1932

Abstract

The brain plans and executes volitional movements. The underlying patterns of neural population activity have been explored in the context of movements of the eyes, limbs, tongue, and head in nonhuman primates and rodents. How do networks of neurons produce the slow neural dynamics that prepare specific movements and the fast dynamics that ultimately initiate these movements? Recent work exploits rapid and calibrated perturbations of neural activity to test specific dynamical systems models that are capable of producing the observed neural activity. These joint experimental and computational studies show that cortical dynamics during motor planning reflect fixed points of neural activity (attractors). Subcortical control signals reshape and move attractors over multiple timescales, causing commitment to specific actions and rapid transitions to movement execution. Experiments in rodents are beginning to reveal how these algorithms are implemented at the level of brain-wide neural circuits.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-neuro-092021-121730
2022-07-08
2024-04-17
Loading full text...

Full text loading...

/deliver/fulltext/neuro/45/1/annurev-neuro-092021-121730.html?itemId=/content/journals/10.1146/annurev-neuro-092021-121730&mimeType=html&fmt=ahah

Literature Cited

  1. Abbott LF, Dayan P. 2005. Theoretical Neuroscience: Computational and Mathematical Modeling of Neural Systems Cambridge, MA: MIT Press
  2. Acker L, Pino EN, Boyden ES, Desimone R. 2016. FEF inactivation with improved optogenetic methods. PNAS 113:E7297–306
    [Google Scholar]
  3. Afshar A, Santhanam G, Yu BM, Ryu SI, Sahani M, Shenoy KV. 2011. Single-trial neural correlates of arm movement preparation. Neuron 71:555–64
    [Google Scholar]
  4. Aksay E, Gamkrelidze G, Seung HS, Baker R, Tank DW. 2001. In vivo intracellular recording and perturbation of persistent activity in a neural integrator. Nat. Neurosci. 4:184–93
    [Google Scholar]
  5. Aksay E, Olasagasti I, Mensh BD, Baker R, Goldman MS, Tank DW. 2007. Functional dissection of circuitry in a neural integrator. Nat. Neurosci. 10:494–504
    [Google Scholar]
  6. Alexander GE, Crutcher MD. 1990. Preparation for movement: neural representations of intended direction in three motor areas of the monkey. J. Neurophysiol. 64:133–50
    [Google Scholar]
  7. Amari S-I. 1972. Learning patterns and pattern sequences by self-organizing nets of threshold elements. IEEE Trans. Comput. C-21:1197–206
    [Google Scholar]
  8. Amit DJ, Brunel N. 1997. Model of global spontaneous activity and local structured activity during delay periods in the cerebral cortex. Cereb. Cortex 7:237–52
    [Google Scholar]
  9. Amit DJ, Gutfreund H, Sompolinsky H. 1985. Storing infinite numbers of patterns in a spin-glass model of neural networks. Phys. Rev. Lett. 55:1530–33
    [Google Scholar]
  10. Anastasiades PG, Collins DP, Carter AG. 2020. Mediodorsal and ventromedial thalamus engage distinct L1 circuits in the prefrontal cortex. Neuron 109:2314–30.e4
    [Google Scholar]
  11. Aoi MC, Mante V, Pillow JW. 2020. Prefrontal cortex exhibits multidimensional dynamic encoding during decision-making. Nat. Neurosci. 23:1410–20
    [Google Scholar]
  12. Bates AS, Janssens J, Jefferis GS, Aerts S. 2019. Neuronal cell types in the fly: single-cell anatomy meets single-cell genomics. Curr. Opin. Neurobiol. 56:125–34
    [Google Scholar]
  13. Ben-Yishai R, Bar-Or RL, Sompolinsky H 1995. Theory of orientation tuning in visual cortex. PNAS 92:3844–48
    [Google Scholar]
  14. Bollu T, Ito BS, Whitehead SC, Kardon B, Redd J et al. 2021. Cortex-dependent corrections as the tongue reaches for and misses targets. Nature 594:82–87
    [Google Scholar]
  15. Brody CD, Hernández A, Zainos A, Romo R. 2003a. Timing and neural encoding of somatosensory parametric working memory in macaque prefrontal cortex. Cereb. Cortex 13:1196–207
    [Google Scholar]
  16. Brody CD, Romo R, Kepecs A. 2003b. Basic mechanisms for graded persistent activity: discrete attractors, continuous attractors, and dynamic representations. Curr. Opin. Neurobiol. 13:204–11
    [Google Scholar]
  17. Brown SP, Hestrin S. 2009. Intracortical circuits of pyramidal neurons reflect their long-range axonal targets. Nature 457:1133–36
    [Google Scholar]
  18. Cannon SC, Robinson DA, Shamma S. 1983. A proposed neural network for the integrator of the oculomotor system. Biol. Cybern. 49:127–36
    [Google Scholar]
  19. Catanese J, Jaeger D. 2021. Premotor ramping of thalamic neuronal activity is modulated by nigral inputs and contributes to control the timing of action release. J. Neurosci. 41:1878–91
    [Google Scholar]
  20. Chabrol FP, Blot A, Mrsic-Flogel TD. 2019. Cerebellar contribution to preparatory activity in motor neocortex. Neuron 103:506–19.e4
    [Google Scholar]
  21. Chaudhuri R, Fiete I. 2016. Computational principles of memory. Nat. Neurosci. 19:394–403
    [Google Scholar]
  22. Chen G, Kang B, Lindsey J, Druckmann S, Li N. 2021. Modularity and robustness of frontal cortical networks. Cell 184:3717–30.e24
    [Google Scholar]
  23. Chen T-W, Li N, Daie K, Svoboda K. 2017. A map of anticipatory activity in mouse motor cortex. Neuron 94:866–79.e4
    [Google Scholar]
  24. Churchland MM, Cunningham JP, Kaufman MT, Foster JD, Nuyujukian P et al. 2012. Neural population dynamics during reaching. Nature 487:51–56
    [Google Scholar]
  25. Churchland MM, Cunningham JP, Kaufman MT, Ryu SI, Shenoy KV. 2010a. Cortical preparatory activity: representation of movement or first cog in a dynamical machine?. Neuron 68:387–400
    [Google Scholar]
  26. Churchland MM, Shenoy KV. 2007. Delay of movement caused by disruption of cortical preparatory activity. J. Neurophysiol. 97:348–59
    [Google Scholar]
  27. Churchland MM, Yu BM, Cunningham JP, Sugrue LP, Cohen MR et al. 2010b. Stimulus onset quenches neural variability: a widespread cortical phenomenon. Nat. Neurosci. 13:369–78
    [Google Scholar]
  28. Churchland MM, Yu BM, Ryu SI, Santhanam G, Shenoy KV. 2006. Neural variability in premotor cortex provides a signature of motor preparation. J. Neurosci. 26:3697–712
    [Google Scholar]
  29. Churchland MM, Yu BM, Sahani M, Shenoy KV. 2007. Techniques for extracting single-trial activity patterns from large-scale neural recordings. Curr. Opin. Neurobiol. 17:609–18
    [Google Scholar]
  30. Cisek P, Kalaska JF. 2010. Neural mechanisms for interacting with a world full of action choices. Annu. Rev. Neurosci. 33:269–98
    [Google Scholar]
  31. Collins DP, Anastasiades PG, Marlin JJ, Carter AG 2018. Reciprocal circuits linking the prefrontal cortex with dorsal and ventral thalamic nuclei. Neuron 98:366–79.e4
    [Google Scholar]
  32. Cueva CJ, Saez A, Marcos E, Genovesio A, Jazayeri M et al. 2020. Low-dimensional dynamics for working memory and time encoding. PNAS 117:23021–32
    [Google Scholar]
  33. Cunningham JP, Yu BM. 2014. Dimensionality reduction for large-scale neural recordings. Nat. Neurosci. 17:1500–9
    [Google Scholar]
  34. Dacre J, Colligan M, Clarke T, Ammer JJ, Schiemann J et al. 2021. A cerebellar-thalamocortical pathway drives behavioral context-dependent movement initiation. Neuron 109:2326–38.e8
    [Google Scholar]
  35. Daie K, Svoboda K, Druckmann S. 2021. Targeted photostimulation uncovers circuit motifs supporting short-term memory. Nat. Neurosci. 24:259–65
    [Google Scholar]
  36. Deemyad T, Lüthi J, Spruston N. 2018. Astrocytes integrate and drive action potential firing in inhibitory subnetworks. Nat. Commun. 9:4336
    [Google Scholar]
  37. Druckmann S, Chklovskii DB. 2012. Neuronal circuits underlying persistent representations despite time varying activity. Curr. Biol. 22:2095–103
    [Google Scholar]
  38. Duan CA, Pan Y, Ma G, Zhou T, Zhang S, Xu N-L. 2021. A cortico-collicular pathway for motor planning in a memory-dependent perceptual decision task. Nat. Commun. 12:2727
    [Google Scholar]
  39. Ebitz RB, Hayden BY. 2021. The population doctrine in cognitive neuroscience. Neuron 109:3055–68
    [Google Scholar]
  40. Economo MN, Viswanathan S, Tasic B, Bas E, Winnubst J et al. 2018. Distinct descending motor cortex pathways and their roles in movement. Nature 563:79–84
    [Google Scholar]
  41. Elsayed GF, Lara AH, Kaufman MT, Churchland MM, Cunningham JP. 2016. Reorganization between preparatory and movement population responses in motor cortex. Nat. Commun. 7:13239
    [Google Scholar]
  42. Erlich JC, Bialek M, Brody CD. 2011. A cortical substrate for memory-guided orienting in the rat. Neuron 72:330–43
    [Google Scholar]
  43. Esmaeili V, Tamura K, Foustoukos G, Oryshchuk A, Crochet S, Petersen CC. 2020. Cortical circuits for transforming whisker sensation into goal-directed licking. Curr. Opin. Neurobiol. 65:38–48
    [Google Scholar]
  44. Esmaeili V, Tamura K, Muscinelli SP, Modirshanechi A, Boscaglia M et al. 2021. Rapid suppression and sustained activation of distinct cortical regions for a delayed sensory-triggered motor response. Neuron 109:2183–201.e9
    [Google Scholar]
  45. Even-Chen N, Sheffer B, Vyas S, Ryu SI, Shenoy KV. 2019. Structure and variability of delay activity in premotor cortex. PLOS Comput. Biol. 15:e1006808
    [Google Scholar]
  46. Finkelstein A, Fontolan L, Economo MN, Li N, Romani S, Svoboda K. 2021. Attractor dynamics gate cortical information flow during decision-making. Nat. Neurosci. 24:843–50
    [Google Scholar]
  47. Fisher D, Olasagasti I, Tank DW, Aksay ERF, Goldman MS. 2013. A modeling framework for deriving the structural and functional architecture of a short-term memory microcircuit. Neuron 79:987–1000
    [Google Scholar]
  48. Funahashi S, Bruce CJ, Goldman-Rakic PS. 1989. Mnemonic coding of visual space in the monkey's dorsolateral prefrontal cortex. J. Neurophysiol. 61:331–49
    [Google Scholar]
  49. Gallego JA, Perich MG, Miller LE, Solla SA. 2017. Neural manifolds for the control of movement. Neuron 94:978–84
    [Google Scholar]
  50. Gallego JA, Perich MG, Naufel SN, Ethier C, Solla SA, Miller LE. 2018. Cortical population activity within a preserved neural manifold underlies multiple motor behaviors. Nat. Commun. 9:4233
    [Google Scholar]
  51. Ganguli S, Huh D, Sompolinsky H. 2008. Memory traces in dynamical systems. PNAS 105:18970–75
    [Google Scholar]
  52. Gao Z, Davis C, Thomas AM, Economo MN, Abrego AM et al. 2018. A cortico-cerebellar loop for motor planning. Nature 563:113–16
    [Google Scholar]
  53. Goldman MS. 2009. Memory without feedback in a neural network. Neuron 61:621–34
    [Google Scholar]
  54. Guo KH, Yamawaki N, Svoboda K, Shepherd GMG. 2018. Anterolateral motor cortex connects with a medial subdivision of ventromedial thalamus through cell type-specific circuits, forming an excitatory thalamo-cortico-thalamic loop via layer 1 apical tuft dendrites of layer 5b pyramidal tract type neurons. J. Neurosci. 38:8787–97
    [Google Scholar]
  55. Guo ZV, Inagaki HK, Daie K, Druckmann S, Gerfen CR, Svoboda K. 2017. Maintenance of persistent activity in a frontal thalamocortical loop. Nature 545:181–86
    [Google Scholar]
  56. Guo ZV, Li N, Huber D, Ophir E, Gutnisky D et al. 2014. Flow of cortical activity underlying a tactile decision in mice. Neuron 81:179–94
    [Google Scholar]
  57. Hahnloser RHR, Kozhevnikov AA, Fee MS. 2002. An ultra-sparse code underlies the generation of neural sequences in a songbird. Nature 419:65–70
    [Google Scholar]
  58. Hanes DP, Schall JD. 1996. Neural control of voluntary movement initiation. Science 274:427–30
    [Google Scholar]
  59. Harris JA, Mihalas S, Hirokawa KE, Whitesell JD, Choi H et al. 2019. Hierarchical organization of cortical and thalamic connectivity. Nature 575:195–202
    [Google Scholar]
  60. Heeger DJ, Mackey WE. 2019. Oscillatory recurrent gated neural integrator circuits (ORGaNICs), a unifying theoretical framework for neural dynamics. PNAS 116:22783–94
    [Google Scholar]
  61. Hennequin G, Vogels TP, Gerstner W. 2014. Optimal control of transient dynamics in balanced networks supports generation of complex movements. Neuron 82:1394–406
    [Google Scholar]
  62. Hikosaka O, Takikawa Y, Kawagoe R. 2000. Role of the basal ganglia in the control of purposive saccadic eye movements. Physiol. Rev. 80:953–78
    [Google Scholar]
  63. Hintiryan H, Foster NN, Bowman I, Bay M, Song MY et al. 2016. The mouse cortico-striatal projectome. Nat. Neurosci. 19:1100–14
    [Google Scholar]
  64. Hooks BM, Mao T, Gutnisky DA, Yamawaki N, Svoboda K, Shepherd GMG. 2013. Organization of cortical and thalamic input to pyramidal neurons in mouse motor cortex. J. Neurosci. 33:748–60
    [Google Scholar]
  65. Hopfield JJ. 1982. Neural networks and physical systems with emergent collective computational abilities. PNAS 79:2554–58
    [Google Scholar]
  66. Huber D, Gutnisky DA, Peron S, O'Connor DH, Wiegert JS et al. 2012. Multiple dynamic representations in the motor cortex during sensorimotor learning. Nature 484:473–78
    [Google Scholar]
  67. Hunnicutt BJ, Jongbloets BC, Birdsong WT, Gertz KJ, Zhong H, Mao T. 2016. A comprehensive excitatory input map of the striatum reveals novel functional organization. eLife 5:e19103
    [Google Scholar]
  68. Hunt LT, Hayden BY. 2017. A distributed, hierarchical and recurrent framework for reward-based choice. Nat. Rev. Neurosci. 18:172–82
    [Google Scholar]
  69. Inagaki HK, Chen S, Ridder MC, Sah P, Li N et al. 2022. A midbrain-thalamus-cortex circuit reorganizes cortical dynamics to initiate movement. Cell 185:106581.e23
    [Google Scholar]
  70. Inagaki HK, Fontolan L, Romani S, Svoboda K. 2019. Discrete attractor dynamics underlies persistent activity in the frontal cortex. Nature 566:212–17
    [Google Scholar]
  71. Inagaki HK, Inagaki M, Romani S, Svoboda K. 2018. Low-dimensional and monotonic preparatory activity in mouse anterior lateral motor cortex. J. Neurosci. 38:4163–85
    [Google Scholar]
  72. Ito HT, Zhang S-J, Witter MP, Moser EI, Moser M-B. 2015. A prefrontal-thalamo-hippocampal circuit for goal-directed spatial navigation. Nature 522:50–55
    [Google Scholar]
  73. Jazayeri M, Afraz A. 2017. Navigating the neural space in search of the neural code. Neuron 93:1003–14
    [Google Scholar]
  74. Joshi S, Gold JI. 2020. Pupil size as a window on neural substrates of cognition. Trends Cogn. Sci. 24:466–80
    [Google Scholar]
  75. Jun JJ, Steinmetz NA, Siegle JH, Denman DJ, Bauza M et al. 2017. Fully integrated silicon probes for high-density recording of neural activity. Nature 551:232–36
    [Google Scholar]
  76. Kahneman D, Beatty J. 1966. Pupil diameter and load on memory. Science 154:1583–85
    [Google Scholar]
  77. Kaufman MT, Churchland MM, Ryu SI, Shenoy KV. 2014. Cortical activity in the null space: permitting preparation without movement. Nat. Neurosci. 17:440–48
    [Google Scholar]
  78. Kaufman MT, Seely JS, Sussillo D, Ryu SI, Shenoy KV, Churchland MM. 2016. The largest response component in the motor cortex reflects movement timing but not movement type. eNeuro 3:ENEURO.0085–16.2016
    [Google Scholar]
  79. Kim E, Bari BA, Cohen JY. 2021. Subthreshold basis for reward-predictive persistent activity in mouse prefrontal cortex. Cell Rep. 35:109082
    [Google Scholar]
  80. Kiritani T, Wickersham IR, Seung HS, Shepherd GMG. 2012. Hierarchical connectivity and connection-specific dynamics in the corticospinal-corticostriatal microcircuit in mouse motor cortex. J. Neurosci. 32:4992–5001
    [Google Scholar]
  81. Klaus A, Alves da Silva J, Costa RM. 2019. What, if, and when to move: basal ganglia circuits and self-paced action initiation. Annu. Rev. Neurosci. 42:459–83
    [Google Scholar]
  82. Kleinfeld D, Raccuia-Behling F, Chiel HJ. 1990. Circuits constructed from identified Aplysia neurons exhibit multiple patterns of persistent activity. Biophys. J. 57:697–715
    [Google Scholar]
  83. Kobak D, Brendel W, Constantinidis C, Feierstein CE, Kepecs A et al. 2016. Demixed principal component analysis of neural population data. eLife 5:e10989
    [Google Scholar]
  84. Komiyama T, Sato TR, O'Connor DH, Zhang Y-X, Huber D et al. 2010. Learning-related fine-scale specificity imaged in motor cortex circuits of behaving mice. Nature 464:1182–86
    [Google Scholar]
  85. Kopec CD, Erlich JC, Brunton BW, Deisseroth K, Brody CD. 2015. Cortical and subcortical contributions to short-term memory for orienting movements. Neuron 88:367–77
    [Google Scholar]
  86. Kremkow J, Aertsen A, Kumar A. 2010. Gating of signal propagation in spiking neural networks by balanced and correlated excitation and inhibition. J. Neurosci. 30:15760–68
    [Google Scholar]
  87. Kunimatsu J, Suzuki TW, Ohmae S, Tanaka M. 2018. Different contributions of preparatory activity in the basal ganglia and cerebellum for self-timing. eLife 7:e35676
    [Google Scholar]
  88. Lara AH, Elsayed GF, Zimnik AJ, Cunningham JP, Churchland MM. 2018. Conservation of preparatory neural events in monkey motor cortex regardless of how movement is initiated. eLife 7:e31826
    [Google Scholar]
  89. Laurent G. 2002. Olfactory network dynamics and the coding of multidimensional signals. Nat. Rev. Neurosci. 3:884–95
    [Google Scholar]
  90. Lee J, Wang W, Sabatini BL. 2020. Anatomically segregated basal ganglia pathways allow parallel behavioral modulation. Nat. Neurosci. 23:1388–98
    [Google Scholar]
  91. Li N, Chen S, Guo ZV, Chen H, Huo Y et al. 2019. Spatiotemporal constraints on optogenetic inactivation in cortical circuits. eLife 8:e48622
    [Google Scholar]
  92. Li N, Chen T-W, Guo ZV, Gerfen CR, Svoboda K. 2015. A motor cortex circuit for motor planning and movement. Nature 519:51–56
    [Google Scholar]
  93. Li N, Daie K, Svoboda K, Druckmann S. 2016. Robust neuronal dynamics in premotor cortex during motor planning. Nature 532:459–64
    [Google Scholar]
  94. Li N, Mrsic-Flogel TD. 2020. Cortico-cerebellar interactions during goal-directed behavior. Curr. Opin. Neurobiol. 65:27–37
    [Google Scholar]
  95. Libby A, Buschman TJ. 2021. Rotational dynamics reduce interference between sensory and memory representations. Nat. Neurosci. 24:715–26
    [Google Scholar]
  96. Lim S, Goldman MS. 2013. Balanced cortical microcircuitry for maintaining information in working memory. Nat. Neurosci. 16:1306–14
    [Google Scholar]
  97. Low RJ, Lewallen S, Aronov D, Nevers R, Tank DW. 2018. Probing variability in a cognitive map using manifold inference from neural dynamics. bioRxiv 418939. https://doi.org/10.1101/418939
    [Crossref]
  98. Machens CK, Romo R, Brody CD. 2005. Flexible control of mutual inhibition: a neural model of two-interval discrimination. Science 307:1121–24
    [Google Scholar]
  99. Machens CK, Romo R, Brody CD. 2010. Functional, but not anatomical, separation of “what” and “when” in prefrontal cortex. J. Neurosci. 30:350–60
    [Google Scholar]
  100. Maimon G, Assad JA. 2006. A cognitive signal for the proactive timing of action in macaque LIP. Nat. Neurosci. 9:948–55
    [Google Scholar]
  101. Mante V, Sussillo D, Shenoy KV, Newsome WT. 2013. Context-dependent computation by recurrent dynamics in prefrontal cortex. Nature 503:78–84
    [Google Scholar]
  102. Markov NT, Ercsey-Ravasz MM, Ribeiro Gomes AR, Lamy C, Magrou L et al. 2014. A weighted and directed interareal connectivity matrix for macaque cerebral cortex. Cereb. Cortex 24:17–36
    [Google Scholar]
  103. Markram H, Muller E, Ramaswamy S, Reimann MW, Abdellah M et al. 2015. Reconstruction and simulation of neocortical microcircuitry. Cell 163:456–92
    [Google Scholar]
  104. Mink JW. 1996. The basal ganglia: focused selection and inhibition of competing motor programs. Prog. Neurobiol. 50:381–425
    [Google Scholar]
  105. Mongillo G, Barak O, Tsodyks M. 2008. Synaptic theory of working memory. Science 319:1543–46
    [Google Scholar]
  106. Morishima M, Morita K, Kubota Y, Kawaguchi Y. 2011. Highly differentiated projection-specific cortical subnetworks. J. Neurosci. 31:10380–91
    [Google Scholar]
  107. Movshon JA, Newsome WT. 1996. Visual response properties of striate cortical neurons projecting to area MT in macaque monkeys. J. Neurosci. 16:7733–41
    [Google Scholar]
  108. Muñoz-Castañeda R, Zingg B, Matho KS, Chen X, Wang Qet al 2021. Cellular anatomy of the mouse primary motor cortex. Nature 59815966
  109. Murphy BK, Miller KD. 2009. Balanced amplification: a new mechanism of selective amplification of neural activity patterns. Neuron 61:635–48
    [Google Scholar]
  110. Musall S, Kaufman MT, Juavinett AL, Gluf S, Churchland AK. 2019. Single-trial neural dynamics are dominated by richly varied movements. Nat. Neurosci. 22:1677–86
    [Google Scholar]
  111. Oh SW, Harris JA, Ng L, Winslow B, Cain N et al. 2014. A mesoscale connectome of the mouse brain. Nature 508:207–14
    [Google Scholar]
  112. Ohyama T, Nores WL, Murphy M, Mauk MD. 2003. What the cerebellum computes. Trends Neurosci. 26:222–27
    [Google Scholar]
  113. Pandarinath C, O'Shea DJ, Collins J, Jozefowicz R, Stavisky SD et al. 2018. Inferring single-trial neural population dynamics using sequential auto-encoders. Nat. Methods 15:805–15
    [Google Scholar]
  114. Panichello MF, DePasquale B, Pillow JW, Buschman TJ. 2019. Error-correcting dynamics in visual working memory. Nat. Commun. 10:3366
    [Google Scholar]
  115. Paninski L, Cunningham JP. 2018. Neural data science: accelerating the experiment-analysis-theory cycle in large-scale neuroscience. Curr. Opin. Neurobiol. 50:232–41
    [Google Scholar]
  116. Paton JJ, Buonomano DV. 2018. The neural basis of timing: distributed mechanisms for diverse functions. Neuron 98:687–705
    [Google Scholar]
  117. Peixoto D, Verhein JR, Kiani R, Kao JC, Nuyujukian P et al. 2021. Decoding and perturbing decision states in real time. Nature 591:604–9
    [Google Scholar]
  118. Pfeffer CK, Xue M, He M, Huang ZJ, Scanziani M. 2013. Inhibition of inhibition in visual cortex: the logic of connections between molecularly distinct interneurons. Nat. Neurosci. 16:1068–76
    [Google Scholar]
  119. Piet AT, Erlich JC, Kopec CD, Brody CD. 2017. Rat prefrontal cortex inactivations during decision making are explained by bistable attractor dynamics. Neural Comput. 29:2861–86
    [Google Scholar]
  120. Pouille F, Scanziani M. 2004. Routing of spike series by dynamic circuits in the hippocampus. Nature 429:717–23
    [Google Scholar]
  121. Prinz AA, Bucher D, Marder E. 2004. Similar network activity from disparate circuit parameters. Nat. Neurosci. 7:1345–52
    [Google Scholar]
  122. Riehle A, Requin J. 1989. Monkey primary motor and premotor cortex: single-cell activity related to prior information about direction and extent of an intended movement. J. Neurophysiol. 61:534–49
    [Google Scholar]
  123. Rosenbaum DA. 1980. Human movement initiation: specification of arm, direction, and extent. J. Exp. Psychol. Gen. 109:444–74
    [Google Scholar]
  124. Rossi MA, Li HE, Lu D, Kim IH, Bartholomew RA et al. 2016. A GABAergic nigrotectal pathway for coordination of drinking behavior. Nat. Neurosci. 19:742–48
    [Google Scholar]
  125. Ryali S, Supekar K, Chen T, Menon V 2011. Multivariate dynamical systems models for estimating causal interactions in fMRI. Neuroimage 54:807–23
    [Google Scholar]
  126. Sadtler PT, Quick KM, Golub MD, Chase SM, Ryu SI et al. 2014. Neural constraints on learning. Nature 512:423–26
    [Google Scholar]
  127. Samsonovich A, McNaughton BL. 1997. Path integration and cognitive mapping in a continuous attractor neural network model. J. Neurosci. 17:5900–20
    [Google Scholar]
  128. Sato TR, Svoboda K. 2010. The functional properties of barrel cortex neurons projecting to the primary motor cortex. J. Neurosci. 30:4256–60
    [Google Scholar]
  129. Sauerbrei BA, Guo J-Z, Cohen JD, Mischiati M, Guo W et al. 2020. Cortical pattern generation during dexterous movement is input-driven. Nature 577:386–91
    [Google Scholar]
  130. Scheffer LK, Xu CS, Januszewski M, Lu Z, Takemura S-Y et al. 2020. A connectome and analysis of the adult Drosophila central brain. eLife 9:e57443
    [Google Scholar]
  131. Schmitt LI, Wimmer RD, Nakajima M, Happ M, Mofakham S, Halassa MM. 2017. Thalamic amplification of cortical connectivity sustains attentional control. Nature 545:219–23
    [Google Scholar]
  132. Selen LPJ, Shadlen MN, Wolpert DM. 2012. Deliberation in the motor system: reflex gains track evolving evidence leading to a decision. J. Neurosci. 32:2276–86
    [Google Scholar]
  133. Seung HS. 1996. How the brain keeps the eyes still. PNAS 93:13339–44
    [Google Scholar]
  134. Shenoy KV, Sahani M, Churchland MM. 2013. Cortical control of arm movements: a dynamical systems perspective. Annu. Rev. Neurosci. 36:337–59
    [Google Scholar]
  135. Shepherd GMG. 2013. Corticostriatal connectivity and its role in disease. Nat. Rev. Neurosci. 14:278–91
    [Google Scholar]
  136. Shepherd GMG, Yamawaki N. 2021. Untangling the cortico-thalamo-cortical loop: cellular pieces of a knotty circuit puzzle. Nat. Rev. Neurosci. 22:389–406
    [Google Scholar]
  137. Sompolinsky H, Crisanti A, Sommers HJ. 1988. Chaos in random neural networks. Phys. Rev. Lett. 61:259–62
    [Google Scholar]
  138. Stavisky SD, Kao JC, Ryu SI, Shenoy KV. 2017. Motor cortical visuomotor feedback activity is initially isolated from downstream targets in output-null neural state space dimensions. Neuron 95:195–208.e9
    [Google Scholar]
  139. Stopfer M, Jayaraman V, Laurent G. 2003. Intensity versus identity coding in an olfactory system. Neuron 39:991–1004
    [Google Scholar]
  140. Strick PL. 1976. Activity of ventrolateral thalamic neurons during arm movement. J. Neurophysiol. 39:1032–44
    [Google Scholar]
  141. Stringer C, Pachitariu M, Steinmetz N, Reddy CB, Carandini M, Harris KD. 2019. Spontaneous behaviors drive multidimensional, brainwide activity. Science 364:255
    [Google Scholar]
  142. Strogatz SH. 1994. Nonlinear Dynamics and Chaos: With Applications to Physics, Biology, Chemistry, and Engineering Boulder, CO: Westview Press
  143. Sun X, O'Shea DJ, Golub MD, Trautmann EM, Vyas S et al. 2022. Cortical preparatory activity indexes learned motor memories. Nature 60227479
  144. Sussillo D, Abbott LF. 2009. Generating coherent patterns of activity from chaotic neural networks. Neuron 63:544–57
    [Google Scholar]
  145. Sussillo D, Churchland MM, Kaufman MT, Shenoy KV. 2015. A neural network that finds a naturalistic solution for the production of muscle activity. Nat. Neurosci. 18:1025–33
    [Google Scholar]
  146. Svoboda K, Li N. 2018. Neural mechanisms of movement planning: motor cortex and beyond. Curr. Opin. Neurobiol. 49:33–41
    [Google Scholar]
  147. Takahashi N, Moberg S, Zolnik TA, Catanese J, Sachdev RNS et al. 2021. Thalamic input to motor cortex facilitates goal-directed action initiation. Curr. Biol. 31:4148–55.e4
    [Google Scholar]
  148. Tanaka M. 2007. Cognitive signals in the primate motor thalamus predict saccade timing. J. Neurosci. 27:12109–18
    [Google Scholar]
  149. Tanji J, Evarts EV. 1976. Anticipatory activity of motor cortex neurons in relation to direction of an intended movement. J. Neurophysiol. 39:1062–68
    [Google Scholar]
  150. Tasic B, Yao Z, Graybuck LT, Smith KA, Nguyen TN et al. 2018. Shared and distinct transcriptomic cell types across neocortical areas. Nature 563:72–78
    [Google Scholar]
  151. Thura D, Cisek P. 2014. Deliberation and commitment in the premotor and primary motor cortex during dynamic decision making. Neuron 81:1401–16
    [Google Scholar]
  152. Thura D, Cisek P. 2017. The basal ganglia do not select reach targets but control the urgency of commitment. Neuron 95:1160–70.e5
    [Google Scholar]
  153. Turner RS, Desmurget M. 2010. Basal ganglia contributions to motor control: a vigorous tutor. Curr. Opin. Neurobiol. 20:704–16
    [Google Scholar]
  154. Vyas S, Golub MD, Sussillo D, Shenoy KV. 2020. Computation through neural population dynamics. Annu. Rev. Neurosci. 43:249–75
    [Google Scholar]
  155. Wang J, Narain D, Hosseini EA, Jazayeri M. 2018. Flexible timing by temporal scaling of cortical responses. Nat. Neurosci. 21:102–10
    [Google Scholar]
  156. Wang Y, Yin X, Zhang Z, Li J, Zhao W, Guo ZV. 2021. A cortico-basal ganglia-thalamo-cortical channel underlying short-term memory. Neuron 109:3486–99.e7
    [Google Scholar]
  157. Wei Z, Inagaki H, Li N, Svoboda K, Druckmann S. 2019. An orderly single-trial organization of population dynamics in premotor cortex predicts behavioral variability. Nat. Commun. 10:216
    [Google Scholar]
  158. Williams AH, Kim TH, Wang F, Vyas S, Ryu SI et al. 2018. Unsupervised discovery of demixed, low-dimensional neural dynamics across multiple timescales through tensor component analysis. Neuron 98:1099–115.e8
    [Google Scholar]
  159. Wilson HR, Cowan JD. 1972. Excitatory and inhibitory interactions in localized populations of model neurons. Biophys. J. 12:1–24
    [Google Scholar]
  160. Wimmer K, Nykamp DQ, Constantinidis C, Compte A. 2014. Bump attractor dynamics in prefrontal cortex explains behavioral precision in spatial working memory. Nat. Neurosci. 17:431–39
    [Google Scholar]
  161. Winnubst J, Bas E, Ferreira TA, Wu Z, Economo MN et al. 2019. Reconstruction of 1,000 projection neurons reveals new cell types and organization of long-range connectivity in the mouse brain. Cell 179:268–81.e13
    [Google Scholar]
  162. Wolff SB, Ölveczky BP. 2018. The promise and perils of causal circuit manipulations. Curr. Opin. Neurobiol. 49:84–94
    [Google Scholar]
  163. Wong K-F, Wang X-J. 2006. A recurrent network mechanism of time integration in perceptual decisions. J. Neurosci. 26:1314–28
    [Google Scholar]
  164. Wu Z, Litwin-Kumar A, Shamash P, Taylor A, Axel R, Shadlen MN 2020. Context-dependent decision making in a premotor circuit. Neuron 106:316–28.e6
    [Google Scholar]
  165. Wurtz RH, Goldberg ME. 1972. Activity of superior colliculus in behaving monkey. 3. Cells discharging before eye movements. J. Neurophysiol. 35:575–86
    [Google Scholar]
  166. Xu D, Dong M, Chen Y, Delgado AM, Hughes NCet al 2022. Cortical processing of flexible and context-dependent sensorimotor sequences. Nature 60346469
  167. Yang GR, Joglekar MR, Song HF, Newsome WT, Wang X-J. 2019. Task representations in neural networks trained to perform many cognitive tasks. Nat. Neurosci. 22:297–306
    [Google Scholar]
  168. Yoo SBM, Hayden BY. 2020. The transition from evaluation to selection involves neural subspace reorganization in core reward regions. Neuron 105:712–24.e4
    [Google Scholar]
  169. Yu J, Gutnisky DA, Hires SA, Svoboda K. 2016. Layer 4 fast-spiking interneurons filter thalamocortical signals during active somatosensation. Nat. Neurosci. 19:1647–57
    [Google Scholar]
  170. Yu J, Hu H, Agmon A, Svoboda K. 2019. Recruitment of GABAergic interneurons in the barrel cortex during active tactile behavior. Neuron 104:412–27.e4
    [Google Scholar]
  171. Zimnik AJ, Churchland MM. 2021. Independent generation of sequence elements by motor cortex. Nat. Neurosci. 24:412–24
    [Google Scholar]
  172. Zylberberg J, Strowbridge BW. 2017. Mechanisms of persistent activity in cortical circuits: possible neural substrates for working memory. Annu. Rev. Neurosci. 40:603–27
    [Google Scholar]
/content/journals/10.1146/annurev-neuro-092021-121730
Loading
/content/journals/10.1146/annurev-neuro-092021-121730
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error