1932

Abstract

Radial cell columns are a hallmark feature of cortical architecture in many mammalian species. It has long been held, based on the lack of orientation columns, that such functional units are absent in rodent primary visual cortex (V1). These observations led to the view that rodent visual cortex has a fundamentally different network architecture than that of carnivores and primates. While columns may be lacking in rodent V1, we describe in this review that modular clusters of inputs to layer 1 and projection neurons in the layers below are prominent features of the mouse visual cortex. We propose that modules organize thalamocortical inputs, intracortical processing streams, and transthalamic communications that underlie distinct sensory and sensorimotor functions.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-neuro-083122-021241
2023-07-10
2024-04-28
Loading full text...

Full text loading...

/deliver/fulltext/neuro/46/1/annurev-neuro-083122-021241.html?itemId=/content/journals/10.1146/annurev-neuro-083122-021241&mimeType=html&fmt=ahah

Literature Cited

  1. Adams DL, Horton JC. 2009. Ocular dominance columns: enigmas and challenges. Neuroscientist 15:162–77
    [Google Scholar]
  2. Aggleton JP, Keen S, Warburton EC, Bussey TJ. 1997. Extensive cytotoxic lesions involving both the rhinal cortices and area TE impair recognition but spare spatial alternation in the rat. Brain Res. Bull. 43:3279–87
    [Google Scholar]
  3. Ahmadlou M, Zweifel LS, Heimel JA. 2018. Functional modulation of primary visual cortex by the superior colliculus in the mouse. Nat. Commun. 9:3895
    [Google Scholar]
  4. Allen AE, Procyk CA, Howarth M, Walmsley L, Brown TM. 2016. Visual input to the mouse lateral posterior and posterior thalamic nuclei: photoreceptive origins and retinotopic order. J. Physiol. 594:71911–29
    [Google Scholar]
  5. Andermann ML, Ferlin AM, Roumis DK, Glickfeld LL, Reid RC. 2011. Functional specialization of mouse higher visual cortical areas. Neuron 72:1025–39
    [Google Scholar]
  6. Baden T, Berens P, Franke K, Román Rosón M, Bethge M, Euler T 2016. The functional diversity of retinal ganglion cells in the mouse. Nature 529:7586345–50
    [Google Scholar]
  7. Baldwin MKL, Balaram P, Kaas JH. 2017. The evolution and functions of nuclei of the visual pulvinar in primates. J. Comp. Neurol. 525:153207–26
    [Google Scholar]
  8. Beltramo R, Scanziani M. 2019. A collicular visual cortex: neocortical space for an ancient midbrain visual structure. Science 363:642264–69
    [Google Scholar]
  9. Bennett C, Gale SD, Garrett ME, Newton ML, Callaway EM et al. 2019. Higher-order thalamic circuits channel parallel streams of visual information in mice. Neuron 102:2477–92
    [Google Scholar]
  10. Berry MJ II, Tkacik G 2020. Clustering of neural activity: a design principle for population codes. Front. Comput. Neurosci. 14:20
    [Google Scholar]
  11. Bickford ME, Zhou N, Krahe TE, Govindaiah G, Guido W. 2015. Retinal and tectal “driver-like” inputs converge in the shell of the mouse dorsal lateral geniculate nucleus. J. Neurosci. 35:2910523–34
    [Google Scholar]
  12. Blot A, Roth MM, Gasler I, Javadzadeh M, Imhof F, Hofer SB. 2021. Visual intracortical and transthalamic pathways carry distinct information to cortical areas. Neuron 109:121996–2008.e6
    [Google Scholar]
  13. Bonin V, Histed MH, Yurgenson S, Reid RC. 2011. Local diversity and fine-scale organization of receptive fields in mouse visual cortex. J. Neurosci. 31:5018506–21
    [Google Scholar]
  14. Burgess CR, Ramesh RN, Sugden AU, Levandowski KM, Minnig MA et al. 2016. Hunger-dependent enhancement of food cue responses in mouse postrhinal cortex and lateral amygdala. Neuron 91:51154–69
    [Google Scholar]
  15. Casagrande VA, Yazar F, Jones KD, Ding Y. 2007. The morphology of the koniocellular axon pathway in the macaque monkey. Cereb. Cortex 17:102334–45
    [Google Scholar]
  16. Chaplin TA, Margrie TW. 2020. Cortical circuits for integration of self-motion and visual-motion signals. Curr. Opin. Neurobiol. 60:122–28
    [Google Scholar]
  17. Chklovskii DB, Koulakov AA. 2004. Maps in the brain: What can we learn from them?. Annu. Rev. Neurosci. 27:369–92
    [Google Scholar]
  18. Cohen-Kashi Malina K, Tsivourakis E, Kushinsky D, Apelblat D, Shtiglitz Set al 2021. NDNF interneurons in layer 1 gain-modulate whole cortical columns according to an animal's behavioral state. Neuron 109:2150–64.e5
    [Google Scholar]
  19. Coogan TA, Burkhalter A. 1993. Hierarchical organization of areas in rat visual cortex. J. Neurosci. 13:93749–72
    [Google Scholar]
  20. Cruz-Martín A, El-Danaf RN, Osakada F, Sriram B, Dhande OS et al. 2014. A dedicated circuit links direction-selective retinal ganglion cells to the primary visual cortex. Nature 507:7492358–61
    [Google Scholar]
  21. da Costa NM, Martin KAC. 2010. Whose cortical column would that be?. Front. Neuroanat. 4:16
    [Google Scholar]
  22. Dhande OS, Stafford BK, Lim J-HA, Huberman AD. 2015. Contributions of retinal ganglion cells to subcortical visual processing and behaviors. Annu. Rev. Vis. Sci. 1:291–328
    [Google Scholar]
  23. Diamanti EM, Reddy CB, Schröder S, Muzzu T, Harris KD et al. 2021. Spatial modulation of visual responses arises in cortex with active navigation. eLife 10:e63705
    [Google Scholar]
  24. Disney AA, Domakonda KV, Aoki C. 2006. Differential expression of muscarinic acetylcholine receptors across excitatory and inhibitory cells in visual cortical areas V1 and V2 of the macaque monkey. J. Comp. Neurol. 499:49–63
    [Google Scholar]
  25. Doron G, Shin JN, Takahashi N, Drüke M, Bocklisch C et al. 2020. Perirhinal input to neocortical layer 1 controls learning. Science 370:6523eaaz3136
    [Google Scholar]
  26. Dräger UC. 1974. Autoradiography of tritiated proline and fucose transported transneuronally from the eye to the visual cortex in pigmented and albino mice. Brain Res 82:2284–92
    [Google Scholar]
  27. Dräger UC. 1975. Receptive fields of single cells and topography in mouse visual cortex. J. Comp. Neurol. 160:3269–90
    [Google Scholar]
  28. D'Souza RD, Bista P, Meier AM, Ji W, Burkhalter A 2019. Spatial clustering of inhibition in mouse primary visual cortex. Neuron 104:3588–600.e5
    [Google Scholar]
  29. D'Souza RD, Burkhalter A 2017. A laminar organization for selective cortico-cortical communication. Front. Neuroanat. 11:71
    [Google Scholar]
  30. D'Souza RD, Ji W, Burkhalter A 2021. A modular organization of looped interareal and thalamocortical pathways in mouse visual cortex Paper presented at the 50th Annual Meeting of the Society for Neuroscience, virtual, Novemb. 8
  31. D'Souza RD, Meier AM, Bista P, Wang Q, Burkhalter A 2016. Recruitment of inhibition and excitation across mouse visual cortex depends on the hierarchy of interconnecting areas. eLife 5:e19332
    [Google Scholar]
  32. D'Souza RD, Wang Q, Ji W, Meier AM, Kennedy H et al. 2022. Hierarchical and nonhierarchical features of the mouse visual cortical network. Nat. Commun. 13:503
    [Google Scholar]
  33. Egger R, Schmitt AC, Wallace DJ, Kerr JND. 2015. Robustness of sensory-evoked excitation is increased by inhibitory inputs to distal apical tuft dendrites. PNAS 112:4514072–77
    [Google Scholar]
  34. Ellis EM, Gauvain G, Sivyer B, Murphy GJ. 2016. Shared and distinct retinal input to the mouse superior colliculus and dorsal lateral geniculate nucleus. J. Neurophysiol. 116:2602–10
    [Google Scholar]
  35. Escobar MI, Pimienta H, Caviness VS, Jacobson M, Crandall JE, Kosik KS. 1986. Architecture of apical dendrites in the murine neocortex: dual apical dendritic systems. Neuroscience 17:4975–89
    [Google Scholar]
  36. Federer F, Ta'afua S, Merlin S, Hassanpour MS, Angelucci A 2021. Stream-specific feedback inputs to the primate primary visual cortex. Nat. Commun. 12:228
    [Google Scholar]
  37. Felleman DJ, Van Essen DC. 1991. Distributed hierarchical processing in the primate cerebral cortex. Cereb. Cortex 1:11–47
    [Google Scholar]
  38. Fitzpatrick D, Itoh K, Diamond IT. 1983. The laminar organization of the lateral geniculate body and the striate cortex in the squirrel monkey (Saimiri sciureus). J. Neurosci. 3:4673–702
    [Google Scholar]
  39. Furtak SC, Ahmed OJ, Burwell RD. 2012. Single neuron activity and theta modulation in postrhinal cortex during visual object discrimination. Neuron 76:5976–88
    [Google Scholar]
  40. Gale SD, Murphey GJ. 2014. Distinct representation and distribution of visual information by specific cell types in mouse superficial superior colliculus. J. Neurosci. 34:4013458–71
    [Google Scholar]
  41. Gale SD, Murphey GJ. 2018. Distinct cell types in the superior colliculus project to the dorsal lateral geniculate and the lateral posterior thalamic nuclei. J. Neurophysiol. 120:1286–92
    [Google Scholar]
  42. Gallardo L, Mottles M, Vera L, Carrasco MA, Torrealba F et al. 1979. Failure by rats to learn a visual conditional discrimination after lateral peristriate cortical lesions. Psychobiology 7:2173–77
    [Google Scholar]
  43. Gămănuţ R, Kennedy H, Toroczkai Z, Ercsey-Ravasz M, Van Essen DC et al. 2018. The mouse cortical connectome, characterized by an ultra-dense cortical graph, maintains specificity by distinct connectivity profiles. Neuron 97:3698–715
    [Google Scholar]
  44. Garrett ME, Nauhaus I, Marshel JH, Callaway EM. 2014. Topography and areal organization of mouse visual cortex. J. Neurosci. 34:3712587–600
    [Google Scholar]
  45. Girman SV, Sauvé Y, Lund RD. 1999. Receptive field properties of single neurons in rat primary visual cortex. J. Neurophysiol. 82:301–11
    [Google Scholar]
  46. Glickfeld LL, Andermann ML, Bonin V, Reid RC. 2013. Cortico-cortical projections in mouse visual cortex are functionally target specific. Nat. Neurosci. 16:219–26
    [Google Scholar]
  47. Goetz J, Jessen ZF, Jacobi A, Mani A, Cooler S et al. 2022. Unified classification of mouse retinal ganglion cells using function, morphology, and gene expression. Cell Rep 40:2111040
    [Google Scholar]
  48. Han X, Vermaercke B, Bonin V. 2022. Diversity of spatiotemporal coding reveals specialized visual processing streams in the mouse cortex. Nat. Commun. 13:3249
    [Google Scholar]
  49. Harris JA, Mihalas S, Hirokawa KE, Whitesell JD, Choi H et al. 2019. Hierarchical organization of cortical and thalamic connectivity. Nature 575:7781195–202
    [Google Scholar]
  50. Hilgetag CC, O'Neill MA, Young MP 1996. Indeterminate organization of the visual system. Science 271:5250776–77
    [Google Scholar]
  51. Hillier D, Fiscella M, Drinnenberg A, Trenholm S, Rompani SB et al. 2017. Causal evidence for retina-dependent and -independent visual motion computations in mouse cortex. Nat. Neurosci. 20:7960–68
    [Google Scholar]
  52. Horton JC, Adams DL. 2005. The cortical column: a structure without a function. Philos. Trans. R. Soc. B 360:1456837–62
    [Google Scholar]
  53. Ichinohe N, Fujiyama F, Kaneko T, Rockland KS. 2003. Honeycomb-like mosaic at the border of layers 1 and 2 in the cerebral cortex. J. Neurosci. 23:41372–82
    [Google Scholar]
  54. Innocenti GM, Vercelli A. 2010. Dendritic bundles, minicolumns, columns, and cortical output units. Front. Neuroanat. 4:11
    [Google Scholar]
  55. Jang J, Song M, Paik S-B. 2020. Retino-cortical mapping ratio predicts columnar and salt-and-pepper organization in mammalian visual cortex. Cell Rep. 30:103270–79.e3
    [Google Scholar]
  56. Ji W, Gămănuţ R, Bista P, D'Souza RD, Wang Q, Burkhalter A 2015. Modularity in the organization of mouse primary visual cortex. Neuron 87:3632–43
    [Google Scholar]
  57. Jiang X, Wang G, Lee AJ, Stronetta RL, Zhu JJ. 2013. The organization of two new interneuronal circuits. Nat. Neurosci. 16:2210–18
    [Google Scholar]
  58. Jin J, Wang Y, Swadlow HA, Alonso JM. 2011. Population receptive fields of ON and OFF thalamic inputs to an orientation column in visual cortex. Nat. Neurosci. 14:2232–38
    [Google Scholar]
  59. Jin M, Glickfeld LL 2020. Mouse higher visual areas provide both distributed and specialized contributions to visually guided behaviors. Curr. Biol. 30:4682–92.e7
    [Google Scholar]
  60. Juavinett AL, Kim EJ, Collins HC, Callaway EM. 2020. A systematic topographical relationship between mouse lateral posterior thalamic neurons and their visual cortical projection targets. J. Comp. Neurol. 528:199–111
    [Google Scholar]
  61. Karimi A, Odenthal J, Drawitsch F, Boergens KM, Helmstaedter M 2020. Cell-type specific innervation of cortical pyramidal cells at their apical dendrites. eLife 9:e46876
    [Google Scholar]
  62. Kay JN, De la Huerta I, Kim I-J, Zhang Y, Yamagata M et al. 2011. Retinal ganglion cells with distinct directional preferences differ in molecular identity, structure, and central projections. J. Neurosci. 31:217753–62
    [Google Scholar]
  63. Keller GB, Mrsic-Flogel TD. 2018. Predictive processing: a canonical cortical computation. Neuron 100:2424–35
    [Google Scholar]
  64. Kerschensteiner D 2022. Feature detection by retinal ganglion cells. Annu. Rev. Vis. Sci 8:135–69
    [Google Scholar]
  65. Khan AG, Hofer SB. 2018. Contextual signals in visual cortex. Curr. Opin. Neurobiol. 52:131–38
    [Google Scholar]
  66. Kim M-H, Znamenskiy P, Iacaruso MF, Mrsic-Flogel TD. 2018. Segregated subnetworks of intracortical projection neurons in primary visual cortex. Neuron 100:61313–21.e6
    [Google Scholar]
  67. Kirschensteiner D, Guido W. 2017. Organization of the dorsal lateral geniculate nucleus in the mouse. Vis. Neurosci. 34:e008
    [Google Scholar]
  68. Kondo S, Yoshida T, Ohki K. 2016. Mixed functional microarchitectures for orientation selectivity in the mouse primary visual cortex. Nat. Commun. 7:113210
    [Google Scholar]
  69. Kravitz DJ, Saleem KS, Baker CI, Mishkin M. 2011. A new neural framework for visuospatial processing. Nat. Rev. Neurosci. 12:4217–30
    [Google Scholar]
  70. Kremkow J, Jin J, Wang Y, Alonso JM 2016. Principles underlying sensory map topography in primary visual cortex. Nature 533:760152–57
    [Google Scholar]
  71. Laing RJ, Turecek J, Takahata T, Olavarria JF. 2015. Identification of eye-specific domains and their relation to callosal connections in primary visual cortex of Long Evans rats. Cereb. Cortex 25:103314–29
    [Google Scholar]
  72. Larkum M. 2013. A cellular mechanism for cortical associations: an organizing principle for the cerebral cortex. Trends Neurosci. 36:141–51
    [Google Scholar]
  73. Lee K-S, Huang X, Fitzpatrick D. 2016. Topology of ON and OFF inputs in visual cortex enables an invariant columnar architecture. Nature 533:760190–94
    [Google Scholar]
  74. Leinweber M, Ward DR, Sobczak JM, Attinger A, Keller GB. 2017. A sensorimotor circuit in mouse cortex for visual flow predictions. Neuron 95:61420–32.e5
    [Google Scholar]
  75. Liang L, Fratzl A, Goldey G, Ramesh RN, Sugden AU et al. 2018. A fine-scale functional logic to convergence from the retina to thalamus. Cell 173:1343–55
    [Google Scholar]
  76. Lien AD, Scanziani M. 2013. Tuned thalamic excitation is amplified by visual cortical circuits. Nat. Neurosci. 16:91315–23
    [Google Scholar]
  77. Lien AD, Scanziani M. 2018. Cortical direction selectivity emerges at convergence of thalamic synapses. Nature 558:770880–86
    [Google Scholar]
  78. Loomba S, Straehle J, Gangadharan V, Heike N, Khalifa A et al. 2022. Connectomic comparison of mouse and human cortex. Science 377:6602eabo0924
    [Google Scholar]
  79. Mangini NJ, Pearlman AL. 1980. Laminar distribution of receptive field properties in the primary visual cortex of the mouse. J. Comp. Neurol. 193:1203–22
    [Google Scholar]
  80. Manita S, Suzuki T, Homma C, Matsumoto T, Odagawa M et al. 2015. A top-down cortical circuit for accurate sensory perception. Neuron 86:51304–16
    [Google Scholar]
  81. Markov NT, Ercsey-Ravasz MM, Ribeiro Gomes AR, Lamy C, Magrou L et al. 2014a. A weighted and directed interareal connectivity matrix for macaque cerebral cortex. Cereb. Cortex 24:117–36
    [Google Scholar]
  82. Markov NT, Vezoli J, Chameau P, Falchier A, Quilodran R et al. 2014b. Anatomy of hierarchy: feedforward and feedback pathways in macaque visual cortex. J. Comp. Neurol. 522:225–59
    [Google Scholar]
  83. Marques T, Nguyen J, Fioreze G, Petreanu L. 2018. The functional organization of cortical feedback inputs to primary visual cortex. Nat. Neurosci. 21:5757–64
    [Google Scholar]
  84. Marshel JH, Garrett ME, Nauhaus I, Callaway EM. 2011. Functional specialization of seven mouse visual cortical areas. Neuron 72:1040–54
    [Google Scholar]
  85. Martersteck E, Hirokawa KE, Evarts M, Bernard A, Duan X et al. 2017. Diverse central projection patterns of retinal ganglion cells. Cell Rep 18:82058–72
    [Google Scholar]
  86. Maruoka H, Nakagawa N, Tsuruno S, Sakai S, Yoneda T, Hosoya T. 2017. Lattice system of functionally distinct cell types in the neocortex. Science 358:6363610–15
    [Google Scholar]
  87. McDaniel WF, Coleman J, Lindsay JF 1982. A comparison of lateral peristriate and striate neocortical ablations in the rat. Behav. Brain Res. 6:3249–72
    [Google Scholar]
  88. McDonald AJ, Mascagni F. 1996. Cortico-cortical and cortico-amygdaloid projections of the rat occipital cortex: a Phaseolus vulgaris leucoagglutinin study. Neuroscience 71:137–54
    [Google Scholar]
  89. Meier AM, Wang Q, Ji W, Ganachaud J, Burkhalter A 2021. Modular network between postrhinal visual cortex, amygdala, and entorhinal cortex. J. Neurosci. 41:224809–25
    [Google Scholar]
  90. Meyer AF, O'Keefe J, Poort J 2020. Two distinct types of eye-head coupling in freely moving mice. Curr. Biol. 30:112116–30.e6
    [Google Scholar]
  91. Mimica B, Dunn BA, Tombaz T, Bojja VPTNCS, Whitlock JR. 2018. Efficient cortical coding of 3D posture in freely behaving rats. Science 362:6414584–89
    [Google Scholar]
  92. Minderer M, Brown KD, Harvey CD. 2019. The spatial structure of neural encoding in mouse posterior cortex during navigation. Neuron 102:1232–48.e11
    [Google Scholar]
  93. Molnár Z, Rockland KS 2020. Cortical columns. Neural Circuit and Cognitive Development J Rubenstein, P Rakic, B Chen, KY Kwan 103–26. San Diego, CA: Academic. , 2nd ed..
    [Google Scholar]
  94. Morin LP, Studholme KM. 2014. Retinofugal projections in the mouse. J. Comp. Neurol. 522:163733–53
    [Google Scholar]
  95. Mrzljak L, Levey AI, Rakic P. 1996. Selective expression of m2 muscarinic receptor in the parvocellular channel of primate visual cortex. PNAS 93:7337–40
    [Google Scholar]
  96. Murakami T, Matsui T, Uemura M, Ohki K. 2022. Modular strategy of development of the hierarchical visual network in mice. Nature 608:578–85
    [Google Scholar]
  97. Murgas KA, Wilson AM, Michael V, Glickfeld LL. 2020. Unique spatial integration in mouse primary visual cortex and higher visual areas. J. Neurosci. 40:91862–73
    [Google Scholar]
  98. Nassi JJ, Callaway EM. 2009. Parallel processing strategies of the primate visual system. Nat. Rev. Neurosci. 10:5360–72
    [Google Scholar]
  99. Nauhaus I, Nielsen KJ. 2014. Building maps from maps in primary visual cortex. Curr. Opin. Neurobiol. 24:1–6
    [Google Scholar]
  100. Ohki K, Chung S, Ch'ng YH, Kara P, Reid RC 2005. Functional imaging with cellular resolution reveals precise micro-architecture in visual cortex. Nature 433:7026597–603
    [Google Scholar]
  101. Ohki K, Chung S, Kara P, Hübener M, Bonhoeffer T, Reid RC. 2006. Highly ordered arrangement of single neurons in orientation pinwheels. Nature 442:7105925–28
    [Google Scholar]
  102. Ohki K, Reid RC. 2007. Specificity and randomness in the visual cortex. Curr. Opin. Neurobiol. 17:4401–7
    [Google Scholar]
  103. Okigawa S, Yamaguchi M, Ito KN, Takeuchi RF, Morimoto N, Osakada F. 2021. Cell type- and layer-specific convergence in core and shell neurons of the dorsal lateral geniculate nucleus. J. Comp. Neurol. 529:82099–124
    [Google Scholar]
  104. Paik S-B, Ringach DL. 2011. Retinal origin of orientation maps in visual cortex. Nat. Neurosci. 14:7919–25
    [Google Scholar]
  105. Pardi MB, Vogenstahl J, Dalmay T, Spanò T, Pu D-L et al. 2020. A thalamocortical top-down circuit for associative memory. Science 370:844–48
    [Google Scholar]
  106. Park J, Papoutsi A, Ash RT, Marin MA, Poirazi P, Smirnakis SM. 2019. Contribution of apical and basal dendrites to orientation encoding in mouse V1 L2/3 pyramidal neurons. Nat. Commun. 10:5372
    [Google Scholar]
  107. Pattadkal JJ, Mato G, van Vreswijk, Priebe NJ, Hansel D 2018. Emergent orientation selectivity from random networks in mouse visual cortex. Cell Rep 24:2042–50
    [Google Scholar]
  108. Peters A, Kara DA. 1987. The neuronal composition of area 17 of rat visual cortex. IV. The organization of pyramidal cells. J. Comp. Neurol. 260:4573–90
    [Google Scholar]
  109. Piasini E, Soltuzu L, Muratore P, Caramellino R, Vinken K et al. 2021. Temporal stability of stimulus representation increases along rodent visual cortical hierarchies. Nat. Commun. 12:4448
    [Google Scholar]
  110. Ramesh RN, Burgess CR, Sugden AU, Gyetvan M, Andermann ML. 2018. Intermingled ensembles encode stimulus identity or predicted outcome in visual association cortex. Neuron 100:4900–15
    [Google Scholar]
  111. Rasmussen R, Matsumoto A, Dahlstrup Sietam M, Yonehara K 2020. A segregated cortical stream for retinal direction selectivity. Nat. Commun. 11:831
    [Google Scholar]
  112. Reinhard K, Li C, Do Q, Burke EG, Heynderickx S, Farrow K 2019. A projection specific logic to sampling visual inputs in mouse superior colliculus. eLife 8:e50697
    [Google Scholar]
  113. Ringach DL, Mineault PJ, Tring E, Olivas ND, Garcia-Junco-Clemente P, Trachtenberg JT 2016. Spatial clustering of tuning in mouse primary visual cortex. Nat. Commun. 7:12270
    [Google Scholar]
  114. Roelfsema PR. 2006. Cortical algorithms for perceptual grouping. Annu. Rev. Neurosci. 29:203–27
    [Google Scholar]
  115. Roelfsema PR, de Lange FP. 2016. Early visual cortex as a multiscale cognitive blackboard. Annu. Rev. Vis. Sci. 2:131–51
    [Google Scholar]
  116. Román Rosón M, Bauer Y, Kotkat AH, Berens P, Euler T, Busse L. 2019. Mouse dLGN receives functional input from a diverse population of retinal ganglion cells with limited convergence. Neuron 102:2462–76.e8
    [Google Scholar]
  117. Rompani SB, Müller FE, Wanner A, Zhang C, Roth CN et al. 2017. Different modes of visual integration in the lateral geniculate nucleus revealed by single-cell-initiated transsynaptic tracing. Neuron 93:767–76.e6
    [Google Scholar]
  118. Roth MM, Dahmen JC, Muir DR, Imhof F, Martini FJ, Hofer SB. 2016. Thalamic nuclei convey diverse contextual information to layer 1 of visual cortex. Nat. Neurosci. 19:2299–307
    [Google Scholar]
  119. Saleem AB. 2020. Two stream hypothesis of visual processing for navigation in mouse. Curr. Opin. Neurobiol. 64:70–78
    [Google Scholar]
  120. Saleem AB, Ayaz A, Jeffery KJ, Harris KD, Carandini M. 2013. Integration of visual motion and location in mouse visual cortex. Nat. Neurosci. 16:1864–69
    [Google Scholar]
  121. Sánchez RF, Montero VM, Espinoza SG, Díaz E, Canitrot M, Pinto-Hamuy T. 1997. Visuospatial discrimination deficit in rats after ibotenate lesions in anteromedial visual cortex. Physiol. Behav. 62:5989–94
    [Google Scholar]
  122. Scala F, Kobak D, Shan S, Bernaerts Y, Laturnus S et al. 2019. Layer 4 of mouse neocortex differs in cell types and circuit organization between sensory areas. Nat. Commun. 10:14174
    [Google Scholar]
  123. Schneider GE. 1969. Two visual systems. Science 163:3870895–902
    [Google Scholar]
  124. Scholl B, Tan AYY, Corey J, Priebe NJ 2013. Emergence of orientation selectivity in the mammalian visual pathway. J. Neurosci. 33:2610616–24
    [Google Scholar]
  125. Schuman B, Dellal S, Prönneke A, Machold R, Rudy B 2021. Neocortical layer 1: an elegant solution to top-down and bottom-up integration. Annu. Rev. Neurosci. 44:221–52
    [Google Scholar]
  126. Sherman SM. 2016. Thalamus plays a central role in ongoing cortical functioning. Nat. Neurosci. 19:4533–41
    [Google Scholar]
  127. Sherman SM, Guillery RW. 2011. Distinct functions for direct transthalamic corticocortical connections. J. Neurophysiol. 106:1068–77
    [Google Scholar]
  128. Siegle JH, Jia X, Durand S, Gale S, Bennett C et al. 2021. Survey of spiking in the mouse visual system reveals functional hierarchy. Nature 592:785286–92
    [Google Scholar]
  129. Sit KK, Goard MJ. 2020. Distributed and retinotopically asymmetric processing of coherent motion in mouse visual cortex. Nat. Commun. 11:3565
    [Google Scholar]
  130. Siu C, Balsor J, Merlin S, Federer F, Angelucci A. 2021. A direct interareal feedback-to-feedforward circuit in primate visual cortex. Nat. Commun. 12:4911
    [Google Scholar]
  131. Smith SL, Häusser M. 2010. Parallel processing of visual space by neighboring neurons in mouse visual cortex. Nat. Neurosci. 13:91144–49
    [Google Scholar]
  132. Takahashi N, Oertner TG, Hegeman P, Larkum ME. 2016. Active cortical dendrites modulate perception. Science 354:1587–90
    [Google Scholar]
  133. Tees RC. 1999. The effects of posterior parietal and posterior temporal cortical lesions on multimodal spatial and nonspatial competencies in rats. Behav. Brain Res. 106:1–255–73
    [Google Scholar]
  134. Tohmi M, Meguro R, Tsukano H, Hishida R, Shibuki K. 2014. The extrageniculate visual pathway generates distinct response properties in the higher visual areas of mice. Curr. Biol. 24:6587–97
    [Google Scholar]
  135. Tring E, Duan KK, Ringach DL. 2022. ON/OFF domains shape receptive field structure in mouse visual cortex. Nat. Commun. 13:2466
    [Google Scholar]
  136. Van Hooser SD, Heimel JA, Chung S, Nelson SB, Toth LJ. 2005. Orientation selectivity without orientation maps in visual cortex of a highly visual mammal. . J. Neurosci. 25:219–28
    [Google Scholar]
  137. Vanni S, Hokkanen H, Werner F, Angelucci A. 2020. Anatomy and physiology of macaque visual cortical areas V12, V2, and V5/MT: bases for biologically realistic models. Cereb. Cortex 30:3483–517
    [Google Scholar]
  138. Vezoli J, Magrou L, Goebel R, Wang X-J, Knoblauch K et al. 2021. Cortical hierarchy, dual counterstream architecture and the importance of top-down generative networks. Neuroimage 225:117479
    [Google Scholar]
  139. Wang Q, Burkhalter A. 2007. Area map of mouse visual cortex. J. Comp. Neurol. 502:3339–57
    [Google Scholar]
  140. Wang Q, Gao E, Burkhalter A. 2011. Gateways of ventral and dorsal streams in mouse visual cortex. J. Neurosci. 31:51905–18
    [Google Scholar]
  141. Wang Q, Sporns O, Burkhalter A. 2012. Network analysis of corticocortical connections reveals ventral and dorsal processing streams in mouse visual cortex. J. Neurosci. 32:134386–99
    [Google Scholar]
  142. Wei P, Liu N, Zhang Z, Liu X, Tang Y et al. 2015. Processing of visually evoked innate fear by a non-canonical thalamic pathway. Nat. Commun. 6:6756
    [Google Scholar]
  143. Williams B, Del Rosario J, Muzzu T, Peelman K, Coletta S et al. 2021. Spatial modulation of dark versus bright stimulus responses in the mouse visual system. Curr. Biol. 31:184172–79.e6
    [Google Scholar]
  144. Williams SR, Fletcher LN. 2019. A dendritic substrate for the cholinergic control of neocortical output neurons. Neuron 101:486–99
    [Google Scholar]
  145. Yang W, Carrasquillo Y, Hooks BM, Nerbonne JM, Burkhalter A. 2013. Distinct balance of excitation and inhibition in an interareal feedforward and feedback circuit of mouse visual cortex. J. Neurosci. 33:4417373–84
    [Google Scholar]
  146. Yonehara K, Fiscella M, Drinnenberg A, Esposti F, Trenholm S et al. 2016. Congenital nystagmus gene FRMD7 is necessary for establishing a neuronal circuit asymmetry for direction selectivity. Neuron 89:1177–93
    [Google Scholar]
  147. Young H, Belbut B, Baeta M, Petreanu L 2021. Laminar-specific cortico-cortical loops in mouse visual cortex. eLife 10:e59551
    [Google Scholar]
  148. Zhou N, Masterson SP, Damron JK, Guido W, Bickford ME 2018. The mouse pulvinar nucleus links the lateral extrastriate cortex, striatum, and amygdala. J. Neurosci. 38:2347–62
    [Google Scholar]
/content/journals/10.1146/annurev-neuro-083122-021241
Loading
/content/journals/10.1146/annurev-neuro-083122-021241
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error