1932

Abstract

To perform computations with the efficiency necessary for animal survival, neocortical microcircuits must be capable of reconfiguring in response to experience, while carefully regulating excitatory and inhibitory connectivity to maintain stable function. This dynamic fine-tuning is accomplished through a rich array of cellular homeostatic plasticity mechanisms that stabilize important cellular and network features such as firing rates, information flow, and sensory tuning properties. Further, these functional network properties can be stabilized by different forms of homeostatic plasticity, including mechanisms that target excitatory or inhibitory synapses, or that regulate intrinsic neuronal excitability. Here we discuss which aspects of neocortical circuit function are under homeostatic control, how this homeostasis is realized on the cellular and molecular levels, and the pathological consequences when circuit homeostasis is impaired. A remaining challenge is to elucidate how these diverse homeostatic mechanisms cooperate within complex circuits to enable them to be both flexible and stable.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-neuro-092523-110001
2024-08-08
2025-02-11
Loading full text...

Full text loading...

/deliver/fulltext/neuro/47/1/annurev-neuro-092523-110001.html?itemId=/content/journals/10.1146/annurev-neuro-092523-110001&mimeType=html&fmt=ahah

Literature Cited

  1. Abbott LF, Nelson SB. 2000.. Synaptic plasticity: taming the beast. . Nat. Neurosci. 3:(Suppl.):117883
    [Crossref] [Google Scholar]
  2. Antoine MW, Langberg T, Schnepel P, Feldman DE. 2019.. Increased excitation-inhibition ratio stabilizes synapse and circuit excitability in four autism mouse models. . Neuron 101:(4):64861.e4
    [Crossref] [Google Scholar]
  3. Baculis BC, Kesavan H, Weiss AC, Kim EH, Tracy GC, et al. 2022.. Homeostatic regulation of extracellular signal-regulated kinase 1/2 activity and axonal Kv7.3 expression by prolonged blockade of hippocampal neuronal activity. . Front. Cell. Neurosci. 16::838419
    [Crossref] [Google Scholar]
  4. Barnes SJ, Franzoni E, Jacobsen RI, Erdelyi F, Szabo G, et al. 2017.. Deprivation-induced homeostatic spine scaling in vivo is localized to dendritic branches that have undergone recent spine loss. . Neuron 96:(4):87182.e5
    [Crossref] [Google Scholar]
  5. Barnes SJ, Sammons RP, Jacobsen RI, Mackie J, Keller GB, Keck T. 2015.. Subnetwork-specific homeostatic plasticity in mouse visual cortex in vivo. . Neuron 86:(5):1290303
    [Crossref] [Google Scholar]
  6. Battaglia S, Renner M, Russeau M, Côme E, Tyagarajan SK, Lévi S. 2018.. Activity-dependent inhibitory synapse scaling is determined by gephyrin phosphorylation and subsequent regulation of GABAA receptor diffusion. . eNeuro 5:(1):ENEURO.0203-17.2017
    [Crossref] [Google Scholar]
  7. Beggs JM, Plenz D. 2004.. Neuronal avalanches are diverse and precise activity patterns that are stable for many hours in cortical slice cultures. . J. Neurosci. 24:(22):521629
    [Crossref] [Google Scholar]
  8. Bockaert J, Perroy J, Ango F. 2021.. The complex formed by group I metabotropic glutamate receptor (mGluR) and Homer1a plays a central role in metaplasticity and homeostatic synaptic scaling. . J. Neurosci. 41:(26):556778
    [Crossref] [Google Scholar]
  9. Booker SA, Simões de Oliveira L, Anstey NJ, Kozic Z, Dando OR, et al. 2020.. Input-output relationship of CA1 pyramidal neurons reveals intact homeostatic mechanisms in a mouse model of fragile X syndrome. . Cell Rep. 32:(6):107988
    [Crossref] [Google Scholar]
  10. Bottorff J, Padgett S, Turrigiano GG. 2023.. Basal forebrain cholinergic activity is necessary for upward firing rate homeostasis in the rodent visual cortex. . PNAS 121:(1):e2317987121
    [Crossref] [Google Scholar]
  11. Bourne JN, Harris KM. 2011.. Coordination of size and number of excitatory and inhibitory synapses results in a balanced structural plasticity along mature hippocampal CA1 dendrites during LTP. . Hippocampus 21:(4):35473
    [Crossref] [Google Scholar]
  12. Bridi MCD, de Pasquale R, Lantz CL, Gu Y, Borrell A, et al. 2018.. Two distinct mechanisms for experience-dependent homeostasis. . Nat. Neurosci. 21:(6):84350
    [Crossref] [Google Scholar]
  13. Burrone J, O'Byrne M, Murthy VN. 2002.. Multiple forms of synaptic plasticity triggered by selective suppression of activity in individual neurons. . Nature 420:(6914):41418
    [Crossref] [Google Scholar]
  14. Buzsáki G, Mizuseki K. 2014.. The log-dynamic brain: how skewed distributions affect network operations. . Nat. Rev. Neurosci. 15:(4):26478
    [Crossref] [Google Scholar]
  15. Campanac E, Daoudal G, Ankri N, Debanne D. 2008.. Downregulation of dendritic Ih in CA1 pyramidal neurons after LTP. . J. Neurosci. 28:(34):863543
    [Crossref] [Google Scholar]
  16. Cannon J, Miller P. 2016.. Synaptic and intrinsic homeostasis cooperate to optimize single neuron response properties and tune integrator circuits. . J. Neurophysiol. 116:(5):200422
    [Crossref] [Google Scholar]
  17. Cannon J, Miller P. 2017.. Stable control of firing rate mean and variance by dual homeostatic mechanisms. . J. Math. Neurosci. 7:(1):1
    [Crossref] [Google Scholar]
  18. Chang MC, Park JM, Pelkey KA, Grabenstatter HL, Xu D, et al. 2010.. Narp regulates homeostatic scaling of excitatory synapses on parvalbumin-expressing interneurons. . Nat. Neurosci. 13:(9):109097
    [Crossref] [Google Scholar]
  19. Chater TE, Goda Y. 2021.. My Neighbour Hetero—deconstructing the mechanisms underlying heterosynaptic plasticity. . Curr. Opin. Neurobiol. 67::10614
    [Crossref] [Google Scholar]
  20. Chen JL, Nedivi E. 2013.. Highly specific structural plasticity of inhibitory circuits in the adult neocortex. . Neuroscientist 19:(4):38493
    [Crossref] [Google Scholar]
  21. Chen L, Li X, Tjia M, Thapliyal S. 2022.. Homeostatic plasticity and excitation-inhibition balance: the good, the bad, and the ugly. . Curr. Opin. Neurobiol. 75::102553
    [Crossref] [Google Scholar]
  22. Chen S, Benninger F, Yaari Y. 2014.. Role of small conductance Ca2+-activated K+ channels in controlling CA1 pyramidal cell excitability. . J. Neurosci. 34:(24):821930
    [Crossref] [Google Scholar]
  23. Chipman PH, Fetter RD, Panzera LC, Bergerson SJ, Karmelic D, et al. 2022.. NMDAR-dependent presynaptic homeostasis in adult hippocampus: synapse growth and cross-modal inhibitory plasticity. . Neuron 110:(20):3302317.e7
    [Crossref] [Google Scholar]
  24. Chiu CQ, Barberis A, Higley MJ. 2019.. Preserving the balance: diverse forms of long-term GABAergic synaptic plasticity. . Nat. Rev. Neurosci. 20:(5):27281
    [Crossref] [Google Scholar]
  25. Chiu CQ, Martenson JS, Yamazaki M, Natsume R, Sakimura K, et al. 2018.. Input-specific NMDAR-dependent potentiation of dendritic GABAergic inhibition. . Neuron 97:(2):36877.e3
    [Crossref] [Google Scholar]
  26. Chowdhury D, Hell JW. 2018.. Homeostatic synaptic scaling: molecular regulators of synaptic AMPA-type glutamate receptors. . F1000Research 7::234
    [Crossref] [Google Scholar]
  27. Cocchi L, Gollo LL, Zalesky A, Breakspear M. 2017.. Criticality in the brain: a synthesis of neurobiology, models and cognition. . Prog. Neurobiol. 158::13252
    [Crossref] [Google Scholar]
  28. Compans B, Burrone J. 2023.. Chandelier cells shine a light on the formation of GABAergic synapses. . Curr. Opin. Neurobiol. 80::102697
    [Crossref] [Google Scholar]
  29. Cudmore RH, Fronzaroli-Molinieres L, Giraud P, Debanne D. 2010.. Spike-time precision and network synchrony are controlled by the homeostatic regulation of the D-type potassium current. . J. Neurosci. 30:(38):1288595
    [Crossref] [Google Scholar]
  30. Daoudal G, Debanne D. 2003.. Long-term plasticity of intrinsic excitability: learning rules and mechanisms. . Learn. Mem. 10:(6):45665
    [Crossref] [Google Scholar]
  31. Davis GW, Müller M. 2015.. Homeostatic control of presynaptic neurotransmitter release. . Annu. Rev. Physiol. 77::25170
    [Crossref] [Google Scholar]
  32. De Gois S, Schäfer MK-H, Defamie N, Chen C, Ricci A, et al. 2005.. Homeostatic scaling of vesicular glutamate and GABA transporter expression in rat neocortical circuits. . J. Neurosci. 25:(31):712133
    [Crossref] [Google Scholar]
  33. Desai NS, Cudmore RH, Nelson SB, Turrigiano GG. 2002.. Critical periods for experience-dependent synaptic scaling in visual cortex. . Nat. Neurosci. 5:(8):78389
    [Crossref] [Google Scholar]
  34. Desai NS, Rutherford LC, Turrigiano GG. 1999.. Plasticity in the intrinsic excitability of cortical pyramidal neurons. . Nat. Neurosci. 2:(6):51520
    [Crossref] [Google Scholar]
  35. Desch K, Langer JD, Schuman EM. 2021.. Dynamic bi-directional phosphorylation events associated with the reciprocal regulation of synapses during homeostatic up- and down-scaling. . Cell Rep. 36:(8):109583
    [Crossref] [Google Scholar]
  36. Dhawale AK, Poddar R, Wolff SB, Normand VA, Kopelowitz E, Ölveczky BP. 2017.. Automated long-term recording and analysis of neural activity in behaving animals. . eLife 6::e27702
    [Crossref] [Google Scholar]
  37. Diering GH, Nirujogi RS, Roth RH, Worley PF, Pandey A, Huganir RL. 2017.. Homer1a drives homeostatic scaling-down of excitatory synapses during sleep. . Science 355:(6324):51115
    [Crossref] [Google Scholar]
  38. Dörrbaum AR, Alvarez-Castelao B, Nassim-Assir B, Langer JD, Schuman EM. 2020.. Proteome dynamics during homeostatic scaling in cultured neurons. . eLife 9::e52939
    [Crossref] [Google Scholar]
  39. Driscoll HE, Muraro NI, He M, Baines RA. 2013.. Pumilio-2 regulates translation of Nav1.6 to mediate homeostasis of membrane excitability. . J. Neurosci. 33:(23):964454
    [Crossref] [Google Scholar]
  40. Dubes S, Soula A, Benquet S, Tessier B, Poujol C, et al. 2022.. miR-124-dependent tagging of synapses by synaptopodin enables input-specific homeostatic plasticity. . EMBO. J. 41:(20):e109012
    [Crossref] [Google Scholar]
  41. Echegoyen J, Neu A, Graber KD, Soltesz I. 2007.. Homeostatic plasticity studied using in vivo hippocampal activity-blockade: synaptic scaling, intrinsic plasticity and age-dependence. . PLOS ONE 2:(8):e700
    [Crossref] [Google Scholar]
  42. El-Boustani S, Ip JPK, Breton-Provencher V, Knott GW, Okuno H, et al. 2018.. Locally coordinated synaptic plasticity of visual cortex neurons in vivo. . Science 360:(6395):134954
    [Crossref] [Google Scholar]
  43. Ellingford RA, Panasiuk MJ, De Meritens ER, Shaunak R, Naybour L, et al. 2021.. Cell-type-specific synaptic imbalance and disrupted homeostatic plasticity in cortical circuits of ASD-associated Chd8 haploinsufficient mice. . Mol. Psychiatry 26:(7):361424
    [Crossref] [Google Scholar]
  44. Espinosa JS, Stryker MP. 2012.. Development and plasticity of the primary visual cortex. . Neuron 75:(2):23049
    [Crossref] [Google Scholar]
  45. Fernandes D, Carvalho AL. 2016.. Mechanisms of homeostatic plasticity in the excitatory synapse. . J. Neurochem. 139:(6):97396
    [Crossref] [Google Scholar]
  46. Fong M, Newman JP, Potter SM, Wenner P. 2015.. Upward synaptic scaling is dependent on neurotransmission rather than spiking. . Nat. Commun. 6:(1):6339
    [Crossref] [Google Scholar]
  47. Frank CA, James TD, Müller M. 2020.. Homeostatic control of Drosophila neuromuscular junction function. . Synapse 74:(1):e22133
    [Crossref] [Google Scholar]
  48. Gainey MA, Aman JW, Feldman DE. 2018.. Rapid disinhibition by adjustment of PV intrinsic excitability during whisker map plasticity in mouse S1. . J. Neurosci. 38:(20):474961
    [Crossref] [Google Scholar]
  49. Gainey MA, Feldman DE. 2017.. Multiple shared mechanisms for homeostatic plasticity in rodent somatosensory and visual cortex. . Philos. Trans. R. Soc. B 372:(1715):20160157
    [Crossref] [Google Scholar]
  50. Gainey MA, Hurvitz-Wolff JR, Lambo ME, Turrigiano GG. 2009.. Synaptic scaling requires the GluR2 subunit of the AMPA receptor. . J. Neurosci. 29:(20):647989
    [Crossref] [Google Scholar]
  51. Gainey MA, Tatavarty V, Nahmani M, Lin H, Turrigiano GG. 2015.. Activity-dependent synaptic GRIP1 accumulation drives synaptic scaling up in response to action potential blockade. . PNAS 112:(27):E359099
    [Crossref] [Google Scholar]
  52. Ge Y, Kang Y, Cassidy RM, Moon K-M, Lewis R, et al. 2018.. Clptm1 limits forward trafficking of GABAA receptors to scale inhibitory synaptic strength. . Neuron 97:(3):596610.e8
    [Crossref] [Google Scholar]
  53. Gideons ES, Lin P-Y, Mahgoub M, Kavalali ET, Monteggia LM. 2017.. Chronic lithium treatment elicits its antimanic effects via BDNF-TrkB dependent synaptic downscaling. . eLife 6::e25480
    [Crossref] [Google Scholar]
  54. Goel P, Dickman D. 2021.. Synaptic homeostats: latent plasticity revealed at the Drosophila neuromuscular junction. . Cell. Mol. Life Sci. 78:(7):315979
    [Crossref] [Google Scholar]
  55. Gonzalez-Islas C, Wenner P. 2006.. Spontaneous network activity in the embryonic spinal cord regulates AMPAergic and GABAergic synaptic strength. . Neuron 49:(4):56375
    [Crossref] [Google Scholar]
  56. Goold CP, Nicoll RA. 2010.. Single-cell optogenetic excitation drives homeostatic synaptic depression. . Neuron 68:(3):51228
    [Crossref] [Google Scholar]
  57. Greenhill SD, Ranson A, Fox K. 2015.. Hebbian and homeostatic plasticity mechanisms in regular spiking and intrinsic bursting cells of cortical layer 5. . Neuron 88:(3):53952
    [Crossref] [Google Scholar]
  58. Grubb MS, Burrone J. 2010.. Activity-dependent relocation of the axon initial segment fine-tunes neuronal excitability. . Nature 465:(7301):107074
    [Crossref] [Google Scholar]
  59. Gu Y, Huang S, Chang MC, Worley P, Kirkwood A, Quinlan EM. 2013.. Obligatory role for the immediate early gene NARP in critical period plasticity. . Neuron 79:(2):33546
    [Crossref] [Google Scholar]
  60. Haider B, Duque A, Hasenstaub AR, McCormick DA. 2006.. Neocortical network activity in vivo is generated through a dynamic balance of excitation and inhibition. . J. Neurosci. 26:(17):453545
    [Crossref] [Google Scholar]
  61. Haider B, McCormick DA. 2009.. Rapid neocortical dynamics: cellular and network mechanisms. . Neuron 62:(2):17189
    [Crossref] [Google Scholar]
  62. Hanes AL, Koesters AG, Fong M, Altimimi HF, Stellwagen D, et al. 2020.. Divergent synaptic scaling of miniature EPSCs following activity blockade in dissociated neuronal cultures. . J. Neurosci. 40:(21):4090102
    [Crossref] [Google Scholar]
  63. Harms KJ, Tovar KR, Craig AM. 2005.. Synapse-specific regulation of AMPA receptor subunit composition by activity. . J. Neurosci. 25:(27):637988
    [Crossref] [Google Scholar]
  64. Hartman KN, Pal SK, Burrone J, Murthy VN. 2006.. Activity-dependent regulation of inhibitory synaptic transmission in hippocampal neurons. . Nat. Neurosci. 9:(5):64249
    [Crossref] [Google Scholar]
  65. Hartmann K, Bruehl C, Golovko T, Draguhn A. 2008.. Fast homeostatic plasticity of inhibition via activity-dependent vesicular filling. . PLOS ONE 3:(8):e2979
    [Crossref] [Google Scholar]
  66. Hengen KB, Lambo ME, Van Hooser SD, Katz DB, Turrigiano GG. 2013.. Firing rate homeostasis in visual cortex of freely behaving rodents. . Neuron 80:(2):33542
    [Crossref] [Google Scholar]
  67. Hengen KB, Torrado Pacheco A, McGregor JN, Van Hooser SD, Turrigiano GG. 2016.. Neuronal firing rate homeostasis is inhibited by sleep and promoted by wake. . Cell 165:(1):18091
    [Crossref] [Google Scholar]
  68. Henton A, Zhao Y, Tzounopoulos T. 2023.. A role for KCNQ channels on cell type-specific plasticity in mouse auditory cortex after peripheral damage. . J. Neurosci. 43:(13):227790
    [Crossref] [Google Scholar]
  69. Hou Q, Zhang D, Jarzylo L, Huganir RL, Man H-Y. 2008.. Homeostatic regulation of AMPA receptor expression at single hippocampal synapses. . PNAS 105:(2):77580
    [Crossref] [Google Scholar]
  70. House DRC, Elstrott J, Koh E, Chung J, Feldman DE. 2011.. Parallel regulation of feedforward inhibition and excitation during whisker map plasticity. . Neuron 72:(5):81931
    [Crossref] [Google Scholar]
  71. Iascone DM, Li Y, Sümbül U, Doron M, Chen H, et al. 2020.. Whole-neuron synaptic mapping reveals spatially precise excitatory/inhibitory balance limiting dendritic and somatic spiking. . Neuron 106:(4):56678.e8
    [Crossref] [Google Scholar]
  72. Ibata K, Sun Q, Turrigiano GG. 2008.. Rapid synaptic scaling induced by changes in postsynaptic firing. . Neuron 57:(6):81926
    [Crossref] [Google Scholar]
  73. Isaacson JS, Scanziani M. 2011.. How inhibition shapes cortical activity. . Neuron 72:(2):23143
    [Crossref] [Google Scholar]
  74. Jones EG. 1993.. GABAergic neurons and their role in cortical plasticity in primates. . Cereb. Cortex 3:(5):36172
    [Crossref] [Google Scholar]
  75. Joseph A, Turrigiano GG. 2017.. All for one but not one for all: Excitatory synaptic scaling and intrinsic excitability are coregulated by CaMKIV, whereas inhibitory synaptic scaling is under independent control. . J. Neurosci. 37:(28):677885
    [Crossref] [Google Scholar]
  76. Kaneko M, Stellwagen D, Malenka RC, Stryker MP. 2008.. Tumor necrosis factor-α mediates one component of competitive, experience-dependent plasticity in developing visual cortex. . Neuron 58:(5):67380
    [Crossref] [Google Scholar]
  77. Karmarkar UR, Buonomano DV. 2006.. Different forms of homeostatic plasticity are engaged with distinct temporal profiles. . Eur. J. Neurosci. 23:(6):157584
    [Crossref] [Google Scholar]
  78. Kavalali ET, Monteggia LM. 2023.. Rapid homeostatic plasticity and neuropsychiatric therapeutics. . Neuropsychopharmacology 48:(1):5460
    [Crossref] [Google Scholar]
  79. Keck T, Hübener M, Bonhoeffer T. 2017a.. Interactions between synaptic homeostatic mechanisms: an attempt to reconcile BCM theory, synaptic scaling, and changing excitation/inhibition balance. . Curr. Opin. Neurobiol. 43::8793
    [Crossref] [Google Scholar]
  80. Keck T, Keller GB, Jacobsen RI, Eysel UT, Bonhoeffer T, Hübener M. 2013.. Synaptic scaling and homeostatic plasticity in the mouse visual cortex in vivo. . Neuron 80:(2):32734
    [Crossref] [Google Scholar]
  81. Keck T, Toyoizumi T, Chen L, Doiron B, Feldman DE, et al. 2017b.. Integrating Hebbian and homeostatic plasticity: the current state of the field and future research directions. . Philos. Trans. R. Soc. B 372:(1715):20160158
    [Crossref] [Google Scholar]
  82. Kilman V, van Rossum MCW, Turrigiano GG. 2002.. Activity deprivation reduces miniature IPSC amplitude by decreasing the number of postsynaptic GABAA receptors clustered at neocortical synapses. . J. Neurosci. 22:(4):132837
    [Crossref] [Google Scholar]
  83. Kim J, Alger BE. 2010.. Reduction in endocannabinoid tone is a homeostatic mechanism for specific inhibitory synapses. . Nat. Neurosci. 13:(5):592600
    [Crossref] [Google Scholar]
  84. Kim J, Tsien RW. 2008.. Synapse-specific adaptations to inactivity in hippocampal circuits achieve homeostatic gain control while dampening network reverberation. . Neuron 58:(6):92537
    [Crossref] [Google Scholar]
  85. Kotak VC, Fujisawa S, Lee FA, Karthikeyan O, Aoki C, Sanes DH. 2005.. Hearing loss raises excitability in the auditory cortex. . J. Neurosci. 25:(15):390818
    [Crossref] [Google Scholar]
  86. Kuhlman SJ, Olivas ND, Tring E, Ikrar T, Xu X, Trachtenberg JT. 2013.. A disinhibitory microcircuit initiates critical-period plasticity in the visual cortex. . Nature 501:(7468):54346
    [Crossref] [Google Scholar]
  87. Kuhnle CG, Grimes M, Suárez Casanova VM, Turrigiano GG, Van Hooser SD. 2022.. Juvenile Shank3 KO mice adopt distinct hunting strategies during prey capture learning. . eNeuro 9:(6):ENEURO.0230-22.2022
    [Google Scholar]
  88. Lambo ME, Turrigiano GG. 2013.. Synaptic and intrinsic homeostatic mechanisms cooperate to increase L2/3 pyramidal neuron excitability during a late phase of critical period plasticity. . J. Neurosci. 33:(20):881019
    [Crossref] [Google Scholar]
  89. Lee H-K, Kirkwood A. 2019.. Mechanisms of homeostatic synaptic plasticity in vivo. . Front. Cell. Neurosci. 13::520
    [Crossref] [Google Scholar]
  90. Lee KY, Royston SE, Vest MO, Ley DJ, Lee S, et al. 2015.. N-methyl-D-aspartate receptors mediate activity-dependent down-regulation of potassium channel genes during the expression of homeostatic intrinsic plasticity. . Mol. Brain. 8:(1):4
    [Crossref] [Google Scholar]
  91. Lefort S, Gray AC, Turrigiano GG. 2013.. Long-term inhibitory plasticity in visual cortical layer 4 switches sign at the opening of the critical period. . PNAS 110:(47):E454047
    [Crossref] [Google Scholar]
  92. Letellier M, Levet F, Thoumine O, Goda Y. 2019.. Differential role of pre- and postsynaptic neurons in the activity-dependent control of synaptic strengths across dendrites. . PLOS Biol. 17:(6):e2006223
    [Crossref] [Google Scholar]
  93. Li B, Suutari BS, Sun SD, Luo Z, Wei C, et al. 2020a.. Neuronal inactivity co-opts LTP machinery to drive potassium channel splicing and homeostatic spike widening. . Cell 181:(7):154765.e15
    [Crossref] [Google Scholar]
  94. Li J, Jiang RY, Arendt KL, Hsu Y-T, Zhai SR, Chen L. 2020b.. Defective memory engram reactivation underlies impaired fear memory recall in fragile X syndrome. . eLife 9::e61882
    [Crossref] [Google Scholar]
  95. Li L, Gainey MA, Goldbeck JE, Feldman DE. 2014.. Rapid homeostasis by disinhibition during whisker map plasticity. . PNAS 111:(4):161621
    [Crossref] [Google Scholar]
  96. Lim S, McKee JL, Woloszyn L, Amit Y, Freedman DJ, et al. 2015.. Inferring learning rules from distributions of firing rates in cortical neurons. . Nat. Neurosci. 18:(12):180410
    [Crossref] [Google Scholar]
  97. Lombardo J, Sun J, Harrington MA. 2018.. Rapid activity-dependent modulation of the intrinsic excitability through up-regulation of KCNQ/Kv7 channel function in neonatal spinal motoneurons. . PLOS ONE 13:(3):e0193948
    [Crossref] [Google Scholar]
  98. Losonczy A, Makara JK, Magee JC. 2008.. Compartmentalized dendritic plasticity and input feature storage in neurons. . Nature 452:(7186):43641
    [Crossref] [Google Scholar]
  99. Ma Z, Turrigiano GG, Wessel R, Hengen KB. 2019.. Cortical circuit dynamics are homeostatically tuned to criticality in vivo. . Neuron 104:(4):65564.e4
    [Crossref] [Google Scholar]
  100. Maffei A, Nataraj K, Nelson SB, Turrigiano GG. 2006.. Potentiation of cortical inhibition by visual deprivation. . Nature 443:(7107):8184
    [Crossref] [Google Scholar]
  101. Maffei A, Nelson SB, Turrigiano GG. 2004.. Selective reconfiguration of layer 4 visual cortical circuitry by visual deprivation. . Nat. Neurosci. 7:(12):135359
    [Crossref] [Google Scholar]
  102. Maffei A, Turrigiano GG. 2008.. Multiple modes of network homeostasis in visual cortical layer 2/3. . J. Neurosci. 28:(17):437784
    [Crossref] [Google Scholar]
  103. Marder E, Goaillard J-M. 2006.. Variability, compensation and homeostasis in neuron and network function. . Nat. Rev. Neurosci. 7:(7):56374
    [Crossref] [Google Scholar]
  104. Marder E, Prinz AA. 2002.. Modeling stability in neuron and network function: the role of activity in homeostasis. . BioEssays 24:(12):114554
    [Crossref] [Google Scholar]
  105. McFarlan AR, Chou CYC, Watanabe A, Cherepacha N, Haddad M, et al. 2023.. The plasticitome of cortical interneurons. . Nat. Rev. Neurosci. 24:(2):8097
    [Crossref] [Google Scholar]
  106. Morales B, Choi S-Y, Kirkwood A. 2002.. Dark rearing alters the development of GABAergic transmission in visual cortex. . J. Neurosci. 22:(18):808490
    [Crossref] [Google Scholar]
  107. Morgan PJ, Bourboulou R, Filippi C, Koenig-Gambini J, Epsztein J. 2019.. Kv1.1 contributes to a rapid homeostatic plasticity of intrinsic excitability in CA1 pyramidal neurons in vivo. . eLife 8::e49915
    [Crossref] [Google Scholar]
  108. Mrsic-Flogel TD, Hofer SB, Ohki K, Reid RC, Bonhoeffer T, Hübener M. 2007.. Homeostatic regulation of eye-specific responses in visual cortex during ocular dominance plasticity. . Neuron 54:(6):96172
    [Crossref] [Google Scholar]
  109. Nair AG, Muttathukunnel P, Müller M. 2021.. Distinct molecular pathways govern presynaptic homeostatic plasticity. . Cell Rep. 37:(11):110105
    [Crossref] [Google Scholar]
  110. Nelson SB, Valakh V. 2015.. Excitatory/inhibitory balance and circuit homeostasis in autism spectrum disorders. . Neuron 87:(4):68498
    [Crossref] [Google Scholar]
  111. Noda T, Kienle E, Eppler J-B, Aschauer DF, Kaschube M, et al. 2023.. Homeostasis of a representational map in the neocortex. . bioRxiv 2023.06.13.544358. https://doi.org/10.1101/2023.06.13.544358
  112. Oh WC, Parajuli LK, Zito K. 2015.. Heterosynaptic structural plasticity on local dendritic segments of hippocampal CA1 neurons. . Cell Rep. 10:(2):16269
    [Crossref] [Google Scholar]
  113. O'Leary T, van Rossum MCW, Wyllie DJA. 2010.. Homeostasis of intrinsic excitability in hippocampal neurones: dynamics and mechanism of the response to chronic depolarization. . J. Physiol. 588:(1):15770
    [Crossref] [Google Scholar]
  114. O'Leary T, Williams AH, Franci A, Marder E. 2014.. Cell types, network homeostasis, and pathological compensation from a biologically plausible ion channel expression model. . Neuron 82:(4):80921
    [Crossref] [Google Scholar]
  115. Pan-Vazquez A, Wefelmeyer W, Sabater VG, Neves G, Burrone J. 2020.. Activity-dependent plasticity of axo-axonic synapses at the axon initial segment. . Neuron 106:(2):26576.e6
    [Crossref] [Google Scholar]
  116. Park E, Lau AG, Arendt KL, Chen L. 2021.. FMRP interacts with RARα in synaptic retinoic acid signaling and homeostatic synaptic plasticity. . Int. J. Mol. Sci. 22:(12):6579
    [Crossref] [Google Scholar]
  117. Pekala D, Wenner P. 2022.. The uniform and nonuniform nature of slow and rapid scaling in embryonic motoneurons. . J. Neurosci. 42:(7):122434
    [Crossref] [Google Scholar]
  118. Peng Y-R, Zeng S-Y, Song H-L, Li M-Y, Yamada MK, Yu X. 2010.. Postsynaptic spiking homeostatically induces cell-autonomous regulation of inhibitory inputs via retrograde signaling. . J. Neurosci. 30:(48):1622031
    [Crossref] [Google Scholar]
  119. Pérez-Otaño I, Ehlers MD. 2005.. Homeostatic plasticity and NMDA receptor trafficking. . Trends Neurosci. 28:(5):22938
    [Crossref] [Google Scholar]
  120. Poirazi P, Brannon T, Mel BW. 2003.. Pyramidal neuron as two-layer neural network. . Neuron 37:(6):98999
    [Crossref] [Google Scholar]
  121. Pozo K, Goda Y. 2010.. Unraveling mechanisms of homeostatic synaptic plasticity. . Neuron 66:(3):33751
    [Crossref] [Google Scholar]
  122. Pratt KG, Zimmerman EC, Cook DG, Sullivan JM. 2011.. Presenilin 1 regulates homeostatic synaptic scaling through Akt signaling. . Nat. Neurosci. 14:(9):111214
    [Crossref] [Google Scholar]
  123. Pribiag H, Peng H, Shah WA, Stellwagen D, Carbonetto S. 2014.. Dystroglycan mediates homeostatic synaptic plasticity at GABAergic synapses. . PNAS 111:(18):681015
    [Crossref] [Google Scholar]
  124. Rabinowitch I, Segev I. 2006.. The interplay between homeostatic synaptic plasticity and functional dendritic compartments. . J. Neurophysiol. 96:(1):27683
    [Crossref] [Google Scholar]
  125. Radulescu CI, Doostdar N, Zabouri N, Melgosa-Ecenarro L, Wang X, et al. 2023.. Age-related dysregulation of homeostatic control in neuronal microcircuits. . Nat. Neurosci. 26::215870
    [Crossref] [Google Scholar]
  126. Rannals MD, Kapur J. 2011.. Homeostatic strengthening of inhibitory synapses is mediated by the accumulation of GABAA receptors. . J. Neurosci. 31:(48):1770112
    [Crossref] [Google Scholar]
  127. Ranson A, Cheetham CEJ, Fox K, Sengpiel F. 2012.. Homeostatic plasticity mechanisms are required for juvenile, but not adult, ocular dominance plasticity. . PNAS 109:(4):131116
    [Crossref] [Google Scholar]
  128. Reese AL, Kavalali ET. 2015.. Spontaneous neurotransmission signals through store-driven Ca2+ transients to maintain synaptic homeostasis. . eLife 4::e09262
    [Crossref] [Google Scholar]
  129. Reimers JM, Loweth JA, Wolf ME. 2014.. BDNF contributes to both rapid and homeostatic alterations in AMPA receptor surface expression in nucleus accumbens medium spiny neurons. . Eur. J. Neurosci. 39:(7):115969
    [Crossref] [Google Scholar]
  130. Ribic A. 2020.. Stability in the face of change: lifelong experience-dependent plasticity in the sensory cortex. . Front. Cell. Neurosci. 14::76
    [Crossref] [Google Scholar]
  131. Rodriguez G, Mesik L, Gao M, Parkins S, Saha R, Lee H-K. 2019.. Disruption of NMDAR function prevents normal experience-dependent homeostatic synaptic plasticity in mouse primary visual cortex. . J. Neurosci. 39:(39):766473
    [Crossref] [Google Scholar]
  132. Rose T, Jaepel J, Hübener M, Bonhoeffer T. 2016.. Cell-specific restoration of stimulus preference after monocular deprivation in the visual cortex. . Science 352:(6291):131922
    [Crossref] [Google Scholar]
  133. Ruggiero A, Katsenelson M, Slutsky I. 2021.. Mitochondria: new players in homeostatic regulation of firing rate set points. . Trends Neurosci. 44:(8):60518
    [Crossref] [Google Scholar]
  134. Rule ME, O'Leary T. 2022.. Self-healing codes: how stable neural populations can track continually reconfiguring neural representations. . PNAS 119:(7):e2106692119
    [Crossref] [Google Scholar]
  135. Rutherford LC, DeWan A, Lauer HM, Turrigiano GG. 1997.. Brain-derived neurotrophic factor mediates the activity-dependent regulation of inhibition in neocortical cultures. . J. Neurosci. 17:(12):452735
    [Crossref] [Google Scholar]
  136. Rutherford LC, Nelson SB, Turrigiano GG. 1998.. BDNF has opposite effects on the quantal amplitude of pyramidal neuron and interneuron excitatory synapses. . Neuron 21:(3):52130
    [Crossref] [Google Scholar]
  137. Saliba RS, Michels G, Jacob TC, Pangalos MN, Moss SJ. 2007.. Activity-dependent ubiquitination of GABAA receptors regulates their accumulation at synaptic sites. . J. Neurosci. 27:(48):1334151
    [Crossref] [Google Scholar]
  138. Sanes DH, Kotak VC. 2011.. Developmental plasticity of auditory cortical inhibitory synapses. . Hear. Res. 279:(1):14048
    [Crossref] [Google Scholar]
  139. Schanzenbächer CT, Langer JD, Schuman EM. 2018.. Time- and polarity-dependent proteomic changes associated with homeostatic scaling at central synapses. . eLife 7::e33322
    [Crossref] [Google Scholar]
  140. Schanzenbächer CT, Sambandan S, Langer JD, Schuman EM. 2016.. Nascent proteome remodeling following homeostatic scaling at hippocampal synapses. . Neuron 92:(2):35871
    [Crossref] [Google Scholar]
  141. Schaukowitch K, Reese AL, Kim S-K, Kilaru G, Joo J-Y, et al. 2017.. An intrinsic transcriptional program underlying synaptic scaling during activity suppression. . Cell Rep. 18:(6):151226
    [Crossref] [Google Scholar]
  142. Sehgal M, Song C, Ehlers VL, Moyer JR. 2013.. Learning to learn—intrinsic plasticity as a metaplasticity mechanism for memory formation. . Neurobiol. Learn. Mem. 105::18699
    [Crossref] [Google Scholar]
  143. Shew WL, Clawson WP, Pobst J, Karimipanah Y, Wright NC, Wessel R. 2015.. Adaptation to sensory input tunes visual cortex to criticality. . Nat. Phys. 11:(8):65963
    [Crossref] [Google Scholar]
  144. Shew WL, Plenz D. 2013.. The functional benefits of criticality in the cortex. . Neuroscientist 19:(1):88100
    [Crossref] [Google Scholar]
  145. Slomowitz E, Styr B, Vertkin I, Milshtein-Parush H, Nelken I, et al. 2015.. Interplay between population firing stability and single neuron dynamics in hippocampal networks. . eLife 4::e04378
    [Crossref] [Google Scholar]
  146. Sohal VS, Rubenstein JLR. 2019.. Excitation-inhibition balance as a framework for investigating mechanisms in neuropsychiatric disorders. . Mol. Psychiatry 24:(9):124857
    [Crossref] [Google Scholar]
  147. Spiegel I, Mardinly AR, Gabel HW, Bazinet JE, Couch CH, et al. 2014.. Npas4 regulates excitatory-inhibitory balance within neural circuits through cell-type-specific gene programs. . Cell 157:(5):121629
    [Crossref] [Google Scholar]
  148. Steinmetz CC, Tatavarty V, Sugino K, Shima Y, Joseph A, et al. 2016.. Upregulation of μ3A drives homeostatic plasticity by rerouting AMPAR into the recycling endosomal pathway. . Cell Rep. 16:(10):271122
    [Crossref] [Google Scholar]
  149. Steinmetz CC, Turrigiano GG. 2010.. Tumor necrosis factor-α signaling maintains the ability of cortical synapses to express synaptic scaling. . J. Neurosci. 30:(44):1468590
    [Crossref] [Google Scholar]
  150. Stellwagen D, Malenka RC. 2006.. Synaptic scaling mediated by glial TNF-α. . Nature 440:(7087):105459
    [Crossref] [Google Scholar]
  151. Styr B, Gonen N, Zarhin D, Ruggiero A, Atsmon R, et al. 2019.. Mitochondrial regulation of the hippocampal firing rate set point and seizure susceptibility. . Neuron 102:(5):100924.e8
    [Crossref] [Google Scholar]
  152. Sutton MA, Ito HT, Cressy P, Kempf C, Woo JC, Schuman EM. 2006.. Miniature neurotransmission stabilizes synaptic function via tonic suppression of local dendritic protein synthesis. . Cell 125:(4):78599
    [Crossref] [Google Scholar]
  153. Sutton MA, Taylor AM, Ito HT, Pham A, Schuman EM. 2007.. Postsynaptic decoding of neural activity: eEF2 as a biochemical sensor coupling miniature synaptic transmission to local protein synthesis. . Neuron 55:(4):64861
    [Crossref] [Google Scholar]
  154. Suzuki K, Kim J-W, Nosyreva E, Kavalali ET, Monteggia LM. 2021.. Convergence of distinct signaling pathways on synaptic scaling to trigger rapid antidepressant action. . Cell Rep. 37:(5):109918
    [Crossref] [Google Scholar]
  155. Swanwick CC, Murthy NR, Kapur J. 2006.. Activity-dependent scaling of GABAergic synapse strength is regulated by brain-derived neurotrophic factor. . Mol. Cell. Neurosci. 31:(3):48192
    [Crossref] [Google Scholar]
  156. Sweatt JD. 2016.. Dynamic DNA methylation controls glutamate receptor trafficking and synaptic scaling. . J. Neurochem. 137:(3):31230
    [Crossref] [Google Scholar]
  157. Takesian AE, Kotak VC, Sanes DH. 2011.. Age-dependent effect of hearing loss on cortical inhibitory synapse function. . J. Neurophysiol. 107:(3):93747
    [Crossref] [Google Scholar]
  158. Tan HL, Queenan BN, Huganir RL. 2015.. GRIP1 is required for homeostatic regulation of AMPAR trafficking. . PNAS 112:(32):1002631
    [Crossref] [Google Scholar]
  159. Tao HW, Poo M. 2005.. Activity-dependent matching of excitatory and inhibitory inputs during refinement of visual receptive fields. . Neuron 45:(6):82936
    [Crossref] [Google Scholar]
  160. Tatavarty V, Torrado Pacheco A, Groves Kuhnle C, Lin H, Koundinya P, et al. 2020.. Autism-associated Shank3 is essential for homeostatic compensation in rodent V1. . Neuron 106:(5):76977.e4
    [Crossref] [Google Scholar]
  161. Teichert M, Liebmann L, Hübner CA, Bolz J. 2017.. Homeostatic plasticity and synaptic scaling in the adult mouse auditory cortex. . Sci. Rep. 7:(1):17423
    [Crossref] [Google Scholar]
  162. Thalhammer A, Cingolani LA. 2014.. Cell adhesion and homeostatic synaptic plasticity. . Neuropharmacology 78::2330
    [Crossref] [Google Scholar]
  163. Tien N-W, Kerschensteiner D. 2018.. Homeostatic plasticity in neural development. . Neural Dev. 13:(1):9
    [Crossref] [Google Scholar]
  164. Torrado Pacheco A, Bottorff J, Gao Y, Turrigiano GG. 2021.. Sleep promotes downward firing rate homeostasis. . Neuron 109:(3):53044.e6
    [Crossref] [Google Scholar]
  165. Torrado Pacheco A, Tilden EI, Grutzner SM, Lane BJ, Wu Y, et al. 2019.. Rapid and active stabilization of visual cortical firing rates across light-dark transitions. . PNAS 116:(36):1806877
    [Crossref] [Google Scholar]
  166. Trojanowski NF, Bottorff J, Turrigiano GG. 2021.. Activity labeling in vivo using CaMPARI2 reveals intrinsic and synaptic differences between neurons with high and low firing rate set points. . Neuron 109:(4):66376.e5
    [Crossref] [Google Scholar]
  167. Trojanowski NF, Turrigiano GG. 2021.. CaMKIV signaling is not essential for the maintenance of intrinsic or synaptic properties in mouse visual cortex. . eNeuro 8:(4):ENEURO.0135-21.2021
    [Crossref] [Google Scholar]
  168. Turrigiano GG. 2008.. The self-tuning neuron: synaptic scaling of excitatory synapses. . Cell 135:(3):42235
    [Crossref] [Google Scholar]
  169. Turrigiano GG. 2011.. Too many cooks? Intrinsic and synaptic homeostatic mechanisms in cortical circuit refinement. . Annu. Rev. Neurosci. 34::89103
    [Crossref] [Google Scholar]
  170. Turrigiano GG. 2012.. Homeostatic synaptic plasticity: local and global mechanisms for stabilizing neuronal function. . Cold Spring Harb. Perspect. Biol. 4:(1):a005736
    [Crossref] [Google Scholar]
  171. Turrigiano GG. 2017.. The dialectic of Hebb and homeostasis. . Philos. Trans. R. Soc. B 372:(1715):20160258
    [Crossref] [Google Scholar]
  172. Turrigiano GG, Abbott LF, Marder E. 1994.. Activity-dependent changes in the intrinsic properties of cultured neurons. . Science 264:(5161):97477
    [Crossref] [Google Scholar]
  173. Turrigiano GG, Leslie KR, Desai NS, Rutherford LC, Nelson SB. 1998.. Activity-dependent scaling of quantal amplitude in neocortical neurons. . Nature 391:(6670):89296
    [Crossref] [Google Scholar]
  174. Turrigiano GG, Nelson SB. 2004.. Homeostatic plasticity in the developing nervous system. . Nat. Rev. Neurosci. 5:(2):97107
    [Crossref] [Google Scholar]
  175. Valakh V, Wise D, Zhu XA, Sha M, Fok J, et al. 2023.. A transcriptional constraint mechanism limits the homeostatic response to activity deprivation in mammalian neocortex. . eLife 12::e74899
    [Crossref] [Google Scholar]
  176. van Welie I, van Hooft JA, Wadman WJ. 2004.. Homeostatic scaling of neuronal excitability by synaptic modulation of somatic hyperpolarization-activated Ih channels. . PNAS 101:(14):512328
    [Crossref] [Google Scholar]
  177. Wefelmeyer W, Puhl CJ, Burrone J. 2016.. Homeostatic plasticity of subcellular neuronal structures: from inputs to outputs. . Trends Neurosci. 39:(10):65667
    [Crossref] [Google Scholar]
  178. Wen W, Turrigiano GG. 2021.. Developmental regulation of homeostatic plasticity in mouse primary visual cortex. . J. Neurosci. 41:(48):9891905
    [Crossref] [Google Scholar]
  179. Wenner P. 2014.. Homeostatic synaptic plasticity in developing spinal networks driven by excitatory GABAergic currents. . Neuropharmacology 78::5562
    [Crossref] [Google Scholar]
  180. Wierenga CJ, Ibata K, Turrigiano GG. 2005.. Postsynaptic expression of homeostatic plasticity at neocortical synapses. . J. Neurosci. 25:(11):2895905
    [Crossref] [Google Scholar]
  181. Wilmes KA, Clopath C. 2023.. Dendrites help mitigate the plasticity-stability dilemma. . Sci. Rep. 13:(1):6543
    [Crossref] [Google Scholar]
  182. Wu C-H, Ramos R, Katz DB, Turrigiano GG. 2021.. Homeostatic synaptic scaling establishes the specificity of an associative memory. . Curr. Biol. 31:(11):227485.e5
    [Crossref] [Google Scholar]
  183. Wu C-H, Tatavarty V, Jean Beltran PM, Guerrero AA, Keshishian H, et al. 2022.. A bidirectional switch in the Shank3 phosphorylation state biases synapses toward up- or downscaling. . eLife 11::e74277
    [Crossref] [Google Scholar]
  184. Wu WW, Chan CS, Surmeier DJ, Disterhoft JF. 2008.. Coupling of L-type Ca2+ channels to KV7/KCNQ channels creates a novel, activity-dependent, homeostatic intrinsic plasticity. . J. Neurophysiol. 100:(4):1897908
    [Crossref] [Google Scholar]
  185. Wu YK, Hengen KB, Turrigiano GG, Gjorgjieva J. 2020.. Homeostatic mechanisms regulate distinct aspects of cortical circuit dynamics. . PNAS 117:(39):2451425
    [Crossref] [Google Scholar]
  186. Xue M, Atallah BV, Scanziani M. 2014.. Equalizing excitation-inhibition ratios across visual cortical neurons. . Nature 511:(7511):596600
    [Crossref] [Google Scholar]
  187. Yang S, Weiner BD, Zhang LS, Cho S-J, Bao S. 2011.. Homeostatic plasticity drives tinnitus perception in an animal model. . PNAS 108:(36):1497479
    [Crossref] [Google Scholar]
  188. Zbili M, Rama S, Benitez M-J, Fronzaroli-Molinieres L, Bialowas A, et al. 2021.. Homeostatic regulation of axonal Kv1.1 channels accounts for both synaptic and intrinsic modifications in the hippocampal CA3 circuit. . PNAS 118:(47):e2110601118
    [Crossref] [Google Scholar]
  189. Zhang W, Linden DJ. 2003.. The other side of the engram: experience-driven changes in neuronal intrinsic excitability. . Nat. Rev. Neurosci. 4:(11):885900
    [Crossref] [Google Scholar]
  190. Zubov T, Do Amaral-Silva L, Santin JM. 2022.. Inactivity and Ca2+ signaling regulate synaptic compensation in motoneurons following hibernation in American bullfrogs. . Sci. Rep. 12:(1):11610
    [Crossref] [Google Scholar]
/content/journals/10.1146/annurev-neuro-092523-110001
Loading
/content/journals/10.1146/annurev-neuro-092523-110001
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error