1932

Abstract

While neurons and circuits are almost unequivocally considered to be the computational units and actuators of behavior, a complete understanding of the nervous system must incorporate glial cells. Far beyond a copious but passive substrate, glial influence is inextricable from neuronal physiology, whether during developmental guidance and synaptic shaping or through the trophic support, neurotransmitter and ion homeostasis, cytokine signaling and immune function, and debris engulfment contributions that this class provides throughout an organism's life. With such essential functions, among a growing literature of nuanced roles, it follows that glia are consequential to behavior in adult animals, with novel genetic tools allowing for the investigation of these phenomena in living organisms. We discuss here the relevance of glia for maintaining circadian rhythms and also for serving functions of sleep.

Keyword(s): circadian rhythmsgliasleep
Loading

Article metrics loading...

/content/journals/10.1146/annurev-neuro-091819-094557
2020-07-08
2024-06-14
Loading full text...

Full text loading...

/deliver/fulltext/neuro/43/1/annurev-neuro-091819-094557.html?itemId=/content/journals/10.1146/annurev-neuro-091819-094557&mimeType=html&fmt=ahah

Literature Cited

  1. Abbott NJ, Ronnback L, Hansson E 2006. Astrocyte-endothelial interactions at the blood-brain barrier. Nat. Rev. Neurosci. 7:41–53
    [Google Scholar]
  2. Achariyar TM, Li B, Peng W, Verghese PB, Shi Y et al. 2016. Glymphatic distribution of CSF-derived apoE into brain is isoform specific and suppressed during sleep deprivation. Mol. Neurodegener. 11:74
    [Google Scholar]
  3. Araque A, Parpura V, Sanzgiri RP, Haydon PG 1999. Tripartite synapses: glia, the unacknowledged partner. Trends Neurosci 22:208–15
    [Google Scholar]
  4. Artiushin G, Zhang SL, Tricoire H, Sehgal A 2018. Endocytosis at the Drosophila blood–brain barrier as a function for sleep. eLife 7:e43326
    [Google Scholar]
  5. Awasaki T, Lai SL, Ito K, Lee T 2008. Organization and postembryonic development of glial cells in the adult central brain of Drosophila. J. Neurosci 28:13742–53
    [Google Scholar]
  6. Barca-Mayo O, Berdondini L, De Pietri Tonelli D 2019. Astrocytes and circadian rhythms: an emerging astrocyte-neuron synergy in the timekeeping system. Methods Mol. Biol. 1938:131–54
    [Google Scholar]
  7. Barca-Mayo O, Pons-Espinal M, Follert P, Armirotti A, Berdondini L, De Pietri Tonelli D 2017. Astrocyte deletion of Bmal1 alters daily locomotor activity and cognitive functions via GABA signalling. Nat. Commun. 8:14336
    [Google Scholar]
  8. Bellesi M, de Vivo L, Chini M, Gilli F, Tononi G, Cirelli C 2017. Sleep loss promotes astrocytic phagocytosis and microglial activation in mouse cerebral cortex. J. Neurosci. 37:5263–73
    [Google Scholar]
  9. Bellesi M, de Vivo L, Koebe S, Tononi G, Cirelli C 2018a. Sleep and wake affect glycogen content and turnover at perisynaptic astrocytic processes. Front. Cell. Neurosci. 12:308
    [Google Scholar]
  10. Bellesi M, de Vivo L, Tononi G, Cirelli C 2015. Effects of sleep and wake on astrocytes: clues from molecular and ultrastructural studies. BMC Biol 13:66
    [Google Scholar]
  11. Bellesi M, Haswell JD, de Vivo L, Marshall W, Roseboom PH et al. 2018b. Myelin modifications after chronic sleep loss in adolescent mice. Sleep 41:zsy034
    [Google Scholar]
  12. Bellesi M, Pfister-Genskow M, Maret S, Keles S, Tononi G, Cirelli C 2013. Effects of sleep and wake on oligodendrocytes and their precursors. J. Neurosci. 33:14288–300
    [Google Scholar]
  13. Ben Haim L, Rowitch DH 2017. Functional diversity of astrocytes in neural circuit regulation. Nat. Rev. Neurosci. 18:31–41
    [Google Scholar]
  14. Benington JH, Heller HC. 1995. Restoration of brain energy metabolism as the function of sleep. Prog. Neurobiol. 45:347–60
    [Google Scholar]
  15. Bergles DE, Roberts JD, Somogyi P, Jahr CE 2000. Glutamatergic synapses on oligodendrocyte precursor cells in the hippocampus. Nature 405:187–91
    [Google Scholar]
  16. Bernardinelli Y, Randall J, Janett E, Nikonenko I, Konig S et al. 2014. Activity-dependent structural plasticity of perisynaptic astrocytic domains promotes excitatory synapse stability. Curr. Biol. 24:1679–88
    [Google Scholar]
  17. Bianco F, Pravettoni E, Colombo A, Schenk U, Moller T et al. 2005. Astrocyte-derived ATP induces vesicle shedding and IL-1β release from microglia. J. Immunol. 174:7268–77
    [Google Scholar]
  18. Bjorness TE, Dale N, Mettlach G, Sonneborn A, Sahin B et al. 2016. An adenosine-mediated glial-neuronal circuit for homeostatic sleep. J. Neurosci. 36:3709–21
    [Google Scholar]
  19. Blutstein T, Haydon PG. 2013. The importance of astrocyte-derived purines in the modulation of sleep. Glia 61:129–39
    [Google Scholar]
  20. Borbély AA. 1982. A two process model of sleep regulation. Hum. Neurobiol. 1:195–204
    [Google Scholar]
  21. Brancaccio M, Edwards MD, Patton AP, Smyllie NJ, Chesham JE et al. 2019. Cell-autonomous clock of astrocytes drives circadian behavior in mammals. Science 363:187–92
    [Google Scholar]
  22. Brancaccio M, Patton AP, Chesham JE, Maywood ES, Hastings MH 2017. Astrocytes control circadian timekeeping in the suprachiasmatic nucleus via glutamatergic signaling. Neuron 93:1420–35.e5
    [Google Scholar]
  23. Briggs C, Hirasawa M, Semba K 2018. Sleep deprivation distinctly alters glutamate transporter 1 apposition and excitatory transmission to orexin and MCH neurons. J. Neurosci. 38:2505–18
    [Google Scholar]
  24. Bundgaard M, Abbott NJ. 2008. All vertebrates started out with a glial blood-brain barrier 4–500 million years ago. Glia 56:699–708
    [Google Scholar]
  25. Burkeen JF, Womac AD, Earnest DJ, Zoran MJ 2011. Mitochondrial calcium signaling mediates rhythmic extracellular ATP accumulation in suprachiasmatic nucleus astrocytes. J. Neurosci. 31:8432–40
    [Google Scholar]
  26. Bushong EA, Martone ME, Jones YZ, Ellisman MH 2002. Protoplasmic astrocytes in CA1 stratum radiatum occupy separate anatomical domains. J. Neurosci. 22:183–92
    [Google Scholar]
  27. Carman AJ, Mills JH, Krenz A, Kim D-G, Bynoe MS 2011. Adenosine receptor signaling modulates permeability of the blood–brain barrier. J. Neurosci. 31:13272–80
    [Google Scholar]
  28. Chell JM, Brand AH. 2010. Nutrition-responsive glia control exit of neural stem cells from quiescence. Cell 143:1161–73
    [Google Scholar]
  29. Chen W-F, Maguire S, Sowcik M, Luo W, Koh K, Sehgal A 2015. A neuron–glia interaction involving GABA transaminase contributes to sleep loss in sleepless mutants. Mol. Psychiatry 20:240–51
    [Google Scholar]
  30. Chung WS, Allen NJ, Eroglu C 2015. Astrocytes control synapse formation, function, and elimination. Cold Spring Harb. Perspect. Biol. 7:a020370
    [Google Scholar]
  31. Clasadonte J, Scemes E, Wang Z, Boison D, Haydon PG 2017. Connexin 43–mediated astroglial metabolic networks contribute to the regulation of the sleep-wake cycle. Neuron 95:1365–80.e5
    [Google Scholar]
  32. Colwell CS, Ghiani CA. 2020. Potential circadian rhythms in oligodendrocytes? Working together through time. Neurochem. Res. 45:591–605
    [Google Scholar]
  33. Cuddapah VA, Zhang SL, Sehgal A 2019. Regulation of the blood-brain barrier by circadian rhythms and sleep. Trends Neurosci 42:500–10
    [Google Scholar]
  34. De Pitta M, Brunel N, Volterra A 2016. Astrocytes: orchestrating synaptic plasticity. ? Neuroscience 323:43–61
    [Google Scholar]
  35. de Vivo L, Bellesi M, Marshall W, Bushong EA, Ellisman MH et al. 2017. Ultrastructural evidence for synaptic scaling across the wake/sleep cycle. Science 355:507–10
    [Google Scholar]
  36. Deane R, Bell RD, Sagare A, Zlokovic BV 2009. Clearance of amyloid-β peptide across the blood-brain barrier: implication for therapies in Alzheimer's disease. CNS Neurol. Disord. Drug Targets 8:16–30
    [Google Scholar]
  37. DeSalvo MK, Hindle SJ, Rusan ZM, Orng S, Eddison M et al. 2014. The Drosophila surface glia transcriptome: evolutionary conserved blood-brain barrier processes. Front. Neurosci. 8:346
    [Google Scholar]
  38. Doherty J, Logan MA, Taşdemir ÖE, Freeman MR 2009. Ensheathing glia function as phagocytes in the adult Drosophila brain. J. Neurosci. 29:4768–81
    [Google Scholar]
  39. Dubowy C, Sehgal A. 2017. Circadian rhythms and sleep in Drosophila melanogaster. . Genetics 205:1373–97
    [Google Scholar]
  40. Ewer J, Frisch B, Hamblen-Coyle MJ, Rosbash M, Hall JC 1992. Expression of the period clock gene within different cell types in the brain of Drosophila adults and mosaic analysis of these cells' influence on circadian behavioral rhythms. J. Neurosci. 12:3321–49
    [Google Scholar]
  41. Fonken LK, Frank MG, Kitt MM, Barrientos RM, Watkins LR, Maier SF 2015. Microglia inflammatory responses are controlled by an intrinsic circadian clock. Brain Behav. Immun. 45:171–79
    [Google Scholar]
  42. Fonken LK, Weil ZM, Nelson RJ 2013. Mice exposed to dim light at night exaggerate inflammatory responses to lipopolysaccharide. Brain Behav. Immun. 34:159–63
    [Google Scholar]
  43. Frank MG. 2013. Astroglial regulation of sleep homeostasis. Curr. Opin. Neurobiol. 23:812–18
    [Google Scholar]
  44. Freeman MR. 2015. Drosophila central nervous system glia. Cold Spring Harb. Perspect. Biol. 7:a020552
    [Google Scholar]
  45. Ganguly-Fitzgerald I, Donlea J, Shaw PJ 2006. Waking experience affects sleep need in Drosophila. . Science 313:1775–81
    [Google Scholar]
  46. Gerstner JR, Perron IJ, Riedy SM, Yoshikawa T, Kadotani H et al. 2017. Normal sleep requires the astrocyte brain-type fatty acid binding protein FABP7. Sci. Adv. 3:e1602663
    [Google Scholar]
  47. Gerstner JR, Vanderheyden WM, Shaw PJ, Landry CF, Yin JC 2011. Fatty-acid binding proteins modulate sleep and enhance long-term memory consolidation in Drosophila. . PLOS ONE 6:e15890
    [Google Scholar]
  48. Gomez-Gonzalez B, Hurtado-Alvarado G, Esqueda-León E, Santana-Miranda R, Rojas-Zamorano JA, Velazquez-Moctezuma J 2013. REM sleep loss and recovery regulates blood-brain barrier function. Curr. Neurovascular Res. 10:197–207
    [Google Scholar]
  49. Griffin P, Dimitry JM, Sheehan PW, Lananna BV, Guo C et al. 2019. Circadian clock protein Rev-erbα regulates neuroinflammation. PNAS 116:5102–7
    [Google Scholar]
  50. Guilding C, Hughes AT, Brown TM, Namvar S, Piggins HD 2009. A riot of rhythms: neuronal and glial circadian oscillators in the mediobasal hypothalamus. Mol. Brain 2:28
    [Google Scholar]
  51. Halassa MM, Fellin T, Takano H, Dong JH, Haydon PG 2007. Synaptic islands defined by the territory of a single astrocyte. J. Neurosci. 27:6473–77
    [Google Scholar]
  52. Halassa MM, Florian C, Fellin T, Munoz JR, Lee S-Y et al. 2009. Astrocytic modulation of sleep homeostasis and cognitive consequences of sleep loss. Neuron 61:213–19
    [Google Scholar]
  53. Harris JJ, Attwell D. 2013. Is myelin a mitochondrion. ? J. Cereb. Blood Flow Metab. 33:33–36
    [Google Scholar]
  54. Hayashi Y, Koyanagi S, Kusunose N, Okada R, Wu Z et al. 2013a. The intrinsic microglial molecular clock controls synaptic strength via the circadian expression of cathepsin S. Sci. Rep. 3:2744
    [Google Scholar]
  55. Hayashi Y, Koyanagi S, Kusunose N, Takayama F, Okada R et al. 2013b. Diurnal spatial rearrangement of microglial processes through the rhythmic expression of P2Y12 receptors. J. Neurol. Disord. 1:120
    [Google Scholar]
  56. He J, Hsuchou H, He Y, Kastin AJ, Wang Y, Pan W 2014. Sleep restriction impairs blood–brain barrier function. J. Neurosci. 34:14697–706
    [Google Scholar]
  57. Herzog ED, Hermanstyne T, Smyllie NJ, Hastings MH 2017. Regulating the suprachiasmatic nucleus (SCN) circadian clockwork: interplay between cell-autonomous and circuit-level mechanisms. Cold Spring Harb. Perspect. Biol. 9:a027706
    [Google Scholar]
  58. Hide I, Tanaka M, Inoue A, Nakajima K, Kohsaka S et al. 2000. Extracellular ATP triggers tumor necrosis factor-α release from rat microglia. J. Neurochem. 75:965–72
    [Google Scholar]
  59. Hilu-Dadia R, Hakim-Mishnaevski K, Levy-Adam F, Kurant E 2018. Draper-mediated JNK signaling is required for glial phagocytosis of apoptotic neurons during Drosophila metamorphosis. Glia 66:1520–32
    [Google Scholar]
  60. Hindle SJ, Bainton RJ. 2014. Barrier mechanisms in the Drosophila blood-brain barrier. Front. Neurosci. 8:414
    [Google Scholar]
  61. Hinds LR, Chun LE, Woodruff ER, Christensen JA, Hartsock MJ, Spencer RL 2017. Dynamic glucocorticoid-dependent regulation of Sgk1 expression in oligodendrocytes of adult male rat brain by acute stress and time of day. PLOS ONE 12:e0175075
    [Google Scholar]
  62. Hines DJ, Haydon PG. 2014. Astrocytic adenosine: from synapses to psychiatric disorders. Philos. Trans. R. Soc. Lond. B Biol. Sci. 369:20130594
    [Google Scholar]
  63. Hirrlinger J, Hulsmann S, Kirchhoff F 2004. Astroglial processes show spontaneous motility at active synaptic terminals in situ. Eur. J. Neurosci. 20:2235–39
    [Google Scholar]
  64. Hsu JC, Lee YS, Chang CN, Chuang HL, Ling EA, Lan CT 2003. Sleep deprivation inhibits expression of NADPH-d and NOS while activating microglia and astroglia in the rat hippocampus. Cells Tissues Organs 173:242–54
    [Google Scholar]
  65. Huang ZL, Qu WM, Eguchi N, Chen JF, Schwarzschild MA et al. 2005. Adenosine A2A, but not A1, receptors mediate the arousal effect of caffeine. Nat. Neurosci. 8:858–59
    [Google Scholar]
  66. Hurtado-Alvarado G, Domínguez-Salazar E, Pavon L, Velázquez-Moctezuma J, Gómez-González B 2016. Blood-brain barrier disruption induced by chronic sleep loss: low-grade inflammation may be the link. J. Immunol. Res. 2016:4576012
    [Google Scholar]
  67. Iliff JJ, Chen MJ, Plog BA, Zeppenfeld DM, Soltero M et al. 2014. Impairment of glymphatic pathway function promotes tau pathology after traumatic brain injury. J. Neurosci. 34:16180–93
    [Google Scholar]
  68. Jeong HK, Ji K, Min K, Joe EH 2013. Brain inflammation and microglia: facts and misconceptions. Exp. Neurobiol. 22:59–67
    [Google Scholar]
  69. Katz M, Corson F, Iwanir S, Biron D, Shaham S 2018. Glia modulate a neuronal circuit for locomotion suppression during sleep in C. elegans. Cell Rep 22:2575–83
    [Google Scholar]
  70. Kremer MC, Jung C, Batelli S, Rubin GM, Gaul U 2017. The glia of the adult Drosophila nervous system. Glia 65:606–38
    [Google Scholar]
  71. Kreuter J. 2015. Influence of chronobiology on the nanoparticle-mediated drug uptake into the brain. Pharmaceutics 7:3–9
    [Google Scholar]
  72. Krzeptowski W, Walkowicz L, Plonczynska A, Gorska-Andrzejak J 2018. Different levels of expression of the clock protein PER and the glial marker REPO in ensheathing and astrocyte-like glia of the distal medulla of Drosophila optic lobe. Front. Physiol. 9:361
    [Google Scholar]
  73. Lafaye G, Desterke C, Marulaz L, Benyamina A 2019. Cannabidiol affects circadian clock core complex and its regulation in microglia cells. Addict. Biol. 24:921–34
    [Google Scholar]
  74. Lee Y, Morrison BM, Li Y, Lengacher S, Farah MH et al. 2012. Oligodendroglia metabolically support axons and contribute to neurodegeneration. Nature 487:443–48
    [Google Scholar]
  75. Leone MJ, Beaule C, Marpegan L, Simon T, Herzog ED, Golombek DA 2015. Glial and light-dependent glutamate metabolism in the suprachiasmatic nuclei. Chronobiol. Int. 32:573–78
    [Google Scholar]
  76. Long DM, Giebultowicz JM. 2017. Age-related changes in the expression of the circadian clock protein PERIOD in Drosophila glial cells. Front. Physiol. 8:1131
    [Google Scholar]
  77. Luna AJF, Perier M, Seugnet L 2017. Amyloid precursor protein in Drosophila glia regulates sleep and genes involved in glutamate recycling. J. Neurosci. 37:4289–300
    [Google Scholar]
  78. MacDonald JM, Beach MG, Porpiglia E, Sheehan AE, Watts RJ, Freeman MR 2006. The Drosophila cell corpse engulfment receptor Draper mediates glial clearance of severed axons. Neuron 50:869–81
    [Google Scholar]
  79. Marpegan L, Swanstrom AE, Chung K, Simon T, Haydon PG et al. 2011. Circadian regulation of ATP release in astrocytes. J. Neurosci. 31:8342–50
    [Google Scholar]
  80. Matsumoto Y, Tsunekawa Y, Nomura T, Suto F, Matsumata M et al. 2011. Differential proliferation rhythm of neural progenitor and oligodendrocyte precursor cells in the young adult hippocampus. PLOS ONE 6:e27628
    [Google Scholar]
  81. Mestre H, Hablitz LM, Xavier AL, Feng W, Zou W et al. 2018. Aquaporin-4-dependent glymphatic solute transport in the rodent brain. eLife 7:e40070
    [Google Scholar]
  82. Mohawk JA, Green CB, Takahashi JS 2012. Central and peripheral circadian clocks in mammals. Annu. Rev. Neurosci. 35:445–62
    [Google Scholar]
  83. Morelli A, Ravera S, Panfoli I 2011. Myelin sheath: a new possible role in sleep mechanism. Sleep Med 12:199
    [Google Scholar]
  84. Musiek ES, Lim MM, Yang G, Bauer AQ, Qi L et al. 2013. Circadian clock proteins regulate neuronal redox homeostasis and neurodegeneration. J. Clin. Investig. 123:5389–400
    [Google Scholar]
  85. Nakazato R, Kawabe K, Yamada D, Ikeno S, Mieda M et al. 2017. Disruption of Bmal1 impairs blood–brain barrier integrity via pericyte dysfunction. J. Neurosci. 37:10052–62
    [Google Scholar]
  86. Nakazato R, Takarada T, Yamamoto T, Hotta S, Hinoi E, Yoneda Y 2011. Selective upregulation of Per1 mRNA expression by ATP through activation of P2X7 purinergic receptors expressed in microglial cells. J. Pharmacol. Sci. 116:350–61
    [Google Scholar]
  87. Nall A, Sehgal A. 2014. Monoamines and sleep in Drosophila. Behav. . Neurosci 128:264–72
    [Google Scholar]
  88. Ng FS, Jackson FR. 2015. The ROP vesicle release factor is required in adult Drosophila glia for normal circadian behavior. Front. Cell Neurosci. 9:256
    [Google Scholar]
  89. Ng FS, Sengupta S, Huang Y, Yu AM, You S et al. 2016. TRAP-seq profiling and RNAi-based genetic screens identify conserved glial genes required for adult Drosophila behavior. Front. Mol. Neurosci. 9:146
    [Google Scholar]
  90. Ng FS, Tangredi MM, Jackson FR 2011. Glial cells physiologically modulate clock neurons and circadian behavior in a calcium-dependent manner. Curr. Biol. 21:625–34
    [Google Scholar]
  91. Nimmerjahn A, Kirchhoff F, Helmchen F 2005. Resting microglial cells are highly dynamic surveillants of brain parenchyma in vivo. Science 308:1314–18
    [Google Scholar]
  92. Paolicelli RC, Bolasco G, Pagani F, Maggi L, Scianni M et al. 2011. Synaptic pruning by microglia is necessary for normal brain development. Science 333:1456–58
    [Google Scholar]
  93. Pelluru D, Konadhode RR, Bhat NR, Shiromani PJ 2016. Optogenetic stimulation of astrocytes in the posterior hypothalamus increases sleep at night in C57BL/6J mice. Eur. J. Neurosci. 43:1298–306
    [Google Scholar]
  94. Petit JM, Magistretti PJ. 2016. Regulation of neuron-astrocyte metabolic coupling across the sleep-wake cycle. Neuroscience 323:135–56
    [Google Scholar]
  95. Porkka-Heiskanen T, Strecker RE, McCarley RW 2000. Brain site-specificity of extracellular adenosine concentration changes during sleep deprivation and spontaneous sleep: an in vivo microdialysis study. Neuroscience 99:507–17
    [Google Scholar]
  96. Porkka-Heiskanen T, Strecker RE, Thakkar M, Bjorkum AA, Greene RW, McCarley RW 1997. Adenosine: a mediator of the sleep-inducing effects of prolonged wakefulness. Science 276:1265–68
    [Google Scholar]
  97. Prolo LM, Takahashi JS, Herzog ED 2005. Circadian rhythm generation and entrainment in astrocytes. J. Neurosci. 25:404–8
    [Google Scholar]
  98. Psachoulia K, Jamen F, Young KM, Richardson WD 2009. Cell cycle dynamics of NG2 cells in the postnatal and ageing brain. Neuron Glia Biol 5:57–67
    [Google Scholar]
  99. Ravera S, Panfoli I, Calzia D, Aluigi MG, Bianchini P et al. 2009. Evidence for aerobic ATP synthesis in isolated myelin vesicles. Int. J. Biochem. Cell Biol. 41:1581–91
    [Google Scholar]
  100. Richardson WD, Young KM, Tripathi RB, McKenzie I 2011. NG2-glia as multipotent neural stem cells: fact or fantasy?. Neuron 70:661–73
    [Google Scholar]
  101. Rockstrom MD, Chen L, Taishi P, Nguyen JT, Gibbons CM et al. 2018. Tumor necrosis factor alpha in sleep regulation. Sleep Med. Rev. 40:69–78
    [Google Scholar]
  102. Rothstein JD, Martin L, Levey AI, Dykes-Hoberg M, Jin L et al. 1994. Localization of neuronal and glial glutamate transporters. Neuron 13:713–25
    [Google Scholar]
  103. Saper CB, Fuller PM, Pedersen NP, Lu J, Scammell TE 2010. Sleep state switching. Neuron 68:1023–42
    [Google Scholar]
  104. Schousboe A, Bak LK, Waagepetersen HS 2013. Astrocytic control of biosynthesis and turnover of the neurotransmitters glutamate and GABA. Front. Endocrinol. 4:102
    [Google Scholar]
  105. Seugnet L, Suzuki Y, Merlin G, Gottschalk L, Duntley SP, Shaw PJ 2011. Notch signaling modulates sleep homeostasis and learning after sleep deprivation in Drosophila. Curr. Biol 21:835–40
    [Google Scholar]
  106. Smith AJ, Yao X, Dix JA, Jin BJ, Verkman AS 2017. Test of the ‘glymphatic’ hypothesis demonstrates diffusive and aquaporin-4-independent solute transport in rodent brain parenchyma. eLife 6:e27679
    [Google Scholar]
  107. Sofroniew MV. 2014. Multiple roles for astrocytes as effectors of cytokines and inflammatory mediators. Neuroscientist 20:160–72
    [Google Scholar]
  108. Speder P, Brand AH. 2014. Gap junction proteins in the blood-brain barrier control nutrient-dependent reactivation of Drosophila neural stem cells. Dev. Cell 30:309–21
    [Google Scholar]
  109. Stahl BA, Peco E, Davla S, Murakami K, Caicedo Moreno NA et al. 2018. The taurine transporter Eaat2 functions in ensheathing glia to modulate sleep and metabolic rate. Curr. Biol. 28:3700–8.e4
    [Google Scholar]
  110. Stellwagen D, Malenka RC. 2006. Synaptic scaling mediated by glial TNF-α. Nature 440:1054–59
    [Google Scholar]
  111. Stork T, Engelen D, Krudewig A, Silies M, Bainton RJ, Klambt C 2008. Organization and function of the blood-brain barrier in Drosophila. J. Neurosci 28:587–97
    [Google Scholar]
  112. Suh J, Jackson FR. 2007. Drosophila ebony activity is required in glia for the circadian regulation of locomotor activity. Neuron 55:435–47
    [Google Scholar]
  113. Takayama F, Hayashi Y, Wu Z, Liu Y, Nakanishi H 2016. Diurnal dynamic behavior of microglia in response to infected bacteria through the UDP-P2Y6 receptor system. Sci. Rep. 6:30006
    [Google Scholar]
  114. Takayama F, Zhang X, Hayashi Y, Wu Z, Nakanishi H 2017. Dysfunction in diurnal synaptic responses and social behavior abnormalities in cathepsin S-deficient mice. Biochem. Biophys. Res. Commun. 490:447–52
    [Google Scholar]
  115. Tso CF, Simon T, Greenlaw AC, Puri T, Mieda M, Herzog ED 2017. Astrocytes regulate daily rhythms in the suprachiasmatic nucleus and behavior. Curr. Biol. 27:1055–61
    [Google Scholar]
  116. Tso MC, Herzog ED. 2015. Was Cajal right about sleep. ? BMC Biol 13:67
    [Google Scholar]
  117. Unhavaithaya Y, Orr-Weaver TL. 2012. Polyploidization of glia in neural development links tissue growth to blood-brain barrier integrity. Genes Dev 26:31–36
    [Google Scholar]
  118. Vanderheyden WM, Goodman AG, Taylor RH, Frank MG, Van Dongen HPA, Gerstner JR 2018. Astrocyte expression of the Drosophila TNF-alpha homologue, Eiger, regulates sleep in flies. PLOS Genet 14:e1007724
    [Google Scholar]
  119. Volkenhoff A, Weiler A, Letzel M, Stehling M, Klambt C, Schirmeier S 2015. Glial glycolysis is essential for neuronal survival in Drosophila. . Cell Metab 22:437–47
    [Google Scholar]
  120. Wake H, Moorhouse AJ, Jinno S, Kohsaka S, Nabekura J 2009. Resting microglia directly monitor the functional state of synapses in vivo and determine the fate of ischemic terminals. J. Neurosci. 29:3974–80
    [Google Scholar]
  121. Wang Y, Jin S, Sonobe Y, Cheng Y, Horiuchi H et al. 2014. Interleukin-1β induces blood–brain barrier disruption by downregulating Sonic hedgehog in astrocytes. PLOS ONE 9:e110024
    [Google Scholar]
  122. Weiler A, Volkenhoff A, Hertenstein H, Schirmeier S 2017. Metabolite transport across the mammalian and insect brain diffusion barriers. Neurobiol. Dis. 107:15–31
    [Google Scholar]
  123. Wisor JP, Schmidt MA, Clegern WC 2011. Evidence for neuroinflammatory and microglial changes in the cerebral response to sleep loss. Sleep 34:261–72
    [Google Scholar]
  124. Womac AD, Burkeen JF, Neuendorff N, Earnest DJ, Zoran MJ 2009. Circadian rhythms of extracellular ATP accumulation in suprachiasmatic nucleus cells and cultured astrocytes. Eur. J. Neurosci. 30:869–76
    [Google Scholar]
  125. Wu MN, Ho K, Crocker A, Yue Z, Koh K, Sehgal A 2009. The effects of caffeine on sleep in Drosophila require PKA activity, but not the adenosine receptor. J. Neurosci. 29:11029–37
    [Google Scholar]
  126. Xie L, Kang H, Xu Q, Chen MJ, Liao Y et al. 2013. Sleep drives metabolite clearance from the adult brain. Science 342:373–77
    [Google Scholar]
  127. Xue Y, Zhang Y. 2018. Emerging roles for microRNA in the regulation of Drosophila circadian clock. BMC Neurosci 19:1
    [Google Scholar]
  128. You S, Fulga TA, Van Vactor D, Jackson FR 2018. Regulation of circadian behavior by astroglial microRNAs in Drosophila. . Genetics 208:1195–207
    [Google Scholar]
  129. Yrjanheikki J, Keinanen R, Pellikka M, Hokfelt T, Koistinaho J 1998. Tetracyclines inhibit microglial activation and are neuroprotective in global brain ischemia. PNAS 95:15769–74
    [Google Scholar]
  130. Zhang SL, Yue Z, Arnold DM, Artiushin G, Sehgal A 2018. A circadian clock in the blood-brain barrier regulates xenobiotic efflux. Cell 173:130–39.e10
    [Google Scholar]
/content/journals/10.1146/annurev-neuro-091819-094557
Loading
/content/journals/10.1146/annurev-neuro-091819-094557
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error