1932

Abstract

As acquiring bigger data becomes easier in experimental brain science, computational and statistical brain science must achieve similar advances to fully capitalize on these data. Tackling these problems will benefit from a more explicit and concerted effort to work together. Specifically, brain science can be further democratized by harnessing the power of community-driven tools, which both are built by and benefit from many different people with different backgrounds and expertise. This perspective can be applied across modalities and scales and enables collaborations across previously siloed communities.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-neuro-100119-110036
2020-07-08
2024-04-21
Loading full text...

Full text loading...

/deliver/fulltext/neuro/43/1/annurev-neuro-100119-110036.html?itemId=/content/journals/10.1146/annurev-neuro-100119-110036&mimeType=html&fmt=ahah

Literature Cited

  1. Andrews TS, Hemberg M. 2019. False signals induced by single-cell imputation. F1000Res 7:1740
    [Google Scholar]
  2. Arroyo J, Athreya A, Cape J, Chen G, Priebe CE, Vogelstein JT 2019. Inference for multiple heterogeneous networks with a common invariant subspace. arXiv:1906.10026 [stat.ME]
  3. Athreya A, Fishkind DE, Tang M, Priebe CE, Park Y et al. 2017. Statistical inference on random dot product graphs: a survey. J. Mach. Learn. Res. 18:2261–92
    [Google Scholar]
  4. Au OK-C, Tai C-L, Chu H-K, Cohen-Or D, Lee T-Y 2008. Skeleton extraction by mesh contraction. ACM Trans. Graph. 27:31–10
    [Google Scholar]
  5. Ba J, Caruana R. 2014. Do deep nets really need to be deep?. Advances in Neural Information Processing Systems 27 Z Ghahramani, M Welling, C Cortes, ND Lawrence, KQ Weinberger 2654–62 San Diego, CA: NeurIPS
    [Google Scholar]
  6. Beaulieu DR, Davison IG, Bifano TG, Mertz J 2018. Simultaneous multiplane imaging with reverberation multiphoton microscopy. arXiv:1812.05162 [physics.optics]
  7. Bernstein D. 2014. Containers and cloud: from LXC to Docker to Kubernetes. IEEE Cloud Comput 1:381–84
    [Google Scholar]
  8. Bock DD, Lee WC, Kerlin AM, Andermann ML, Hood G et al. 2011. Network anatomy and in vivo physiology of visual cortical neurons. Nature 471:7337177–82
    [Google Scholar]
  9. Bohland JW, Wu C, Barbas H, Bokil H, Bota M et al. 2009. A proposal for a coordinated effort for the determination of brainwide neuroanatomical connectivity in model organisms at a mesoscopic scale. PLOS Comput. Biol. 5:3e1000334
    [Google Scholar]
  10. Bria A, Bernaschi M, Guarrasi M, Iannello G 2019. Exploiting multi-level parallelism for stitching very large microscopy images. Front. Neuroinform. 13:41
    [Google Scholar]
  11. Bria A, Iannello G. 2012. TeraStitcher—A tool for fast automatic 3D-stitching of teravoxel-sized microscopy images. BMC Bioinform 13:316
    [Google Scholar]
  12. Bridgeford EW, Wang S, Yang Z, Wang Z, Xu T et al. 2019. Optimal experimental design for big data: applications in brain imaging. bioRxiv 802629. https://doi.org/10.1101/802629
    [Crossref]
  13. Burns R, Vogelstein JT, Szalay AS 2014. From cosmos to connectomes: the evolution of data-intensive science. Neuron 83:61249–52
    [Google Scholar]
  14. Bycroft C, Freeman C, Petkova D, Band G, Elliott LT et al. 2018. The UK Biobank resource with deep phenotyping and genomic data. Nature 562:7726203–9
    [Google Scholar]
  15. Bzdok D, Nichols TE, Smith SM 2019. Towards algorithmic analytics for large-scale datasets. Nat. Mach. Intell. 1:7296–306
    [Google Scholar]
  16. Cevher V, Becker S, Schmidt M 2014. Convex optimization for big data: scalable, randomized, and parallel algorithms for big data analytics. IEEE Signal Process. Mag. 31:532–43
    [Google Scholar]
  17. Chen L, Vogelstein JT, Lyzinski V, Priebe CE 2015. A joint graph inference case study: the C. elegans chemical and electrical connectomes. arXiv:1507.08376 [stat.AP]
  18. Chen S, Liu K, Yang Y, Xu Y, Lee S et al. 2017. An M-estimator for reduced-rank system identification. Pattern Recognit. Lett. 86:76–81
    [Google Scholar]
  19. Chung J, Pedigo BD, Bridgeford EW, Varjavand BK, Helm HS, Vogelstein JT 2019. GraSPy: graph statistics in Python. J. Machine Learn. Res. 20:1581–7
    [Google Scholar]
  20. Chung K, Deisseroth K. 2013. CLARITY for mapping the nervous system. Nat. Methods 10:6508–13
    [Google Scholar]
  21. Criminisi A, Shotton J, Konukoglu E 2012. Decision forests: a unified framework for classification, regression, density estimation, manifold learning and semi-supervised learning. Found. Trends Comput. Graph. Vis. 7:2–381–227
    [Google Scholar]
  22. Dorkenwald S, Schneider-Mizell C, Collman F 2020. sdorkenw/MeshParty: v1.9.0 (Version v1.9.0). Software http://doi.org/10.5281/zenodo.3710398
    [Crossref] [Google Scholar]
  23. Economo MN, Clack NG, Lavis LD, Gerfen CR, Svoboda K et al. 2016. A platform for brain-wide imaging and reconstruction of individual neurons. eLife 5:e10566
    [Google Scholar]
  24. Eichler K, Li F, Litwin-Kumar A, Park Y, Andrade I et al. 2017. The complete connectome of a learning and memory centre in an insect brain. Nature 548:7666175–82
    [Google Scholar]
  25. Fienberg SE. 1992. A brief history of statistics in three and one-half chapters: a review essay. Stat. Sci. 7:2208–25
    [Google Scholar]
  26. Fishkind DE, Lyzinski V, Pao H, Chen L, Priebe CE 2013. Vertex nomination schemes for membership prediction. Ann. App. Stat. 9:31510–32
    [Google Scholar]
  27. Fortin J-P, Parker D, Tunç B, Watanabe T, Elliott MA et al. 2017. Harmonization of multi-site diffusion tensor imaging data. NeuroImage 161:149–70
    [Google Scholar]
  28. Garyfallidis E, Brett M, Amirbekian B, Rokem A, van der Walt S et al. 2014. Dipy, a library for the analysis of diffusion MRI data. Front. Neuroinform. 8:8
    [Google Scholar]
  29. Giovannucci A, Friedrich J, Gunn P, Kalfon J, Brown BL et al. 2019. CaImAn an open source tool for scalable calcium imaging data analysis. eLife 8:e38173
    [Google Scholar]
  30. Gomez-Marin A, Paton JJ, Kampff AR, Costa RM, Mainen ZF 2014. Big behavioral data: psychology, ethology and the foundations of neuroscience. Nat. Neurosci. 17:111455–62
    [Google Scholar]
  31. Goodfellow I, Benigo Y, Courville A 2016. Deep Learning Cambridge, MA: MIT press
  32. Graving JM, Chae D, Naik H, Li L, Koger B et al. 2019. DeepPoseKit, a software toolkit for fast and robust animal pose estimation using deep learning. eLife 8:e47994
    [Google Scholar]
  33. Hafemeister C, Satija R. 2019. Normalization and variance stabilization of single-cell RNA-seq data using regularized negative binomial regression. Genome Biol 20:1296
    [Google Scholar]
  34. Hagberg A, Schult D, Swart P 2008. Exploring network structure, dynamics, and function using NetworkX. Proceedings of the 7th Python in Science Conference G Varoquaux, T Vaught, J Millman 11–15 Pasadena, CA: SciPy
    [Google Scholar]
  35. Haykin S. 1996. Adaptive Filter Theory Upper Saddle River, NJ: Prentice-Hall. , 3rd ed..
  36. He H. 2019. The state of machine learning frameworks in 2019. The Gradient Oct. 10. https://thegradient.pub/state-of-ml-frameworks-2019-pytorch-dominates-research-tensorflow-dominates-industry/
    [Google Scholar]
  37. Helmstaedter MN, Briggman KL, Turaga SC, Jain V, Seung HS, Denk W 2013. Connectomic reconstruction of the inner plexiform layer in the mouse retina. Nature 500:7461168–74
    [Google Scholar]
  38. Hildebrand DGC, Cicconet M, Torres RM, Choi W, Quan TM et al. 2017. Whole-brain serial-section electron microscopy in larval zebrafish. Nature 545:7654345–49
    [Google Scholar]
  39. Hillman EM, Voleti V, Patel K, Li W, Yu H et al. 2018. High-speed 3D imaging of cellular activity in the brain using axially-extended beams and light sheets. Curr. Opin. Neurobiol. 50:190–200
    [Google Scholar]
  40. Hoff PD. 2007. Modeling homophily and stochastic equivalence in symmetric relational data. Advances in Neural Information Processing Systems 20 JC Platt, D Koller, Y Singer, ST Roweis San Diego, CA: NeurIPS
    [Google Scholar]
  41. Huang M, Wang J, Torre E, Dueck H, Shaffer S et al. 2018. SAVER: gene expression recovery for single-cell RNA sequencing. Nat. Methods 15:7539–42
    [Google Scholar]
  42. Int. Brain Lab 2017. An international laboratory for systems and computational neuroscience. Neuron 96:61213–18
    [Google Scholar]
  43. Jun JJ, Steinmetz NA, Siegle JH, Denman DJ, Bauza M et al. 2017. Fully integrated silicon probes for high-density recording of neural activity. Nature 551:7679232–36
    [Google Scholar]
  44. Kasthuri N, Hayworth KJ, Berger DR, Schalek RL, Conchello JA et al. 2015. Saturated reconstruction of a volume of neocortex. Cell 162:3648–61
    [Google Scholar]
  45. Kay SM. 1993. Fundamentals of Statistical Signal Processing, Volume I: Estimation Theory Upper Saddle River, NJ: Prentice Hall. , 1st ed..
  46. Kiar G, Bridgeford EW, Gray Roncal WR, Consort. Reliab. Reprod. (CoRR), Chandrashekhar V et al. 2018. A high-throughput pipeline identifies robust connectomes but troublesome variability. bioRxiv 188706. https://doi.org/10.1101/188706
    [Crossref]
  47. Kim Y, Yang GR, Pradhan K, Venkataraju KU, Bota M et al. 2017. Brain-wide maps reveal stereotyped cell-type-based cortical architecture and subcortical sexual dimorphism. Cell 171:2456–469.e22
    [Google Scholar]
  48. Knott G, Marchman H, Wall D, Lich B 2008. Serial section scanning electron microscopy of adult brain tissue using focused ion beam milling. J. Neurosci. 28:122959–64
    [Google Scholar]
  49. Krakauer JW, Ghazanfar AA, Gomez-Marin A, MacIver MA, Poeppel D 2017. Neuroscience needs behavior: correcting a reductionist bias. Neuron 93:3480–90
    [Google Scholar]
  50. Kutten KS, Charon N, Miller MI, Ratnanather JT, Matelsky J et al. 2017. A large deformation diffeomorphic approach to registration of CLARITY images via mutual information. Medical Image Computing and Computer Assisted Intervention—MICCAI 2017 M Descoteaux, L Maier-Hein, A Franz, P Jannin, DL Collins, S Duchesne 275–82 Cham, Switz: Springer
    [Google Scholar]
  51. Kutten KS, Vogelstein JT, Charon N, Ye L, Deisseroth K, Miller MI 2016. Deformably registering and annotating whole CLARITY brains to an atlas via masked LDDMM. Optics, Photonics and Digital Technologies for Imaging Applications IV P Schelkens, T Ebrahimi, G Cristóbal, F Truchetet, P Saarikko Bellingham, WA: SPIE
    [Google Scholar]
  52. Lake EMR, Ge X, Shen X, Herman P, Hyder F et al. 2018. Spanning spatiotemporal scales with simultaneous mesoscopic Ca2+ imaging and functional MRI: neuroimaging spanning spatiotemporal scales. bioRxiv 464305. https://doi.org/10.1101/464305
    [Crossref]
  53. Lee JA, Verleysen M. 2007. Nonlinear Dimensionality Reduction New York: Springer
  54. Lee JH, Daugharthy ER, Scheiman J, Kalhor R, Yang JL et al. 2014. Highly multiplexed subcellular RNA sequencing in situ. Science 343:61771360–63
    [Google Scholar]
  55. Lein E, Borm LE, Linnarsson S 2017. The promise of spatial transcriptomics for neuroscience in the era of molecular cell typing. Science 358:635964–69
    [Google Scholar]
  56. Levin K, Athreya A, Tang M, Lyzinski V, Park Y, Priebe CE 2017. A central limit theorem for an omnibus embedding of multiple random graphs and implications for multiscale network inference. arXiv:1705.09355 [stat.ME]
  57. Lillaney K, Kleissas D, Eusman A, Perlman E, Gray Roncal W et al. 2018. Building NDStore through hierarchical storage management and microservice processing. 2018 IEEE 14th International Conference on e-Science (e-Science)223–233 Los Alamitos, CA: IEEE
    [Google Scholar]
  58. Lorensen WE, Cline HE. 1987. Marching cubes: a high resolution 3D surface construction algorithm. Proceedings of the 14th Annual Conference on Computer Graphics and Interactive Techniques163–69 New York: ACM
    [Google Scholar]
  59. Ma Y, Shaik MA, Kim SH, Kozberg MG, Thibodeaux DN et al. 2016. Wide-field optical mapping of neural activity and brain haemodynamics: considerations and novel approaches. Philos. Trans. R. Soc. Lond. B Biol. Sci. 371:170520150360
    [Google Scholar]
  60. Marblestone A, Zamft BM, Maguire YG, Shapiro MG, Cybulski TR et al. 2013. Physical principles for scalable neural recording. Front. Comput. Neurosci. 7:137
    [Google Scholar]
  61. Markowitz JE, Gillis WF, Beron CC, Neufeld SQ, Robertson K et al. 2018. The striatum organizes 3D behavior via moment-to-moment action selection. Cell 174:144–58.e17
    [Google Scholar]
  62. Mathis A, Mamidanna P, Cury KM, Abe T, Murthy VN et al. 2018. DeepLabCut: markerless pose estimation of user-defined body parts with deep learning. Nat. Neurosci. 21:91281–89
    [Google Scholar]
  63. Mhembere D, Zheng D, Priebe CE, Vogelstein JT, Burns R 2017a. knor: a NUMA-optimized in-memory, distributed and semi-external-memory k-means library. arXiv:1606.08905 [cs.DC]
  64. Mhembere D, Zheng D, Priebe CE, Vogelstein JT, Burns R 2017b. knor: a NUMA-optimized in-memory, distributed and semi-external-memory k-means library. Proceedings of the 26th International Symposium on High-Performance Parallel and Distributed Computing67–78 New York: Assoc. Comput. Mach.
    [Google Scholar]
  65. Mhembere D, Zheng D, Priebe CE, Vogelstein JT, Burns R 2019a. clusterNOR: a NUMA-optimized clustering framework. arXiv:1902.09527 [cs.DC]
  66. Mhembere D, Zheng D, Priebe CE, Vogelstein JT, Burns R 2019b. Graphyti: a semi-external memory graph library for FlashGraph. arXiv:1907.03335 [cs.DC]
  67. Miller AB, Sheridan MA, Hanson JL, McLaughlin KA, Bates JE et al. 2018. Dimensions of deprivation and threat, psychopathology, and potential mediators: a multi-year longitudinal analysis. J. Abnorm. Psychol.160–70
    [Google Scholar]
  68. Miller MI, Arguillère S, Tward DJ, Younes L 2018. Computational anatomy and diffeomorphometry: a dynamical systems model of neuroanatomy in the soft condensed matter continuum. Wiley Interdiscip. Rev. Syst. Biol. Med. 10:6e1425
    [Google Scholar]
  69. Miller MI, Trouvé A, Younes L 2015. Hamiltonian systems and optimal control in computational anatomy: 100 years since D'Arcy Thompson. Annu. Rev. Biomed. Eng. 17:447–509
    [Google Scholar]
  70. Mirzaalian H, Ning L, Savadjiev P, Pasternak O, Bouix S et al. 2017. Multi-site harmonization of diffusion MRI data in a registration framework. Brain Imaging Behav 12:1284–95
    [Google Scholar]
  71. Mueller SG, Weiner MW, Thal LJ, Petersen RC, Jack C et al. 2005. The Alzheimer's disease neuroimaging initiative. Neuroimaging Clin. N. Am. 15:4869–77
    [Google Scholar]
  72. Narasimhan A, Venkataraju KU, Mizrachi J, Albeanu DF, Osten P 2017. Oblique light-sheet tomography: fast and high resolution volumetric imaging of mouse brains. bioRxiv 132423. https://doi.org/10.1101/132423
    [Crossref]
  73. Pachitariu M, Stringer C, Dipoppa M, Schröder S, Rossi LF et al. 2017. Suite2p: beyond 10,000 neurons with standard two-photon microscopy. bioRxiv 061507. https://doi.org/10.1101/061507
    [Crossref]
  74. Pakman A, Wang Y, Mitelut C, Lee JH, Paninski L 2018. Discrete neural processes. arXiv:1901.00409 [stat.ML]
  75. Pereira TD, Aldarondo DE, Willmore L, Kislin M, Wang SS et al. 2019. Fast animal pose estimation using deep neural networks. Nat. Methods 16:1117–25
    [Google Scholar]
  76. Perry R, Tomita TM, Patsolic J, Falk B, Vogelstein JT 2019. Manifold forests: closing the gap on neural networks. arXiv:1909.11799 [cs.LG]
  77. Renier N, Wu Z, Simon DJ, Yang J, Ariel P, Tessier-Lavigne M 2014. iDISCO: a simple, rapid method to immunolabel large tissue samples for volume imaging. Cell 159:4896–910
    [Google Scholar]
  78. Rocklin M. 2015. Dask: parallel computation with blocked algorithms and task scheduling. Proceedings of the 14th Python in Science Conference126–32 Austin, TX: SciPy
    [Google Scholar]
  79. Roweis ST, Saul LK. 2000. Nonlinear dimensionality reduction by locally linear embedding. Science 290:55002323–26
    [Google Scholar]
  80. Ryan K, Lu Z, Meinertzhagen IA 2016. The CNS connectome of a tadpole larva of Ciona intestinalis (L.) highlights sidedness in the brain of a chordate sibling. eLife 5:e16962
    [Google Scholar]
  81. Saalfeld S, Fetter R, Cardona A, Tomancak P 2012. Elastic volume reconstruction from series of ultra-thin microscopy sections. Nat. Methods 9:7717–20
    [Google Scholar]
  82. Schindelin J, Arganda-Carreras I, Frise E, Kaynig V, Longair M et al. 2012. Fiji: an open-source platform for biological-image analysis. Nat. Methods 9:7676–82
    [Google Scholar]
  83. Sharma A, Johnson R, Engert F, Linderman S 2018. Point process latent variable models of larval zebrafish behavior. Advances in Neural Information Processing Systems 31 S Bengio, H Wallach, H Larochelle, K Grauman, N Cesa-Bianchi, R Garnett 10942–53 San Diego, CA: NeurIPS
    [Google Scholar]
  84. Silversmith W. 2018. CloudVolume: client for reading and writing to Neuroglancer precomputed volumes on cloud services. GitHub https://github.com/seung-lab/cloud-volume
    [Google Scholar]
  85. Slavakis K, Giannakis GB, Mateos G 2014. Modeling and optimization for big data analytics:(statistical) learning tools for our era of data deluge. IEEE Signal Process. Mag. 31:518–31
    [Google Scholar]
  86. Smith AC, Brown EN. 2003. Estimating a state-space model from point process observations. Neural Comput 15:5965–91
    [Google Scholar]
  87. Song A, Charles AS, Koay SA, Gauthier JL, Thiberge SY et al. 2017. Volumetric two-photon imaging of neurons using stereoscopy (vTwINS). Nat. Methods 14:4420–26
    [Google Scholar]
  88. Stuart T, Butler A, Hoffman P, Hafemeister C, Papalexi E et al. 2019. Comprehensive integration of single-cell data. Cell 177:71888–902.e21
    [Google Scholar]
  89. Sussman DL, Tang M, Fishkind DE, Priebe CE 2011. A consistent adjacency spectral embedding for stochastic blockmodel graphs. J. Am. Stat. Assoc. 107:4991119–28
    [Google Scholar]
  90. Svensson V, Natarajan KN, Ly LH, Miragaia RJ, Labalette C et al. 2017. Power analysis of single-cell RNA-sequencing experiments. Nat. Methods 14:4381–87
    [Google Scholar]
  91. Teeters JL, Godfrey K, Young R, Dang C, Friedsam C et al. 2015. Neurodata without borders: creating a common data format for neurophysiology. Neuron 88:4629–34
    [Google Scholar]
  92. Tenenbaum JB, de Silva V, Langford JC 2000. A global geometric framework for nonlinear dimensionality reduction. Science 290:55002319–23
    [Google Scholar]
  93. Tibshirani R. 1996. Regression shrinkage and selection via the lasso. J. R. Stat. Soc. Ser. B Stat. Methodol. 58:1267–88
    [Google Scholar]
  94. Tomita TM, Browne J, Shen C, Chung J, Patsolic JL et al. 2020. Sparse projection oblique randomer forests. J. Mach. Learn. Res. In press
    [Google Scholar]
  95. Urban G, Geras KJ, Ebrahimi Kahou S, Aslan O, Wang S et al. 2017. Do deep convolutional nets really need to be deep and convolutional?. arXiv:1603.05691 [stat.ML]
  96. van der Walt S, Schönberger JL, Nunez-Iglesias J, Boulogne F, Warner JD et al. 2014. scikit-image: image processing in Python. PeerJ 2:e453
    [Google Scholar]
  97. van Dijk D, Sharma R, Nainys J, Yim K, Kathail P et al. 2018. Recovering gene interactions from single-cell data using data diffusion. Cell 174:3716–29.e27
    [Google Scholar]
  98. Van Essen DC, Smith SM, Barch DM, Behrens TE, Yacoub E et al. 2013. The WU-Minn Human Connectome Project: an overview. NeuroImage 80:62–79
    [Google Scholar]
  99. Vershynin R. 2018. High-Dimensional Probability: An Introduction with Applications in Data Science Cambridge, UK: Cambridge Univ. Press. , 1st ed..
  100. Virtanen P, Gommers R, Oliphant TE, Haberland M, Reddy T et al. 2020. SciPy 1.0: fundamental algorithms for scientific computing in Python. Nat. Methods 17:261–72
    [Google Scholar]
  101. Vogelstein JT, Bridgeford E, Tang M, Zheng D, Burns R, Maggioni M 2018a. Geometric dimensionality reduction for subsequent classification. arXiv:1709.01233 [stat.ML]
  102. Vogelstein JT, Bridgeford EW, Wang Q, Priebe CE, Maggiono M et al. 2019. Discovering and deciphering relationships across disparate data modalities. eLife 8:e41690
    [Google Scholar]
  103. Vogelstein JT, Park Y, Ohyama T, Kerr RA, Truman JW et al. 2014. Discovery of brainwide neural-behavioral maps via multiscale unsupervised structure learning. Science 344:6182386–92
    [Google Scholar]
  104. Vogelstein JT, Perlman E, Falk B, Baden A, Gray Roncal W et al. 2018b. A community-developed open-source computational ecosystem for big neuro data. Nat. Methods 15:11846–47
    [Google Scholar]
  105. Wahlberg B, Boyd S, Annergren M, Wang Y 2012. An ADMM algorithm for a class of total variation regularized estimation problems. IFAC Proc. Vol. 45:1683–88
    [Google Scholar]
  106. Wainwright MJ. 2019. High-Dimensional Statistics: A Non-Asymptotic Viewpoint Cambridge, UK: Cambridge Univ. Press. , 1st ed..
  107. Wang C, Chen M-H, Schifano E, Wu J, Yan J 2016. Statistical methods and computing for big data. Stat. Interface 9:4399–414
    [Google Scholar]
  108. Wang X, Allen WE, Wright MA, Sylwestrak EL, Samusik N et al. 2018. Three-dimensional intact-tissue sequencing of single-cell transcriptional states. Science 361:6400eaat5691
    [Google Scholar]
  109. Welch JD, Kozareva V, Ferreira A, Vanderburg C, Martin C, Macosko EZ 2019. Single-cell multi-omic integration compares and contrasts features of brain cell identity. Cell 177:71873–87.e17
    [Google Scholar]
  110. White JG, Southgate E, Thomson JN, Brenner S 1986. The structure of the nervous system of the nematode Caenorhabditis elegans. Philos. Trans. R. Soc. Lond. B Biol. Sci 314:11651–340
    [Google Scholar]
  111. Winnubst J, Bas E, Ferreira TA, Wu Z, Economo MN et al. 2019. Reconstruction of 1,000 projection neurons reveals new cell types and organization of long-range connectivity in the mouse brain. Cell 179:1268–81.e13
    [Google Scholar]
  112. Wolf FA, Angerer P, Theis FJ 2018. SCANPY: large-scale single-cell gene expression data analysis. Genome Biol 19:115
    [Google Scholar]
  113. Xu Y, Yin W. 2015. Block stochastic gradient iteration for convex and nonconvex optimization. SIAM J. Optim. 25:31686–716
    [Google Scholar]
  114. Yatsenko D, Reimer J, Ecker AS, Walker EY, Sinz F et al. 2015. DataJoint: managing big scientific data using MATLAB or Python. bioRxiv 031658. https://doi.org/10.1101/031658
    [Crossref]
  115. Younes L. 2019. Shapes and Diffeomorphisms New York: Springer. , 2nd ed..
  116. Yu M, Linn KA, Cook PA, Phillips ML, McInnis M et al. 2018. Statistical harmonization corrects site effects in functional connectivity measurements from multi-site fMRI data. Hum. Brain Mapp. 39:114213–27
    [Google Scholar]
  117. Yushkevich PA, Yang G, Gerig G 2016. ITK-SNAP: an interactive tool for semi-automatic segmentation of multi-modality biomedical images. Proceedings of the 38th Annual International Conference of the IEEE Engineering in Medicine and Biology Society3342–45 Los Alamitos, CA: IEEE
    [Google Scholar]
  118. Zaharia M, Xin RS, Wendell P, Das T, Armbrust M, Dave A et al. 2016. Apache spark: a unified engine for big data processing. Comm. ACM 59:1156–65
    [Google Scholar]
  119. Zhang D, Yin J, Zhu X, Zhang C 2018. Network representation learning: a survey. arXiv:1801.05852 [cs.SI]
  120. Zheng D, Mhembere D, Vogelstein JT, Priebe CE, Burns R 2016. FlashMatrix: parallel, scalable data analysis with generalized matrix operations using commodity SSDs. arXiv:1604.06414v1 [cs.DC]
  121. Zheng D, Mhembere D, Burns R, Vogelstein J, Priebe CE, Szalay AS 2015. FlashGraph: processing billion-node graphs on an array of commodity SSDs. Proceedings of the 13th USENIX Conference on File and Storage Technologies45–58 Santa Clara, CA: FAST
    [Google Scholar]
  122. Zheng Z, Lauritzen JS, Perlman E, Robinson CG, Nichols M et al. 2018. A complete electron microscopy volume of the brain of adult Drosophila melanogaster. . Cell 174:3730–43.e22
    [Google Scholar]
  123. Zhu M. 2006. Discriminant analysis with common principal components. Biometrika 93:41018–24
    [Google Scholar]
  124. Zipunnikov V, Caffo B, Yousem DM, Davatzikos C, Schwartz BS, Crainiceanu C 2011. Multilevel functional principal component analysis for high-dimensional data. J. Comput. Graph. Stat. 20:4852–73
    [Google Scholar]
  125. Zlateski A, Silversmith W. 2019. Zmesh. GitHub https://github.com/seung-lab/zmesh
    [Google Scholar]
/content/journals/10.1146/annurev-neuro-100119-110036
Loading
/content/journals/10.1146/annurev-neuro-100119-110036
Loading

Data & Media loading...

Supplemental Material

Supplementary Data

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error