaraman S, Fausey CM, Smith LB. 2017.. Why are faces denser in the visual experiences of younger than older infants?. Dev. Psychol. 53::3849
    [Crossref] [Google Scholar]
  64. Kaas JH. 1997.. Topographic maps are fundamental to sensory processing. . Brain Res. Bull. 44::10712
    [Crossref] [Google Scholar]
  65. Kamps FS, Hendrix CL, Brennan PA, Dilks DD. 2020.. Connectivity at the origins of domain specificity in the cortical face and place networks. . PNAS 117::616369
    [Crossref] [Google Scholar]
  66. Kolster H, Janssens T, Orban GA, Vanduffel W. 2014.. The retinotopic organization of macaque occipitotemporal cortex anterior to V4 and caudoventral to the middle temporal (MT) cluster. . J. Neurosci. 34::1016891
    [Crossref] [Google Scholar]
  67. Kolster H, Peeters R, Orban GA. 2010.. The retinotopic organization of the human middle temporal area MT/V5 and its cortical neighbors. . J. Neurosci. 30::980120
    [Crossref] [Google Scholar]
  68. Konkle T, Caramazza A. 2013.. Tripartite organization of the ventral stream by animacy and object size. . J. Neurosci. 33::1023542
    [Crossref] [Google Scholar]
  69. Konkle T, Oliva A. 2012.. A real-world size organization of object responses in occipitotemporal cortex. . Neuron 74::111424
    [Crossref] [Google Scholar]
  70. Kosakowski HL, Cohen MA, Takahashi A, Keil B, Kanwisher N, Saxe R. 2022.. Selective responses to faces, scenes, and bodies in the ventral visual pathway of infants. . Curr. Biol. 32::26574.e5
    [Crossref] [Google Scholar]
  71. Krienen FM, Buckner RL. 2020.. Human association cortex: expanded, untethered, neotenous, and plastic. . In Evolutionary Neuroscience, ed. JH Kaas , pp. 84560. London:: Academic. , 2nd ed..
    [Google Scholar]
  72. Krubitzer L. 2007.. The magnificent compromise: cortical field evolution in mammals. . Neuron 56::2018
    [Crossref] [Google Scholar]
  73. Kujala T, Partanen E, Virtala P, Winkler I. 2023.. Prerequisites of language acquisition in the newborn brain. . Trends Neurosci. 46::72637
    [Crossref] [Google Scholar]
  74. Lafer-Sousa R, Conway BR. 2013.. Parallel, multi-stage processing of colors, faces and shapes in macaque inferior temporal cortex. . Nat. Neurosci. 16::187078
    [Crossref] [Google Scholar]
  75. Lafer-Sousa R, Conway BR, Kanwisher NG. 2016.. Color-biased regions of the ventral visual pathway lie between face- and place-selective regions in humans, as in macaques. . J. Neurosci. 36::168297
    [Crossref] [Google Scholar]
  76. Lerner Y, Honey CJ, Silbert LJ, Hasson U. 2011.. Topographic mapping of a hierarchy of temporal receptive windows using a narrated story. . J. Neurosci. 31::290615
    [Crossref] [Google Scholar]
  77. Lieberman P. 2013.. The Unpredictable Species: What Makes Humans Unique. Princeton, NJ:: Princeton Univ. Press
    [Google Scholar]
  78. Livingstone MS, Vincent JL, Arcaro MJ, Srihasam K, Schade PF, Savage T. 2017.. Development of the macaque face-patch system. . Nat. Commun. 8::14897
    [Crossref] [Google Scholar]
  79. Long B, Yu CP, Konkle T. 2018.. Mid-level visual features underlie the high-level categorical organization of the ventral stream. . PNAS 115::E901524
    [Google Scholar]
  80. Mackey WE, Winawer J, Curtis CE. 2017.. Visual field map clusters in human frontoparietal cortex. . eLife 6::e22974
    [Crossref] [Google Scholar]
  81. Mahon BZ, Schwarzbach J, Caramazza A. 2010.. The representation of tools in left parietal cortex is independent of visual experience. . Psychol. Sci. 21::76471
    [Crossref] [Google Scholar]
  82. Martini FJ, Guillamon-Vivancos T, Moreno-Juan V, Valdeolmillos M, Lopez-Bendito G. 2021.. Spontaneous activity in developing thalamic and cortical sensory networks. . Neuron 109::251934
    [Crossref] [Google Scholar]
  83. McLaughlin T, O'Leary DD. 2005.. Molecular gradients and development of retinotopic maps. . Annu. Rev. Neurosci. 28::32755
    [Crossref] [Google Scholar]
  84. McLaughlin T, Torborg CL, Feller MB, O'Leary DD. 2003.. Retinotopic map refinement requires spontaneous retinal waves during a brief critical period of development. . Neuron 40::114760
    [Crossref] [Google Scholar]
  85. Moerel M, De Martino F, Formisano E. 2012.. Processing of natural sounds in human auditory cortex: tonotopy, spectral tuning, and relation to voice sensitivity. . J. Neurosci. 32::1420516
    [Crossref] [Google Scholar]
  86. Mountcastle VB. 1957.. Modality and topographic properties of single neurons of cat's somatic sensory cortex. . J. Neurophysiol. 20::40834
    [Crossref] [Google Scholar]
  87. Nasr S, Echavarria CE, Tootell RB. 2014.. Thinking outside the box: rectilinear shapes selectively activate scene-selective cortex. . J. Neurosci. 34::672135
    [Crossref] [Google Scholar]
  88. Norman LJ, Thaler L. 2019.. Retinotopic-like maps of spatial sound in primary ‘visual’ cortex of blind human echolocators. . Proc. Biol. Sci. 286::20191910
    [Google Scholar]
  89. Ochi S, Manabe S, Kikkawa T, Osumi N. 2022.. Thirty years’ history since the discovery of Pax6: from central nervous system development to neurodevelopmental disorders. . Int. J. Mol. Sci. 23::6115
    [Crossref] [Google Scholar]
  90. O'Leary DD, Yates PA, McLaughlin T. 1999.. Molecular development of sensory maps: representing sights and smells in the brain. . Cell 96::25569
    [Crossref] [Google Scholar]
  91. Op de Beeck HP, Torfs K, Wagemans J. 2008.. Perceived shape similarity among unfamiliar objects and the organization of the human object vision pathway. . J. Neurosci. 28::1011123
    [Crossref] [Google Scholar]
  92. Pena M, Maki A, Kovacic D, Dehaene-Lambertz G, Koizumi H, et al. 2003.. Sounds and silence: an optical topography study of language recognition at birth. . PNAS 100::117025
    [Crossref] [Google Scholar]
  93. Pietrini P, Furey ML, Ricciardi E, Gobbini MI, Wu WH, et al. 2004.. Beyond sensory images: object-based representation in the human ventral pathway. . PNAS 101::565863
    [Crossref] [Google Scholar]
  94. Ponce CR, Hartmann TS, Livingstone MS. 2017.. End-stopping predicts curvature tuning along the ventral stream. . J. Neurosci. 37::64859
    [Crossref] [Google Scholar]
  95. Pons TP, Garraghty PE, Ommaya AK, Kaas JH, Taub E, Mishkin M. 1991.. Massive cortical reorganization after sensory deafferentation in adult macaques. . Science 252::185760
    [Crossref] [Google Scholar]
  96. Popham SF, Huth AG, Bilenko NY, Deniz F, Gao JS, et al. 2021.. Visual and linguistic semantic representations are aligned at the border of human visual cortex. . Nat. Neurosci. 24::162836
    [Crossref] [Google Scholar]
  97. Protopapa F, Hayashi MJ, Kulashekhar S, van der Zwaag W, Battistella G, et al. 2019.. Chronotopic maps in human supplementary motor area. . PLOS Biol. 17::e3000026
    [Crossref] [Google Scholar]
  98. Pylyshyn ZW. 1984.. Computation and Cognition: Toward a Foundation for Cognitive Science. Cambridge, MA:: MIT Press
    [Google Scholar]
  99. Ratan Murty NA, Teng S, Beeler D, Mynick A, Oliva A, Kanwisher N. 2020.. Visual experience is not necessary for the development of face-selectivity in the lateral fusiform gyrus. . PNAS 117::2301120
    [Crossref] [Google Scholar]
  100. Reich L, Szwed M, Cohen L, Amedi A. 2011.. A ventral visual stream reading center independent of visual experience. . Curr. Biol. 21::36368
    [Crossref] [Google Scholar]
  101. Rodman HR, Scalaidhe SP, Gross CG. 1993.. Response properties of neurons in temporal cortical visual areas of infant monkeys. . J. Neurophysiol. 70::111536
    [Crossref] [Google Scholar]
  102. Roe AW, Pallas SL, Hahm JO, Sur M. 1990.. A map of visual space induced in primary auditory cortex. . Science 250::81820
    [Crossref] [Google Scholar]
  103. Rosa MG. 2002.. Visual maps in the adult primate cerebral cortex: some implications for brain development and evolution. . Braz. J. Med. Biol. Res. 35::148598
    [Crossref] [Google Scholar]
  104. Sadato N, Pascual-Leone A, Grafman J, Ibanez V, Deiber MP, et al. 1996.. Activation of the primary visual cortex by Braille reading in blind subjects. . Nature 380::52628
    [Crossref] [Google Scholar]
  105. Saffran JR, Aslin RN, Newport EL. 1996.. Statistical learning by 8-month-old infants. . Science 274::192628
    [Crossref] [Google Scholar]
  106. Scherf KS, Behrmann M, Humphreys K, Luna B. 2007.. Visual category-selectivity for faces, places and objects emerges along different developmental trajectories. . Dev. Sci. 10::F1530
    [Crossref] [Google Scholar]
  107. Shatz CJ, Rakic P. 1981.. The genesis of efferent connections from the visual cortex of the fetal rhesus monkey. . J. Comp. Neurol. 196::287307
    [Crossref] [Google Scholar]
  108. Silver MA, Kastner S. 2009.. Topographic maps in human frontal and parietal cortex. . Trends Cogn. Sci. 13::48895
    [Crossref] [Google Scholar]
  109. Srihasam K, Mandeville JB, Morocz IA, Sullivan KJ, Livingstone MS. 2012.. Behavioral and anatomical consequences of early versus late symbol training in macaques. . Neuron 73::60819
    [Crossref] [Google Scholar]
  110. Srihasam K, Vincent JL, Livingstone MS. 2014.. Novel domain formation reveals proto-architecture in inferotemporal cortex. . Nat. Neurosci. 17::177683
    [Crossref] [Google Scholar]
  111. Steel A, Billings MM, Silson EH, Robertson CE. 2021.. A network linking scene perception and spatial memory systems in posterior cerebral cortex. . Nat. Commun. 12::2632
    [Crossref] [Google Scholar]
  112. Striem-Amit E, Almeida J, Belledonne M, Chen Q, Fang Y, et al. 2016.. Topographical functional connectivity patterns exist in the congenitally, prelingually deaf. . Sci. Rep. 6::29375
    [Crossref] [Google Scholar]
  113. Striem-Amit E, Cohen L, Dehaene S, Amedi A. 2012.. Reading with sounds: sensory substitution selectively activates the visual word form area in the blind. . Neuron 76::64052
    [Crossref] [Google Scholar]
  114. Striem-Amit E, Ovadia-Caro S, Caramazza A, Margulies DS, Villringer A, Amedi A. 2015.. Functional connectivity of visual cortex in the blind follows retinotopic organization principles. . Brain 138::167995
    [Crossref] [Google Scholar]
  115. Sugita Y. 2008.. Face perception in monkeys reared with no exposure to faces. . PNAS 105::39498
    [Crossref] [Google Scholar]
  116. Teinonen T, Fellman V, Näätänen R, Alku P, Huotilainen M. 2009.. Statistical language learning in neonates revealed by event-related brain potentials. . BMC Neurosci. 10::21
    [Crossref] [Google Scholar]
  117. Tessier-Lavigne M, Goodman CS. 1996.. The molecular biology of axon guidance. . Science 274::112333
    [Crossref] [Google Scholar]
  118. Tigges J, Tigges M, Anschel S, Cross NA, Letbetter WD, McBride RL. 1981.. Areal and laminar distribution of neurons interconnecting the central visual cortical areas 17, 18, 19, and MT in squirrel monkey (Saimiri). . J. Comp. Neurol. 202::53960
    [Crossref] [Google Scholar]
  119. Triplett JW, Phan A, Yamada J, Feldheim DA. 2012.. Alignment of multimodal sensory input in the superior colliculus through a gradient-matching mechanism. . J. Neurosci. 32::526471
    [Crossref] [Google Scholar]
  120. Tzourio-Mazoyer N, De Schonen S, Crivello F, Reutter B, Aujard Y, Mazoyer B. 2002.. Neural correlates of woman face processing by 2-month-old infants. . NeuroImage 15::45461
    [Crossref] [Google Scholar]
  121. van den Hurk J, Van Baelen M, Op de Beeck HP. 2017.. Development of visual category selectivity in ventral visual cortex does not require visual experience. . PNAS 114::E450110
    [Crossref] [Google Scholar]
  122. Vetter P, Bola L, Reich L, Bennett M, Muckli L, Amedi A. 2020.. Decoding natural sounds in early “visual” cortex of congenitally blind individuals. . Curr. Biol. 30::303944.e2
    [Crossref] [Google Scholar]
  123. Wallace MT, Perrault TJ Jr., Hairston WD, Stein BE. 2004.. Visual experience is necessary for the development of multisensory integration. . J. Neurosci. 24::958084
    [Crossref] [Google Scholar]
  124. Wang L, Mruczek RE, Arcaro MJ, Kastner S. 2015.. Probabilistic maps of visual topography in human cortex. . Cereb. Cortex 25::391131
    [Crossref] [Google Scholar]
  125. Wolbers T, Klatzky RL, Loomis JM, Wutte MG, Giudice NA. 2011.. Modality-independent coding of spatial layout in the human brain. . Curr. Biol. 21::98489
    [Crossref] [Google Scholar]
  126. Xu R, Bichot NP, Takahashi A, Desimone R. 2022.. The cortical connectome of primate lateral prefrontal cortex. . Neuron 110::31227.e7
    [Crossref] [Google Scholar]
  127. Yeo BT, Krienen FM, Sepulcre J, Sabuncu MR, Lashkari D, et al. 2011.. The organization of the human cerebral cortex estimated by intrinsic functional connectivity. . J. Neurophysiol. 106::112565
    [Crossref] [Google Scholar]
  128. Yue X, Robert S, Ungerleider LG. 2020.. Curvature processing in human visual cortical areas. . NeuroImage 222::117295
    [Crossref] [Google Scholar]
  129. Zeki S. 1993.. The visual association cortex. . Curr. Opin. Neurobiol. 3::15559
    [Crossref] [Google Scholar]
/content/journals/10.1146/annurev-neuro-082823-073701
Loading
/content/journals/10.1146/annurev-neuro-082823-073701
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error