1932

Abstract

Comparative neuroscience is entering the era of big data. New high-throughput methods and data-sharing initiatives have resulted in the availability of large, digital data sets containing many types of data from ever more species. Here, we present a framework for exploiting the new possibilities offered. The multimodality of the data allows vertical translations, which are comparisons of different aspects of brain organization within a single species and across scales. Horizontal translations compare particular aspects of brain organization across species, often by building abstract feature spaces. Combining vertical and horizontal translations allows for more sophisticated comparisons, including relating principles of brain organization across species by contrasting horizontal translations, and for making formal predictions of unobtainable data based on observed results in a model species.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-neuro-100220-025942
2021-07-08
2024-06-20
Loading full text...

Full text loading...

/deliver/fulltext/neuro/44/1/annurev-neuro-100220-025942.html?itemId=/content/journals/10.1146/annurev-neuro-100220-025942&mimeType=html&fmt=ahah

Literature Cited

  1. Auzias G, Lefèvre J, Le Troter A, Fisher C, Perrot M et al. 2013. Model-driven harmonic parameterization of the cortical surface: HIP-HOP. IEEE Trans. Med. Imaging 32:873–87
    [Google Scholar]
  2. Balsters JH, Zerbi V, Sallet J, Wenderoth N, Mars RB. 2020. Primate homologs of mouse cortico-striatal circuits. eLife 9:e53680
    [Google Scholar]
  3. Barbas H, Rempel-Clower N. 1997. Cortical structure predicts the pattern of corticocortical connections. Cereb. Cortex 7:7635–46
    [Google Scholar]
  4. Barks SK, Parr LA, Rilling JK. 2015. The default mode network in chimpanzees (Pantroglodytes) is similar to that of humans. Cereb. Cortex 25:2538–44
    [Google Scholar]
  5. Barrett RLC, Dawson M, Dyrby TB, Krug K, Ptito M et al. 2020. Differences in frontal network anatomy across primate species. J. Neurosci. 40:102094–107
    [Google Scholar]
  6. Barron HC, Mars RB, Dupret D, Lerch J, Sampaio-Baptista C. 2020. Cross-species neuroscience: closing the explanatory gap. Phil Trans. R. Soc. B 376:20190633
    [Google Scholar]
  7. Barton RA. 2007. Evolutionary specialization in mammalian cortical structure. J. Evol. Biol. 20:41504–11
    [Google Scholar]
  8. Barton RA, Venditti C 2013. Human frontal lobes are not relatively large. PNAS 110:229001–6
    [Google Scholar]
  9. Beckmann M, Johansen-Berg H, Rushworth MFS. 2009. Connectivity-based parcellation of human cingulate cortex and its relation to functional specialization. J. Neurosci. 29:41175–90
    [Google Scholar]
  10. Bicks LK, Yamamuro K, Flanigan ME, Kim JM, Kato D et al. 2020. Prefrontal parvalbumin interneurons require juvenile social experience to establish adult social behavior. Nat. Commun. 11:11003
    [Google Scholar]
  11. Blazquez Freches G, Haak KV, Bryant KL, Schurz M, Beckmann CF, Mars RB. 2020. Principles of temporal association cortex organisation as revealed by connectivity gradients. Brain Struct. Funct. 225:1245–60
    [Google Scholar]
  12. Bryant KL, Li L, Eichert N, Mars RB. 2020. A comprehensive atlas of white matter tracts in the chimpanzee. bioRxiv 2020.01.24.918516. https://doi.org/10.1101/2020.01.24.918516
    [Crossref]
  13. Bryant KL, Preuss TM 2018. A comparative perspective on the human temporal lobe. Digital Endocasts E Bruner, N Ogihara, HC Tanabe 239–58 Tokyo: Springer Japan
    [Google Scholar]
  14. Burt JB, Demirtaş M, Eckner WJ, Navejar NM, Ji JL et al. 2018. Hierarchy of transcriptomic specialization across human cortex captured by structural neuroimaging topography. Nat. Neurosci. 21:91251–59
    [Google Scholar]
  15. Caspari N, Arsenault JT, Vandenberghe R, Vanduffel W. 2018. Functional similarity of medial superior parietal areas for shift-selective attention signals in humans and monkeys. Cereb. Cortex 28:62085–99
    [Google Scholar]
  16. Chaplin TA, Yu H-H, Soares JGM, Gattass R, Rosa MGP. 2013. A conserved pattern of differential expansion of cortical areas in simian primates. J. Neurosci. 33:3815120–25
    [Google Scholar]
  17. Churchland P, Sejnowski T. 1992. The Computational Brain Cambridge, MA: MIT Press
    [Google Scholar]
  18. Coulon O, Auzias G, Lemercier P, Hopkins WD. 2018. Nested cortical organization models for human and non-human primate inter-species comparisons Paper presented at the Annual Meeting of the Organization for Human Brain Mapping Singapore:
    [Google Scholar]
  19. Croxson PL. 2005. Quantitative investigation of connections of the prefrontal cortex in the human and macaque using probabilistic diffusion tractography. J. Neurosci. 25:398854–66
    [Google Scholar]
  20. Dehaene S, Cohen L. 2007. Cultural recycling of cortical maps. Neuron 56:2384–98
    [Google Scholar]
  21. Dunbar RIM, Shultz S. 2007. Evolution in the social brain. Science 317:58431344–47
    [Google Scholar]
  22. Eichert N, Robinson EC, Bryant KL, Jbabdi S, Jenkinson M et al. 2020. Cross-species cortical alignment identifies different types of anatomical reorganization in the primate temporal lobe. eLife 9:e53232
    [Google Scholar]
  23. Eichert N, Verhagen L, Folloni D, Jbabdi S, Khrapitchev AA et al. 2019. What is special about the human arcuate fasciculus? Lateralization, projections, and expansion. Cortex 118:107–15
    [Google Scholar]
  24. Folloni D, Sallet J, Khrapitchev AA, Sibson N, Verhagen L, Mars RB. 2019. Dichotomous organization of amygdala/temporal-prefrontal bundles in both humans and monkeys. eLife 8:e47175
    [Google Scholar]
  25. Fulcher BD, Murray JD, Zerbi V, Wang X-J 2019. Multimodal gradients across mouse cortex. PNAS 116:104689–95
    [Google Scholar]
  26. Geyer S, Matelli M, Luppino G, Schleicher A, Jansen Y et al. 1998. Receptor autoradiographic mapping of the mesial motor and premotor cortex of the macaque monkey. J. Comp. Neurol. 397:2231–50
    [Google Scholar]
  27. Glasser MF, Coalson TS, Robinson EC, Hacker CD, Harwell J et al. 2016. A multi-modal parcellation of human cerebral cortex. Nature 536:171–78
    [Google Scholar]
  28. Glasser MF, Van Essen DC. 2011. Mapping human cortical areas in vivo based on myelin content as revealed by T1- and T2-weighted MRI. J. Neurosci. 31:3211597–616
    [Google Scholar]
  29. Grandjean J, Canella C, Anckaerts C, Ayrancı G, Bougacha S et al. 2020. Common functional networks in the mouse brain revealed by multi-centre resting-state fMRI analysis. NeuroImage 205:116278
    [Google Scholar]
  30. Grimm C, Balsters JH, Zerbi V. 2021. Shedding light on social reward circuitry: (un)common blueprints in humans and rodents. Neuroscientist 27:215983
    [Google Scholar]
  31. Haak KV, Marquand AF, Beckmann CF. 2018. Connectopic mapping with resting-state fMRI. NeuroImage 170:83–94
    [Google Scholar]
  32. Haber SN, Tang W, Choi EY, Yendiki A, Liu H et al. 2020. Circuits, networks, and neuropsychiatric disease: transitioning from anatomy to imaging. Biol. Psychiatry 87:4318–27
    [Google Scholar]
  33. Hartogsveld B, Bramson B, Vijayakumar S, van Campen AD, Marques JP et al. 2017. Lateral frontal pole and relational processing: activation patterns and connectivity profile. Behav. Brain Res. 355:2–11
    [Google Scholar]
  34. Hawrylycz MJ, Lein ES, Guillozet-Bongaarts AL, Shen EH, Ng L et al. 2012. An anatomically comprehensive atlas of the adult human brain transcriptome. Nature 489:7416391–99
    [Google Scholar]
  35. Hay M, Thomas DW, Craighead JL, Economides C, Rosenthal J. 2014. Clinical development success rates for investigational drugs. Nat. Biotechnol. 32:140–51
    [Google Scholar]
  36. Huk AC, Dougherty RF, Heeger DJ. 2002. Retinotopy and functional subdivision of human areas MT and MST. J. Neurosci. 22:7195–205
    [Google Scholar]
  37. Hunt LT, Behrens TEJ, Hosokawa T, Wallis JD, Kennerley SW. 2015. Capturing the temporal evolution of choice across prefrontal cortex. eLife 4:e11945
    [Google Scholar]
  38. Huntenburg JM, Bazin P-L, Margulies DS. 2018. Large-scale gradients in human cortical organization. Trends Cogn. Sci. 22:121–31
    [Google Scholar]
  39. Jbabdi S, Lehman JF, Haber SN, Behrens TE. 2013. Human and monkey ventral prefrontal fibers use the same organizational principles to reach their targets: tracing versus tractography. J. Neurosci. 33:73190–201
    [Google Scholar]
  40. Jerison HJ. 1973. Evolution of Brain and Intelligence New York: Academic
    [Google Scholar]
  41. Keil JM, Qalieh A, Kwan KY. 2018. Brain transcriptome databases: a user's guide. J. Neurosci. 38:102399–412
    [Google Scholar]
  42. Kriegeskorte N, Mur M, Ruff DA, Kiani R, Bodurka J et al. 2008. Matching categorical object representations in inferior temporal cortex of man and monkey. Neuron 60:61126–41
    [Google Scholar]
  43. Krubitzer L, Kaas J. 2005. The evolution of the neocortex in mammals: How is phenotypic diversity generated?. Curr. Opin. Neurobiol. 15:4444–53
    [Google Scholar]
  44. Laubach M, Amarante LM, Swanson K, White SR. 2018. What, if anything, is rodent prefrontal cortex?. eNeuro 5:5ENEURO0315–18 2018.
    [Google Scholar]
  45. Lein ES, Hawrylycz MJ, Ao N, Ayres M, Bensinger A et al. 2007. Genome-wide atlas of gene expression in the adult mouse brain. Nature 445:7124168–76
    [Google Scholar]
  46. Lerch JP, van der Kouwe AJW, Raznahan A, Paus T, Johansen-Berg H et al. 2017. Studying neuroanatomy using MRI. Nat. Neurosci. 20:3314–26
    [Google Scholar]
  47. Liu C, Yen CC-C, Szczupak D, Ye FQ, Leopold DA, Silva AC. 2019. Anatomical and functional investigation of the marmoset default mode network. Nat. Commun. 10:11975
    [Google Scholar]
  48. Lu H, Zou Q, Gu H, Raichle ME, Stein EA, Yang Y 2012. Rat brains also have a default mode network. PNAS 109:103979–84
    [Google Scholar]
  49. Mandino F, Cerri DH, Garin CM, Straathof M, van Tilborg GAF et al. 2019. Animal functional magnetic resonance imaging: trends and path toward standardization. Front. Neuroinform. 13:78
    [Google Scholar]
  50. Margulies DS, Ghosh SS, Goulas A, Falkiewicz M, Huntenburg JM et al. 2016. Situating the default-mode network along a principal gradient of macroscale cortical organization. PNAS 113:4412574–79
    [Google Scholar]
  51. Mars NJI. 1987. Onderzoek van Niveau: Kennistechnologie in Wording. Inaugural Lecture University of Twente. Enschede, Neth: Univ. Twente
    [Google Scholar]
  52. Mars RB, Eichert N, Jbabdi S, Verhagen L, Rushworth MFS. 2018a. Connectivity and the search for specializations in the language-capable brain. Curr. Opin. Behav. Sci. 21:19–26
    [Google Scholar]
  53. Mars RB, Jbabdi S, Sallet J, O'Reilly JX, Croxson PL et al. 2011. Diffusion-weighted imaging tractography-based parcellation of the human parietal cortex and comparison with human and macaque resting-state functional connectivity. J. Neurosci. 31:114087–100
    [Google Scholar]
  54. Mars RB, Passingham RE, Jbabdi S. 2018b. Connectivity fingerprints: from areal descriptions to abstract spaces. Trends Cogn. Sci. 22:111026–37
    [Google Scholar]
  55. Mars RB, Sallet J, Neubert F-X, Rushworth MFS 2013. Connectivity profiles reveal the relationship between brain areas for social cognition in human and monkey temporoparietal cortex. PNAS 110:2610806–11
    [Google Scholar]
  56. Mars RB, Sotiropoulos SN, Passingham RE, Sallet J, Verhagen L et al. 2018c. Whole brain comparative anatomy using connectivity blueprints. eLife 7:e35237
    [Google Scholar]
  57. Mars RB, Verhagen L, Gladwin TE, Neubert F-X, Sallet J, Rushworth MFS. 2016. Comparing brains by matching connectivity profiles. Neurosci. Biobehav. Rev. 60:90–97
    [Google Scholar]
  58. Milham M, Petkov CI, Margulies DS, Schroeder CE, Basso MA et al. 2020. Accelerating the evolution of nonhuman primate neuroimaging. Neuron 105:4600–3
    [Google Scholar]
  59. Milham MP, Ai L, Koo B, Xu T, Amiez C et al. 2018. An open resource for non-human primate imaging. Neuron 100:161–74.e2
    [Google Scholar]
  60. Miller KL, Alfaro-Almagro F, Bangerter NK, Thomas DL, Yacoub E et al. 2016. Multimodal population brain imaging in the UK Biobank prospective epidemiological study. Nat. Neurosci. 19:111523–36
    [Google Scholar]
  61. Neubert F-X, Mars RB, Sallet J, Rushworth MFS 2015. Connectivity reveals relationship of brain areas for reward-guided learning and decision making in human and monkey frontal cortex. PNAS 112:20E2695–704
    [Google Scholar]
  62. Neubert F-X, Mars RB, Thomas AG, Sallet J, Rushworth MFS. 2014. Comparison of human ventral frontal cortex areas for cognitive control and language with areas in monkey frontal cortex. Neuron 81:3700–13
    [Google Scholar]
  63. Olsson A, Knapska E, Lindström B. 2020. The neural and computational systems of social learning. Nat. Rev. Neurosci. 21:4197–212
    [Google Scholar]
  64. Paquola C, Wael RVD, Wagstyl K, Bethlehem RAI, Hong S-J et al. 2019. Microstructural and functional gradients are increasingly dissociated in transmodal cortices. PLOS Biol 17:5e3000284
    [Google Scholar]
  65. Passingham RE, Smaers JB. 2014. Is the prefrontal cortex especially enlarged in the human brain? Allometric relations and remapping factors. Brain Behav. Evol 84:2156–66
    [Google Scholar]
  66. Passingham RE, Stephan KE, Kötter R. 2002. The anatomical basis of functional localization in the cortex. Nat. Rev. Neurosci. 3:8606–16
    [Google Scholar]
  67. Rilling JK, Glasser MF, Preuss TM, Ma X, Zhao T et al. 2008. The evolution of the arcuate fasciculus revealed with comparative DTI. Nat. Neurosci. 11:4426–28
    [Google Scholar]
  68. Roumazeilles L, Eichert N, Bryant KL, Folloni D, Sallet J et al. 2020. Longitudinal connections and the organization of the temporal cortex in macaques, great apes, and humans. PLOS Biol 18:7e3000810
    [Google Scholar]
  69. Rushworth MFS, Mars RB, Sallet J. 2013. Are there specialized circuits for social cognition and are they unique to humans?. Curr. Opin. Neurobiol. 23:3436–42
    [Google Scholar]
  70. Sallet J, Mars RB, Noonan MP, Neubert F-X, Jbabdi S et al. 2013. The organization of dorsal frontal cortex in humans and macaques. J. Neurosci. 33:3012255–74
    [Google Scholar]
  71. Schaeffer DJ, Adam R, Gilbert KM, Gati JS, Li AX et al. 2017. Diffusion-weighted tractography in the common marmoset monkey at 9.4T. J. Neurophysiol. 118:21344–54
    [Google Scholar]
  72. Shulman GL, Fiez JA, Corbetta M, Buckner RL, Miezin FM et al. 1997. Common blood flow changes across visual tasks: II. Decreases in cerebral cortex. J. Cogn. Neurosci. 9:5648–63
    [Google Scholar]
  73. Smaers JB, Soligo C. 2013. Brain reorganization, not relative brain size, primarily characterizes anthropoid brain evolution. Proc. R. Soc. B 280: 1759.20130269
    [Google Scholar]
  74. Sommer RJ. 2008. Homology and the hierarchy of biological systems. Bioessays 30:7653–58
    [Google Scholar]
  75. Striedter GF. 2019. Variation across species and levels: implications for model species research. Brain Behav. Evol. 93:2–357–69
    [Google Scholar]
  76. Striedter GF, Northcutt RG. 1991. Biological hierarchies and the concept of homology. Brain Behav. Evol. 38:4–5177–89
    [Google Scholar]
  77. Szabó D, Czeibert K, Kettinger Á, Gácsi M, Andics A et al. 2019. Resting-state fMRI data of awake dogs (Canis familiaris) via group-level independent component analysis reveal multiple, spatially distributed resting-state networks. Sci. Rep. 9:115270
    [Google Scholar]
  78. Tang W, Jbabdi S, Zhu Z, Cottaar M, Grisot G et al. 2019. A connectional hub in the rostral anterior cingulate cortex links areas of emotion and cognitive control. eLife 8:e43761
    [Google Scholar]
  79. Thiebaut de Schotten M, Dell'Acqua F, Valabregue R, Catani M 2012. Monkey to human comparative anatomy of the frontal lobe association tracts. Cortex 48:182–96
    [Google Scholar]
  80. Tomassini V, Jbabdi S, Klein JC, Behrens TE, Pozzilli C et al. 2007. Diffusion-weighted imaging tractography-based parcellation of the human lateral premotor cortex identifies dorsal and ventral subregions with anatomical and functional specializations. J. Neurosci. 27:3810259–69
    [Google Scholar]
  81. Van Essen DC, Dierker DL. 2007. Surface-based and probabilistic atlases of primate cerebral cortex. Neuron 56:2209–25
    [Google Scholar]
  82. Van Essen DC, Smith SM, Barch DM, Behrens TEJ, Yacoub E, Ugurbil K. 2013. The WU-Minn Human Connectome Project: an overview. NeuroImage 80:62–79
    [Google Scholar]
  83. van Heukelum S, Mars RB, Guthrie M, Buitelaar JK, Beckmann CF et al. 2020. Where is cingulate cortex? A cross-species view. Trends Neurosci 43:285–99
    [Google Scholar]
  84. Vatansever D, Menon DK, Manktelow AE, Sahakian BJ, Stamatakis EA. 2015. Default mode dynamics for global functional integration. J. Neurosci. 35:4615254–62
    [Google Scholar]
  85. Velez L, Sokoloff G, Miczek KA, Palmer AA, Dulawa SC. 2010. Differences in aggressive behavior and DNA copy number variants between BALB/cJ and BALB/cByJ substrains. Behav. Genet. 40:2201–10
    [Google Scholar]
  86. Vincent JL, Patel GH, Fox MD, Snyder AZ, Baker JT et al. 2007. Intrinsic functional architecture in the anaesthetized monkey brain. Nature 447:714083–86
    [Google Scholar]
  87. Vos de Wael R, Benkarim O, Paquola C, Lariviere S, Royer J et al. 2020. BrainSpace: a toolbox for the analysis of macroscale gradients in neuroimaging and connectomics datasets. Commun. Biol. 3:1103
    [Google Scholar]
  88. Warrington S, Bryant KL, Khrapitchev AA, Sallet J, Charquero-Ballester M et al. 2020. XTRACT—Standardised protocols for automated tractography in the human and macaque brain. NeuroImage 217:116923
    [Google Scholar]
  89. Xia X, Fan L, Cheng C, Yao R, Deng H et al. 2019. Interspecies differences in the connectivity of ventral striatal components between humans and macaques. Front. Neurosci. 13:623
    [Google Scholar]
  90. Xu T, Nenning K-H, Schwartz E, Hong S-J, Vogelstein JT et al. 2020. Cross-species functional alignment reveals evolutionary hierarchy within the connectome. Neuroimage 223:117346
    [Google Scholar]
  91. Xu T, Sturgeon D, Ramirez JSB, Froudist-Walsh S, Margulies DS et al. 2019. Interindividual variability of functional connectivity in awake and anesthetized rhesus macaque monkeys. Biol. Psychiatry Cogn. Neurosci. Neuroimaging 4:6543–53
    [Google Scholar]
/content/journals/10.1146/annurev-neuro-100220-025942
Loading
/content/journals/10.1146/annurev-neuro-100220-025942
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error