1932

Abstract

The large number of ion channels found in all nervous systems poses fundamental questions concerning how the characteristic intrinsic properties of single neurons are determined by the specific subsets of channels they express. All neurons display many different ion channels with overlapping voltage- and time-dependent properties. We speculate that these overlapping properties promote resilience in neuronal function. Individual neurons of the same cell type show variability in ion channel conductance densities even though they can generate reliable and similar behavior. This complicates a simple assignment of function to any conductance and is associated with variable responses of neurons of the same cell type to perturbations, deletions, and pharmacological manipulation. Ion channel genes often show strong positively correlated expression, which may result from the molecular and developmental rules that determine which ion channels are expressed in a given cell type.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-neuro-092920-121538
2021-07-08
2024-04-15
Loading full text...

Full text loading...

/deliver/fulltext/neuro/44/1/annurev-neuro-092920-121538.html?itemId=/content/journals/10.1146/annurev-neuro-092920-121538&mimeType=html&fmt=ahah

Literature Cited

  1. Achard P, De Schutter E. 2006. Complex parameter landscape for a complex neuron model. PLOS Comput. Biol. 2:e94
    [Google Scholar]
  2. Adam Y, Kim JJ, Lou S, Zhao YX, Xie ME et al. 2019. Voltage imaging and optogenetics reveal behaviour-dependent changes in hippocampal dynamics. Nature 569:413–17
    [Google Scholar]
  3. Ahn J, Kreeger LJ, Lubejko ST, Butts DA, MacLeod KM. 2014. Heterogeneity of intrinsic biophysical properties among cochlear nucleus neurons improves the population coding of temporal information. J. Neurophysiol. 111:2320–31
    [Google Scholar]
  4. Alonso LM, Marder E. 2019. Visualization of currents in neural models with similar behavior and different conductance densities. eLife 8:e42722
    [Google Scholar]
  5. Alonso LM, Marder E. 2020. Temperature compensation in a small rhythmic circuit. eLife 9:e55470
    [Google Scholar]
  6. Amendola J, Woodhouse A, Martin-Eauclaire MF, Goaillard JM. 2012. Ca2+/cAMP-sensitive covariation of IA and IH voltage dependences tunes rebound firing in dopaminergic neurons. J. Neurosci. 32:2166–81
    [Google Scholar]
  7. Bargmann CI. 2012. Beyond the connectome: how neuromodulators shape neural circuits. Bioessays 34:458–65
    [Google Scholar]
  8. Bargmann CI, Marder E. 2013. From the connectome to brain function. Nat. Methods 10:483–90
    [Google Scholar]
  9. Battaglia D, Karagiannis A, Gallopin T, Gutch HW, Cauli B. 2013. Beyond the frontiers of neuronal types. Front. Neural Circuits 7:13
    [Google Scholar]
  10. Baudot P, Bennequin D. 2015. The homological nature of entropy. Entropy 17:3253–318
    [Google Scholar]
  11. Baudot P, Tapia M, Bennequin D, Goaillard JM. 2019. Topological information data analysis. Entropy 21:869
    [Google Scholar]
  12. Beverly M, Anbil S, Sengupta P. 2011. Degeneracy and neuromodulation among thermosensory neurons contribute to robust thermosensory behaviors in Caenorhabditis elegans. . J. Neurosci. 31:11718–27
    [Google Scholar]
  13. Bialek W, Ranganathan R. 2007. Rediscovering the power of pairwise interactions. arXiv:0712.4397 [q-bio.QM]
  14. Blitz DM, Nusbaum MP. 2011. Neural circuit flexibility in a small sensorimotor system. Curr. Opin. Neurobiol. 21:544–52
    [Google Scholar]
  15. Bucher D, Marder E. 2013. SnapShot: neuromodulation. Cell 155:482.e1
    [Google Scholar]
  16. Cadwell CR, Palasantza A, Jiang X, Berens P, Deng Q et al. 2016. Electrophysiological, transcriptomic and morphologic profiling of single neurons using Patch-seq. Nat. Biotechnol. 34:199–203
    [Google Scholar]
  17. Calabrese RL, Norris BJ, Wenning A, Wright TM. 2011. Coping with variability in small neuronal networks. Integr. Comp. Biol. 51:845–55
    [Google Scholar]
  18. Cao XJ, Oertel D. 2011. The magnitudes of hyperpolarization-activated and low-voltage-activated potassium currents co-vary in neurons of the ventral cochlear nucleus. J. Neurophysiol. 106:630–40
    [Google Scholar]
  19. Cao XJ, Oertel D. 2017. Genetic perturbations suggest a role of the resting potential in regulating the expression of the ion channels of the KCNA and HCN families in octopus cells of the ventral cochlear nucleus. Hear. Res. 345:57–68
    [Google Scholar]
  20. Caplan JS, Williams AH, Marder E. 2014. Many parameter sets in a multicompartment model oscillator are robust to temperature perturbations. J. Neurosci. 34:4963–75
    [Google Scholar]
  21. Cembrowski MS, Bachman JL, Wang L, Sugino K, Shields BC, Spruston N. 2016. Spatial gene-expression gradients underlie prominent heterogeneity of CA1 pyramidal neurons. Neuron 89:351–68
    [Google Scholar]
  22. Chan CS, Guzman JN, Ilijic E, Mercer JN, Rick C et al. 2007. ‘Rejuvenation’ protects neurons in mouse models of Parkinson's disease. Nature 447:1081–86
    [Google Scholar]
  23. Chettih SN, Harvey CD. 2019. Single-neuron perturbations reveal feature-specific competition in V1. Nature 567:334–40
    [Google Scholar]
  24. Connor JA, Stevens CF. 1971. Prediction of repetitive firing behaviour from voltage clamp data on an isolated neurone soma. J. Physiol. 213:31–53
    [Google Scholar]
  25. Cropper EC, Dacks AM, Weiss KR. 2016. Consequences of degeneracy in network function. Curr. Opin. Neurobiol. 41:62–67
    [Google Scholar]
  26. Daur N, Bryan AS, Garcia VJ, Bucher D. 2012. Short-term synaptic plasticity compensates for variability in number of motor neurons at a neuromuscular junction. J. Neurosci. 32:16007–17
    [Google Scholar]
  27. Deignan J, Lujan R, Bond C, Riegel A, Watanabe M et al. 2012. SK2 and SK3 expression differentially affect firing frequency and precision in dopamine neurons. Neuroscience 217:67–76
    [Google Scholar]
  28. Deister CA, Dodla R, Barraza D, Kita H, Wilson CJ. 2013. Firing rate and pattern heterogeneity in the globus pallidus arise from a single neuronal population. J. Neurophysiol. 109:497–506
    [Google Scholar]
  29. Dickinson PS, Mecsas C, Marder E. 1990. Neuropeptide fusion of two motor pattern generator circuits. Nature 344:155–58
    [Google Scholar]
  30. Doron G, Brecht M. 2015. What single-cell stimulation has told us about neural coding. Philos. Trans. R. Soc. B 370:20140204
    [Google Scholar]
  31. Drion G, Massotte L, Sepulchre R, Seutin V. 2011. How modeling can reconcile apparently discrepant experimental results: the case of pacemaking in dopaminergic neurons. PLOS Comput. Biol. 7:e1002050
    [Google Scholar]
  32. Driscoll LN, Pettit NL, Minderer M, Chettih SN, Harvey CD. 2017. Dynamic reorganization of neuronal activity patterns in parietal cortex. Cell 170:986–99
    [Google Scholar]
  33. Dufour MA, Woodhouse A, Amendola J, Goaillard JM. 2014. Non-linear developmental trajectory of electrical phenotype in rat substantia nigra pars compacta dopaminergic neurons. eLife 3:e04059
    [Google Scholar]
  34. Ecker JR, Geschwind DH, Kriegstein AR, Ngai J, Osten P et al. 2017. The BRAIN Initiative Cell Census Consortium: lessons learned toward generating a comprehensive brain cell atlas. Neuron 96:542–57
    [Google Scholar]
  35. Edelman GM, Gally JA. 2001. Degeneracy and complexity in biological systems. PNAS 98:13763–68
    [Google Scholar]
  36. Engel D, Seutin V. 2015. High dendritic expression of Ih in the proximity of the axon origin controls the integrative properties of nigral dopamine neurons. J. Physiol. 593:4905–22
    [Google Scholar]
  37. Ferrari MB, McAnelly ML, Zakon HH. 1995. Individual variation in and androgen-modulation of the sodium current in electric organ. J. Neurosci. 15:4023–32
    [Google Scholar]
  38. Frank JA, Antonini MJ, Anikeeva P. 2019. Next-generation interfaces for studying neural function. Nat. Biotechnol. 37:1013–23
    [Google Scholar]
  39. Fujita H, Kodama T, du Lac S. 2020. Modular output circuits of the fastigial nucleus for diverse motor and nonmotor functions of the cerebellar vermis. eLife 9:e58613
    [Google Scholar]
  40. Fuzik J, Zeisel A, Mate Z, Calvigioni D, Yanagawa Y et al. 2016. Integration of electrophysiological recordings with single-cell RNA-seq data identifies neuronal subtypes. Nat. Biotechnol. 34:175–83
    [Google Scholar]
  41. Gentet LJ, Williams SR. 2007. Dopamine gates action potential backpropagation in midbrain dopaminergic neurons. J. Neurosci. 27:1892–901
    [Google Scholar]
  42. Getting PA. 1989. Emerging principles governing the operation of neural networks. Annu. Rev. Neurosci. 12:185–204
    [Google Scholar]
  43. Glasscock E, Qian J, Yoo JW, Noebels JL. 2007. Masking epilepsy by combining two epilepsy genes. Nat. Neurosci. 10:1554–58
    [Google Scholar]
  44. Goaillard JM, Dufour MA. 2014. The pros and cons of degeneracy. eLife 3:e02615
    [Google Scholar]
  45. Goaillard JM, Taylor AL, Schulz DJ, Marder E. 2009. Functional consequences of animal-to-animal variation in circuit parameters. Nat. Neurosci. 12:1424–30
    [Google Scholar]
  46. Goldman MS, Golowasch J, Marder E, Abbott LF. 2001. Global structure, robustness, and modulation of neuronal models. J. Neurosci. 21:5229–38
    [Google Scholar]
  47. Golowasch J. 2014. Ionic current variability and functional stability in the nervous system. Bioscience 64:570–80
    [Google Scholar]
  48. Golowasch J, Buchholtz F, Epstein IR, Marder E. 1992. Contribution of individual ionic currents to activity of a model stomatogastric ganglion neuron. J. Neurophysiol. 67:341–49
    [Google Scholar]
  49. Golowasch J, Goldman MS, Abbott LF, Marder E. 2002. Failure of averaging in the construction of a conductance-based neuron model. J. Neurophysiol. 87:1129–31
    [Google Scholar]
  50. Griffith LC. 2012. Identifying behavioral circuits in Drosophila melanogaster: moving targets in a flying insect. Curr. Opin. Neurobiol. 22:609–14
    [Google Scholar]
  51. Gunay C, Edgerton JR, Jaeger D. 2008. Channel density distributions explain spiking variability in the globus pallidus: a combined physiology and computer simulation database approach. J. Neurosci. 28:7476–91
    [Google Scholar]
  52. Gutierrez GJ, Marder E. 2014. Modulation of a single neuron has state-dependent actions on circuit dynamics. eNeuro 1:1ENEURO.0009–14.2014
    [Google Scholar]
  53. Gutierrez GJ, O'Leary T, Marder E. 2013. Multiple mechanisms switch an electrically coupled, synaptically inhibited neuron between competing rhythmic oscillators. Neuron 77:845–58
    [Google Scholar]
  54. Haddad SA, Marder E. 2018. Circuit robustness to temperature perturbation is altered by neuromodulators. Neuron 100:609–23
    [Google Scholar]
  55. Haley JA, Hampton D, Marder E. 2018. Two central pattern generators from the crab, Cancer borealis, respond robustly and differentially to extreme extracellular pH. eLife 7:e41877
    [Google Scholar]
  56. Hamood AW, Marder E. 2015. Consequences of acute and long-term removal of neuromodulatory input on the episodic gastric rhythm of the crab Cancer borealis. . J. Neurophysiol. 114:1677–92
    [Google Scholar]
  57. Harris KD, Hochgerner H, Skene NG, Magno L, Katona L et al. 2018. Classes and continua of hippocampal CA1 inhibitory neurons revealed by single-cell transcriptomics. PLOS Biol 16:e2006387
    [Google Scholar]
  58. Harris-Warrick RM. 2011. Neuromodulation and flexibility in central pattern generator networks. Curr. Opin. Neurobiol. 21:655–92
    [Google Scholar]
  59. Harris-Warrick RM, Coniglio LM, Barazangi N, Guckenheimer J, Gueron S. 1995a. Dopamine modulation of transient potassium current evokes phase shifts in a central pattern generator network. J. Neurosci. 15:342–58
    [Google Scholar]
  60. Harris-Warrick RM, Coniglio LM, Levini RM, Gueron S, Guckenheimer J. 1995b. Dopamine modulation of two subthreshold currents produces phase shifts in activity of an identified motoneuron. J. Neurophysiol. 74:1404–20
    [Google Scholar]
  61. Harris-Warrick RM, Johnson BR 2010. Checks and balances in neuromodulation. Front. Behav. Neurosci. 4:47
    [Google Scholar]
  62. Hill ES, Vasireddi SK, Bruno AM, Wang J, Frost WN. 2012. Variable neuronal participation in stereotypic motor programs. PLOS ONE 7:e40579
    [Google Scholar]
  63. Hille B. 1992. G protein-coupled mechanisms and nervous signaling. Neuron 9:187–95
    [Google Scholar]
  64. Hille B. 2001. Ion Channels of Excitable Membranes Sunderland, MA: Sinauer
  65. Hofmann V, Chacron MJ. 2020. Neuronal On- and Off-type heterogeneities improve population coding of envelope signals in the presence of stimulus-induced noise. Sci. Rep. 10:10194
    [Google Scholar]
  66. Hooper SL, Moulins M. 1989. Switching of a neuron from one network to another by sensory-induced changes in membrane-properties. Science 244:1587–89
    [Google Scholar]
  67. Iacobas DA, Iacobas S, Lee PR, Cohen JE, Fields RD. 2019. Coordinated activity of transcriptional networks responding to the pattern of action potential firing in neurons. Genes 10:754
    [Google Scholar]
  68. Jegla TJ, Zmasek CM, Batalov S, Nayak SK. 2009. Evolution of the human ion channel set. Comb. Chem. High Throughput Screen. 12:2–23
    [Google Scholar]
  69. Jorgenson LA, Newsome WT, Anderson DJ, Bargmann CI, Brown EN et al. 2015. The BRAIN Initiative: developing technology to catalyse neuroscience discovery. Philos. Trans. R. Soc. Lond. B Biol. Sci. 370:20140164
    [Google Scholar]
  70. Kaczmarek LK, Levitan IB. 1987. Neuromodulation: The Biochemical Control of Neuronal Excitability New York: Oxford Univ. Press
  71. Kalia J, Milescu M, Salvatierra J, Wagner J, Klint JK et al. 2015. From foe to friend: using animal toxins to investigate ion channel function. J. Mol. Biol. 427:158–75
    [Google Scholar]
  72. Kang K, Pulver SR, Panzano VC, Chang EC, Griffith LC et al. 2010. Analysis of Drosophila TRPA1 reveals an ancient origin for human chemical nociception. Nature 464:597–600
    [Google Scholar]
  73. Khaliq ZM, Raman IM. 2006. Relative contributions of axonal and somatic Na channels to action potential initiation in cerebellar Purkinje neurons. J. Neurosci. 26:1935–44
    [Google Scholar]
  74. Khorkova O, Golowasch J. 2007. Neuromodulators, not activity, control coordinated expression of ionic currents. J. Neurosci. 27:8709–18
    [Google Scholar]
  75. Kim EJ, Zhang Z, Huang L, Ito-Cole T, Jacobs MW et al. 2020. Extraction of distinct neuronal cell types from within a genetically continuous population. Neuron 107:274–82.e6
    [Google Scholar]
  76. Klassen T, Davis C, Goldman A, Burgess D, Chen T et al. 2011. Exome sequencing of ion channel genes reveals complex profiles confounding personal risk assessment in epilepsy. Cell 145:1036–48
    [Google Scholar]
  77. Klein JP, Tendi EA, Dib-Hajj SD, Fields RD, Waxman SG. 2003. Patterned electrical activity modulates sodium channel expression in sensory neurons. J. Neurosci. Res. 74:192–98
    [Google Scholar]
  78. Kodama T, Gittis AH, Shin MY, Kelleher K, Kolkman KE et al. 2020. Graded coexpression of ion channel, neurofilament, and synaptic genes in fast-spiking vestibular nucleus neurons. J. Neurosci. 40:496–508
    [Google Scholar]
  79. La Manno G, Gyllborg D, Codeluppi S, Nishimura K, Salto C et al. 2016. Molecular diversity of midbrain development in mouse, human, and stem cells. Cell 167:566–80.e19
    [Google Scholar]
  80. Lamb DG, Calabrese RL. 2013. Correlated conductance parameters in leech heart motor neurons contribute to motor pattern formation. PLOS ONE 8:e79267
    [Google Scholar]
  81. Levitan IB. 1988. Modulation of ion channels in neurons and other cells. Annu. Rev. Neurosci. 11:119–36
    [Google Scholar]
  82. Liss B, Franz O, Sewing S, Bruns R, Neuhoff H, Roeper J. 2001. Tuning pacemaker frequency of individual dopaminergic neurons by Kv4.3L and KChip3.1 transcription. EMBO J 20:5715–24
    [Google Scholar]
  83. Littleton JT, Ganetzky B. 2000. Ion channels and synaptic organization: analysis of the Drosophila genome. Neuron 26:35–43
    [Google Scholar]
  84. Lizbinski KM, Marsat G, Dacks AM. 2018. Systematic analysis of transmitter coexpression reveals organizing principles of local interneuron heterogeneity. eNeuro 5:ENEURO.0212–18.2018
    [Google Scholar]
  85. Lovell PV, Carleton JB, Mello CV. 2013. Genomics analysis of potassium channel genes in songbirds reveals molecular specializations of brain circuits for the maintenance and production of learned vocalizations. BMC Genom 14:470
    [Google Scholar]
  86. Ma M, Koester J. 1996. The role of K+ currents in frequency-dependent spike broadening in Aplysia R20 neurons: a dynamic-clamp analysis. J. Neurosci. 16:4089–101
    [Google Scholar]
  87. MacLean JN, Zhang Y, Goeritz ML, Casey R, Oliva R et al. 2005. Activity-independent coregulation of IA and Ih in rhythmically active neurons. J. Neurophysiol. 94:3601–17
    [Google Scholar]
  88. MacLean JN, Zhang Y, Johnson BR, Harris-Warrick RM. 2003. Activity-independent homeostasis in rhythmically active neurons. Neuron 37:109–20
    [Google Scholar]
  89. Marder E. 2012. Neuromodulation of neuronal circuits: back to the future. Neuron 76:1–11
    [Google Scholar]
  90. Marder E, Bucher D. 2007. Understanding circuit dynamics using the stomatogastric nervous system of lobsters and crabs. Annu. Rev. Physiol. 69:291–316
    [Google Scholar]
  91. Marder E, Calabrese RL. 1996. Principles of rhythmic motor pattern generation. Physiol. Rev. 76:687–717
    [Google Scholar]
  92. Marder E, Goaillard JM. 2006. Variability, compensation and homeostasis in neuron and network function. Nat. Rev. Neurosci. 7:563–74
    [Google Scholar]
  93. McAnelly ML, Zakon HH. 2000. Coregulation of voltage-dependent kinetics of Na+ and K+ currents in electric organ. J. Neurosci. 20:3408–14
    [Google Scholar]
  94. McAnelly ML, Zakon HH. 2007. Androgen modulates the kinetics of the delayed rectifying K+ current in the electric organ of a weakly electric fish. Dev. Neurobiol. 67:1589–97
    [Google Scholar]
  95. Migliore R, Lupascu CA, Bologna LL, Romani A, Courcol JD et al. 2018. The physiological variability of channel density in hippocampal CA1 pyramidal cells and interneurons explored using a unified data-driven modeling workflow. PLOS Comput. Biol. 14:e1006423
    [Google Scholar]
  96. Moubarak E, Engel D, Dufour MA, Tapia M, Tell F, Goaillard JM. 2019. Robustness to axon initial segment variation is explained by somatodendritic excitability in rat substantia nigra dopaminergic neurons. J. Neurosci. 39:5044–63
    [Google Scholar]
  97. Nadim F, Bucher D. 2014. Neuromodulation of neurons and synapses. Curr. Opin. Neurobiol. 29:48–56
    [Google Scholar]
  98. Nerbonne JM, Gerber BR, Norris A, Burkhalter A 2008. Electrical remodelling maintains firing properties in cortical pyramidal neurons lacking KCND2-encoded A-type K+ currents. J. Physiol. 586:1565–79
    [Google Scholar]
  99. Nirenberg M, Leder P, Bernfield M, Brimacombe R, Trupin J et al. 1965. RNA codewords and protein synthesis, VII. On the general nature of the RNA code. PNAS 53:1161–68
    [Google Scholar]
  100. Norris BJ, Wenning A, Wright TM, Calabrese RL. 2011. Constancy and variability in the output of a central pattern generator. J. Neurosci. 31:4663–74
    [Google Scholar]
  101. Northcutt AJ, Kick DR, Otopalik AG, Goetz BM, Harris RM et al. 2019. Molecular profiling of single neurons of known identity in two ganglia from the crab Cancer borealis. . PNAS 116:26980–90
    [Google Scholar]
  102. Northcutt AJ, Lett KM, Garcia VB, Diester CM, Lane BJ et al. 2016. Deep sequencing of transcriptomes from the nervous systems of two decapod crustaceans to characterize genes important for neural circuit function and modulation. BMC Genom 17:868
    [Google Scholar]
  103. Northcutt AJ, Schulz DJ. 2019. Molecular mechanisms of homeostatic plasticity in central pattern generator networks. Dev. Neurobiol. 80:58–69
    [Google Scholar]
  104. Nusbaum MP, Blitz DM, Marder E. 2017. Functional consequences of neuropeptide and small-molecule co-transmission. Nat. Rev. Neurosci. 18:389–403
    [Google Scholar]
  105. O'Leary T, Williams AH, Caplan JS, Marder E 2013. Correlations in ion channel expression emerge from homeostatic tuning rules. PNAS 110:E2645–54
    [Google Scholar]
  106. O'Leary T, Williams AH, Franci A, Marder E. 2014. Cell types, network homeostasis, and pathological compensation from a biologically plausible ion channel expression model. Neuron 82:809–21
    [Google Scholar]
  107. Padmanabhan K, Urban NN. 2010. Intrinsic biophysical diversity decorrelates neuronal firing while increasing information content. Nat. Neurosci. 13:1276–82
    [Google Scholar]
  108. Palacios-Filardo J, Mellor JR. 2019. Neuromodulation of hippocampal long-term synaptic plasticity. Curr. Opin. Neurobiol. 54:37–43
    [Google Scholar]
  109. Pastoll H, Garden DL, Papastathopoulos I, Surmeli G, Nolan MF. 2020. Inter- and intra-animal variation in the integrative properties of stellate cells in the medial entorhinal cortex. eLife 9:e52258
    [Google Scholar]
  110. Poulin JF, Tasic B, Hjerling-Leffler J, Trimarchi JM, Awatramani R. 2016. Disentangling neural cell diversity using single-cell transcriptomics. Nat. Neurosci. 19:1131–41
    [Google Scholar]
  111. Poulin JF, Zou J, Drouin-Ouellet J, Kim KY, Cicchetti F, Awatramani RB. 2014. Defining midbrain dopaminergic neuron diversity by single-cell gene expression profiling. Cell Rep 9:930–43
    [Google Scholar]
  112. Prinz AA, Bucher D, Marder E. 2004. Similar network activity from disparate circuit parameters. Nat. Neurosci. 7:1345–52
    [Google Scholar]
  113. Puopolo M, Raviola E, Bean BP. 2007. Roles of subthreshold calcium current and sodium current in spontaneous firing of mouse midbrain dopamine neurons. J. Neurosci. 27:645–56
    [Google Scholar]
  114. Ransdell JL, Nair SS, Schulz DJ. 2012. Rapid homeostatic plasticity of intrinsic excitability in a central pattern generator network stabilizes functional neural network output. J. Neurosci. 32:9649–58
    [Google Scholar]
  115. Ransdell JL, Nair SS, Schulz DJ. 2013. Neurons within the same network independently achieve conserved output by differentially balancing variable conductance magnitudes. J. Neurosci. 33:9950–56
    [Google Scholar]
  116. Rathour RK, Narayanan R 2014. Homeostasis of functional maps in active dendrites emerges in the absence of individual channelostasis. PNAS 111:E1787–96
    [Google Scholar]
  117. Rathour RK, Narayanan R. 2019. Degeneracy in hippocampal physiology and plasticity. Hippocampus 29:980–1022
    [Google Scholar]
  118. Ratte S, Zhu Y, Lee KY, Prescott SA. 2014. Criticality and degeneracy in injury-induced changes in primary afferent excitability and the implications for neuropathic pain. eLife 3:e02370
    [Google Scholar]
  119. Ren J, Isakova A, Friedmann D, Zeng JW, Grutzner SM et al. 2019. Single-cell transcriptomes and whole-brain projections of serotonin neurons in the mouse dorsal and median raphe nuclei. eLife 8:e49424
    [Google Scholar]
  120. Roffman RC, Norris BJ, Calabrese RL. 2012. Animal-to-animal variability of connection strength in the leech heartbeat central pattern generator. J. Neurophysiol. 107:1681–93
    [Google Scholar]
  121. Rule ME, O'Leary T, Harvey CD. 2019. Causes and consequences of representational drift. Curr. Opin. Neurobiol. 58:141–47
    [Google Scholar]
  122. Sakurai A, Tamvacakis AN, Katz PS. 2014. Hidden synaptic differences in a neural circuit underlie differential behavioral susceptibility to a neural injury. eLife 3:e02598
    [Google Scholar]
  123. Sarkar AX, Sobie EA. 2011. Quantification of repolarization reserve to understand interpatient variability in the response to proarrhythmic drugs: a computational analysis. Heart Rhythm 8:1749–55
    [Google Scholar]
  124. Schneidman E, Berry MJ, Segev R, Bialek W. 2006. Weak pairwise correlations imply strongly correlated network states in a neural population. Nature 440:1007–12
    [Google Scholar]
  125. Schulz DJ, Goaillard JM, Marder E. 2006. Variable channel expression in identified single and electrically coupled neurons in different animals. Nat. Neurosci. 9:356–62
    [Google Scholar]
  126. Schulz DJ, Goaillard JM, Marder EE 2007. Quantitative expression profiling of identified neurons reveals cell-specific constraints on highly variable levels of gene expression. PNAS 104:13187–91
    [Google Scholar]
  127. Sengupta P, Garrity P. 2013. Sensing temperature. Curr. Biol. 23:R304–7
    [Google Scholar]
  128. Seutin V, Engel D. 2010. Differences in Na+ conductance density and Na+ channel functional properties between dopamine and GABA neurons of the rat substantia nigra. J. Neurophysiol. 103:3099–114
    [Google Scholar]
  129. Soofi W, Archila S, Prinz AA. 2012. Co-variation of ionic conductances supports phase maintenance in stomatogastric neurons. J. Comput. Neurosci. 33:77–95
    [Google Scholar]
  130. Stoddard PK, Zakon HH, Markham MR, McAnelly L. 2006. Regulation and modulation of electric waveforms in gymnotiform electric fish. J. Comp. Physiol. A 192:613–24
    [Google Scholar]
  131. Swensen AM, Bean BP. 2005. Robustness of burst firing in dissociated Purkinje neurons with acute or long-term reductions in sodium conductance. J. Neurosci. 25:3509–20
    [Google Scholar]
  132. Swensen AM, Marder E. 2000. Multiple peptides converge to activate the same voltage-dependent current in a central pattern-generating circuit. J. Neurosci. 20:6752–59
    [Google Scholar]
  133. Swensen AM, Marder E. 2001. Modulators with convergent cellular actions elicit distinct circuit outputs. J. Neurosci. 21:4050–58
    [Google Scholar]
  134. Tanke N, Borst JGG, Houweling AR. 2018. Single-cell stimulation in barrel cortex influences psychophysical detection performance. J. Neurosci. 38:2057–68
    [Google Scholar]
  135. Tapia M, Baudot P, Formisano-Treziny C, Dufour MA, Temporal S et al. 2018. Neurotransmitter identity and electrophysiological phenotype are genetically coupled in midbrain dopaminergic neurons. Sci. Rep. 8:13637
    [Google Scholar]
  136. Tasic B, Yao ZZ, Graybuck LT, Smith KA, Nguyen TN et al. 2018. Shared and distinct transcriptomic cell types across neocortical areas. Nature 563:72–78
    [Google Scholar]
  137. Taylor AL, Goaillard JM, Marder E. 2009. How multiple conductances determine electrophysiological properties in a multicompartment model. J. Neurosci. 29:5573–86
    [Google Scholar]
  138. Temporal S, Desai M, Khorkova O, Varghese G, Dai A et al. 2012. Neuromodulation independently determines correlated channel expression and conductance levels in motor neurons of the stomatogastric ganglion. J. Neurophysiol. 107:718–27
    [Google Scholar]
  139. Temporal S, Lett KM, Schulz DJ. 2014. Activity-dependent feedback regulates correlated ion channel mRNA levels in single identified motor neurons. Curr. Biol. 24:1899–904
    [Google Scholar]
  140. Tobin AE, Cruz-Bermudez ND, Marder E, Schulz DJ. 2009. Correlations in ion channel mRNA in rhythmically active neurons. PLOS ONE 4:e6742
    [Google Scholar]
  141. Tripathy SJ, Padmanabhan K, Gerkin RC, Urban NN 2013. Intermediate intrinsic diversity enhances neural population coding. PNAS 110:8248–53
    [Google Scholar]
  142. Vandecasteele M, Glowinski J, Deniau JM, Venance L 2008. Chemical transmission between dopaminergic neuron pairs. PNAS 105:4904–9
    [Google Scholar]
  143. Wagner A. 2005. Robustness and Evolvability in Living Systems Princeton, NJ: Princeton Univ. Press
  144. Weimann JM, Marder E. 1994. Switching neurons are integral members of multiple oscillatory networks. Curr. Biol. 4:896–902
    [Google Scholar]
  145. Whitacre J, Bender A. 2010. Degeneracy: A design principle for achieving robustness and evolvability. J. Theor. Biol. 263:143–53
    [Google Scholar]
  146. Yang W, Yuste R. 2017. In vivo imaging of neural activity. Nat. Methods 14:349–59
    [Google Scholar]
  147. Yu FH, Yarov-Yarovoy V, Gutman GA, Catterall WA. 2005. Overview of molecular relationships in the voltage-gated ion channel superfamily. Pharmacol. Rev. 57:387–95
    [Google Scholar]
  148. Yuste R, Hawrylycz M, Aalling N, Aguilar-Valles A, Arendt D et al. 2020. A community-based transcriptomics classification and nomenclature of neocortical cell types. Nat. Neurosci. 23:145668
    [Google Scholar]
  149. Zhang ZH, Russell LE, Packer AM, Gauld OM, Hausser M. 2018. Closed-loop all-optical interrogation of neural circuits in vivo. Nat. Methods 15:1037–40
    [Google Scholar]
  150. Zhao S, Golowasch J. 2012. Ionic current correlations underlie the global tuning of large numbers of neuronal activity attributes. J. Neurosci. 32:13380–88
    [Google Scholar]
  151. Zheng Y, Liu P, Bai L, Trimmer JS, Bean BP, Ginty DD. 2019. Deep sequencing of somatosensory neurons reveals molecular determinants of intrinsic physiological properties. Neuron 103:598–616
    [Google Scholar]
  152. Ziv Y, Burns LD, Cocker ED, Hamel EO, Ghosh KK et al. 2013. Long-term dynamics of CA1 hippocampal place codes. Nat. Neurosci. 16:264–66
    [Google Scholar]
/content/journals/10.1146/annurev-neuro-092920-121538
Loading
/content/journals/10.1146/annurev-neuro-092920-121538
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error