1932

Abstract

Advances in the instrumentation and signal processing for simultaneously acquired electroencephalography and functional magnetic resonance imaging (EEG-fMRI) have enabled new ways to observe the spatiotemporal neural dynamics of the human brain. Central to the utility of EEG-fMRI neuroimaging systems are the methods for fusing the two data streams, with machine learning playing a key role. These methods can be dichotomized into those that are symmetric and asymmetric in terms of how the two modalities inform the fusion. Studies using these methods have shown that fusion yields new insights into brain function that are not possible when each modality is acquired separately. As technology improves and methods for fusion become more sophisticated, the future of EEG-fMRI for noninvasive measurement of brain dynamics includes mesoscale mapping at ultrahigh magnetic resonance fields, targeted perturbation-based neuroimaging, and using deep learning to uncover nonlinear representations that link the electrophysiological and hemodynamic measurements.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-neuro-100220-093239
2021-07-08
2024-06-17
Loading full text...

Full text loading...

/deliver/fulltext/neuro/44/1/annurev-neuro-100220-093239.html?itemId=/content/journals/10.1146/annurev-neuro-100220-093239&mimeType=html&fmt=ahah

Literature Cited

  1. Abreu R, Leal A, Figueiredo P. 2018. EEG-informed fMRI: a review of data analysis methods. Front. Hum. Neurosci. 12:29
    [Google Scholar]
  2. Allen PJ, Josephs O, Turner R. 2000. A method for removing imaging artifact from continuous EEG recorded during functional MRI. NeuroImage 12:230–39
    [Google Scholar]
  3. Arthurs OJ, Boniface S 2002. How well do we understand the neural origins of the fMRI BOLD signal?. Trends Neurosci 25:27–31
    [Google Scholar]
  4. Babiloni F, Carducci F, Cincotti F, Del Gratta C, Roberti G et al. 2000. Integration of high resolution EEG and functional magnetic resonance in the study of human movement-related potentials. Methods Inf. Med. 39:179–82
    [Google Scholar]
  5. Baumeister S, Hohmann S, Wolf I, Plichta MM, Rechtsteiner S et al. 2014. Sequential inhibitory control processes assessed through simultaneous EEG-fMRI. NeuroImage 94:349–59
    [Google Scholar]
  6. Bayer M, Rubens MT, Johnstone T. 2018. Simultaneous EEG-fMRI reveals attention-dependent coupling of early face processing with a distributed cortical network. Biol. Psychol. 132:133–42
    [Google Scholar]
  7. Biswal BB, Kannurpatti SS, Rypma B. 2007. Hemodynamic scaling of fMRI-BOLD signal: validation of low-frequency spectral amplitude as a scalability factor. Magnet. Reson. Imaging 25:1358–69
    [Google Scholar]
  8. Bridwell DA, Cavanagh JF, Collins AG, Nunez MD, Srinivasan R et al. 2018. Moving beyond ERP components: a selective review of approaches to integrate EEG and behavior. Front. Hum. Neurosci. 12:106
    [Google Scholar]
  9. Britz J, Van De Ville D, Michel CM. 2010. BOLD correlates of EEG topography reveal rapid resting-state network dynamics. NeuroImage 52:1162–70
    [Google Scholar]
  10. Burle B, Spieser L, Roger C, Casini L, Hasbroucq T, Vidal F. 2015. Spatial and temporal resolutions of EEG: Is it really black and white? A scalp current density view. Int. J. Psychophysiol. 97:210–20
    [Google Scholar]
  11. Castelhano J, Duarte IC, Wibral M, Rodriguez E, Castelo-Branco M. 2014. The dual facet of gamma oscillations: separate visual and decision making circuits as revealed by simultaneous EEG/fMRI. Hum. Brain Mapp. 35:5219–35
    [Google Scholar]
  12. Chowdhury ME, Mullinger KJ, Glover P, Bowtell R. 2014. Reference layer artefact subtraction (RLAS): a novel method of minimizing EEG artefacts during simultaneous fMRI. NeuroImage 84:307–19
    [Google Scholar]
  13. Clithero JA, Rangel A. 2014. Informatic parcellation of the network involved in the computation of subjective value. Soc. Cogn. Affect. Neurosci. 9:1289–302
    [Google Scholar]
  14. Conroy BR, Muraskin J, Sajda P. 2013. Fusing simultaneous EEG-fMRI by linking multivariate classifiers Paper presented at the NIPS 2013 Workshop on Machine Learning and Interpretation in NeuroImaging Lake Tahoe, NV: Dec. 5
    [Google Scholar]
  15. Critchley HD, Mathias CJ, Josephs O, O'Doherty J, Zanini S et al. 2003. Human cingulate cortex and autonomic control: converging neuroimaging and clinical evidence. Brain 126:2139–52
    [Google Scholar]
  16. da Silva FL. 2013. EEG and MEG: relevance to neuroscience. Neuron 80:1112–28
    [Google Scholar]
  17. Dale AM, Liu AK, Fischl BR, Buckner RL, Belliveau JW et al. 2000. Dynamic statistical parametric mapping: combining fMRI and MEG for high-resolution imaging of cortical activity. Neuron 26:55–67
    [Google Scholar]
  18. Daunizeau J, Grova C, Marrelec G, Mattout J, Jbabdi S et al. 2007. Symmetrical event-related EEG/fMRI information fusion in a variational Bayesian framework. NeuroImage 36:69–87
    [Google Scholar]
  19. de Munck JC, Gonçalves SI, Mammoliti R, Heethaar RM, da Silva FL. 2009. Interactions between different EEG frequency bands and their effect on alpha–fMRI correlations. NeuroImage 47:69–76
    [Google Scholar]
  20. Debener S, Mullinger KJ, Niazy RK, Bowtell RW. 2008. Properties of the ballistocardiogram artefact as revealed by EEG recordings at 1.5, 3 and 7 T static magnetic field strength. Int. J. Psychophysiol. 67:189–99
    [Google Scholar]
  21. Debener S, Ullsperger M, Siegel M, Engel AK. 2006. Single-trial EEG-fMRI reveals the dynamics of cognitive function. Trends Cogn. Sci. 10:558–63
    [Google Scholar]
  22. Deisseroth K. 2011. Optogenetics. Nat. Methods 8:26–29
    [Google Scholar]
  23. Deneux T, Faugeras O. 2010. EEG-fMRI fusion of paradigm-free activity using Kalman filtering. Neural Comput 22:906–48
    [Google Scholar]
  24. Detre JA, Floyd TF. 2001. Functional MRI and its applications to the clinical neurosciences. Neuroscientist 7:64–79
    [Google Scholar]
  25. Deuker L, Olligs J, Fell J, Kranz TA, Mormann F et al. 2013. Memory consolidation by replay of stimulus-specific neural activity. J. Neurosci. 33:19373–83
    [Google Scholar]
  26. Faller J, Lin Y, Doose J, Saber G, McIntosh J et al. 2019. An EEG-fMRI-TMS instrument to investigate BOLD response to EEG guided stimulation. 2019 9th International IEEE/EMBS Conference on Neural Engineering (NER)1054–57 New York: IEEE
    [Google Scholar]
  27. Fleming SM, Huijgen J, Dolan RJ. 2012. Prefrontal contributions to metacognition in perceptual decision making. J. Neurosci. 32:6117–25
    [Google Scholar]
  28. Fouragnan E, Queirazza F, Retzler C, Mullinger KJ, Philiastides MG. 2017. Spatiotemporal neural characterization of prediction error valence and surprise during reward learning in humans. Sci. Rep. 7:1593
    [Google Scholar]
  29. Fouragnan E, Retzler C, Mullinger K, Philiastides MG. 2015. Two spatiotemporally distinct value systems shape reward-based learning in the human brain. Nat. Commun. 6:8107
    [Google Scholar]
  30. Fouragnan E, Retzler C, Philiastides MG. 2018. Separate neural representations of prediction error valence and surprise: evidence from an fMRI meta-analysis. Hum. Brain Mapp. 39:2887–906
    [Google Scholar]
  31. George M, Saber G, McIntosh J, Doose J, Faller J et al. 2019. Combined TMS-EEG-fMRI. The level of TMS-evoked activation in anterior cingulate cortex depends on timing of TMS delivery relative to frontal alpha phase. Brain Stimul 12:580
    [Google Scholar]
  32. Gherman S, Philiastides MG. 2015. Neural representations of confidence emerge from the process of decision formation during perceptual choices. NeuroImage 106:134–43
    [Google Scholar]
  33. Gherman S, Philiastides MG. 2018. Human VMPFC encodes early signatures of confidence in perceptual decisions. eLife 7:e38293
    [Google Scholar]
  34. Goodfellow I, Bengio Y, Courville A, Bengio Y. 2016. Deep Learning Cambridge, MA: MIT Press
    [Google Scholar]
  35. Green JJ, Boehler CN, Roberts KC, Chen LC, Krebs RM et al. 2017. Cortical and subcortical coordination of visual spatial attention revealed by simultaneous EEG-fMRI recording. J. Neurosci. 37:7803–10
    [Google Scholar]
  36. Green N, Heekeren HR. 2009. Perceptual decision making: a bidirectional link between mind and motion. Prog. Brain Res 174:207–18
    [Google Scholar]
  37. Griffiths BJ, Mayhew SD, Mullinger KJ, Jorge J, Charest I et al. 2019. Alpha/beta power decreases track the fidelity of stimulus specific information. eLife 8:e49562
    [Google Scholar]
  38. Haegens S, Nacher V, Luna R, Romo R, Jensen O 2011. α-Oscillations in the monkey sensorimotor network influence discrimination performance by rhythmical inhibition of neuronal spiking. PNAS 108:19377–82
    [Google Scholar]
  39. Heekeren HR, Marrett S, Bandettini PA, Ungerleider LG. 2004. A general mechanism for perceptual decision-making in the human brain. Nature 431:859–62
    [Google Scholar]
  40. Heekeren HR, Marrett S, Ungerleider LG. 2008. The neural systems that mediate human perceptual decision making. Nat. Rev. Neurosci. 9:467–79
    [Google Scholar]
  41. Henson RN, Flandin G, Friston KJ, Mattout J. 2010. A parametric empirical Bayesian framework for fMRI-constrained MEG/EEG source reconstruction. Hum. Brain Mapp. 31:1512–31
    [Google Scholar]
  42. Herweg NA, Apitz T, Leicht G, Mulert C, Fuentemilla L, Bunzeck N. 2016. Theta-alpha oscillations bind the hippocampus, prefrontal cortex, and striatum during recollection: evidence from simultaneous EEG-fMRI. J. Neurosci. 36:3579–87
    [Google Scholar]
  43. Holroyd CB, Ribas-Fernandes JJF, Shahnazian D, Silvetti M, Verguts T 2018. Human midcingulate cortex encodes distributed representations of task progress. PNAS 115:6398–403
    [Google Scholar]
  44. Horovitz SG, Fukunaga M, de Zwart JA, van Gelderen P, Fulton SC et al. 2008. Low frequency BOLD fluctuations during resting wakefulness and light sleep: a simultaneous EEG-fMRI study. Hum. Brain Mapp. 29:671–82
    [Google Scholar]
  45. Huster RJ, Debener S, Eichele T, Herrmann CS. 2012. Methods for simultaneous EEG-fMRI: an introductory review. J. Neurosci. 32:6053–60
    [Google Scholar]
  46. Iannaccone R, Hauser TU, Staempfli P, Walitza S, Brandeis D, Brem S. 2015. Conflict monitoring and error processing: new insights from simultaneous EEG-fMRI. NeuroImage 105:395–407
    [Google Scholar]
  47. Ito Y, Maesawa S, Bagarinao E, Okai Y, Nakatsubo D et al. 2020. Subsecond EEG-fMRI analysis for presurgical evaluation in focal epilepsy. J. Neurosurg. In press
    [Google Scholar]
  48. Jensen O, Mazaheri A. 2010. Shaping functional architecture by oscillatory alpha activity: gating by inhibition. Front. Hum. Neurosci. 4:186
    [Google Scholar]
  49. Jorge J, Grouiller F, Gruetter R, van der Zwaag W, Figueiredo P. 2015a. Towards high-quality simultaneous EEG-fMRI at 7 T: detection and reduction of EEG artifacts due to head motion. NeuroImage 120:143–53
    [Google Scholar]
  50. Jorge J, Grouiller F, Ipek Ö, Stoermer R, Michel CM et al. 2015b. Simultaneous EEG-MRI at ultra-high field: artifact prevention and safety assessment. NeuroImage 105:132–44
    [Google Scholar]
  51. Jun SC, George JS, Kim W, Paré-Blagoev J, Plis S et al. 2008. Bayesian brain source imaging based on combined MEG/EEG and fMRI using MCMC. NeuroImage 40:1581–94
    [Google Scholar]
  52. Kerns JG, Cohen JD, MacDonald AW, Cho RY, Stenger VA, Carter CS. 2004. Anterior cingulate conflict monitoring and adjustments in control. Science 303:1023–26
    [Google Scholar]
  53. Kirschstein T, Köhling R. 2009. What is the source of the EEG?. Clin. EEG Neurosci. 40:146–49
    [Google Scholar]
  54. Klimesch W, Sauseng P, Hanslmayr S. 2007. EEG alpha oscillations: the inhibition–timing hypothesis. Brain Res. Rev. 53:63–88
    [Google Scholar]
  55. Kriegeskorte N, Mur M, Bandettini P. 2008. Representational similarity analysis—connecting the branches of systems neuroscience. Front. Sys. Neurosci. 2:4
    [Google Scholar]
  56. Laufs H. 2012. A personalized history of EEG-fMRI integration. NeuroImage 62:1056–67
    [Google Scholar]
  57. Lei X, Ostwald D, Hu J, Qiu C, Porcaro C et al. 2011. Multimodal functional network connectivity: an EEG-fMRI fusion in network space. PLOS ONE 6:e24642
    [Google Scholar]
  58. Lei X, Wu T, Valdes-Sosa P. 2015. Incorporating priors for EEG source imaging and connectivity analysis. Front. Neurosci. 9:284
    [Google Scholar]
  59. Leite M, Leal A, Figueiredo P. 2013. Transfer function between EEG and BOLD signals of epileptic activity. Front. Neurol. 4:1
    [Google Scholar]
  60. Lenz M, Musso M, Linke Y, Tüscher O, Timmer J et al. 2011. Joint EEG/fMRI state space model for the detection of directed interactions in human brains—a simulation study. Physiol. Meas. 32:1725–36
    [Google Scholar]
  61. Li K, Guo L, Nie J, Li G, Liu T. 2009. Review of methods for functional brain connectivity detection using fMRI. Comput. Med. Imaging Graph. 33:131–39
    [Google Scholar]
  62. Lin F-H, Witzel T, Hämäläinen MS, Nummenmaa A 2021. Combining noninvasive electromagnetic and hemodynamic measures of human brain activity. Brain and Human Body Modeling 2020: Computational Human Models Presented at EMBC 2019 and the BRAIN Initiative 2019 Meeting SN Makarov, GM Noetscher, A Nummenmaa Cham, Switz: Springer
    [Google Scholar]
  63. Liu X, Hairston J, Schrier M, Fan J 2011. Neuroscience and biobehavioral reviews. Neurosci. Biobehav. Rev. 35:1219–36
    [Google Scholar]
  64. Liu X, Sajda P. 2019. A convolutional neural network for transcoding simultaneously acquired EEG-fMRI data. 2019 9th International IEEE/EMBS Conference on Neural Engineering (NER)477–82 New York: IEEE
    [Google Scholar]
  65. Logothetis NK. 2008. What we can do and what we cannot do with fMRI. Nature 453:869–78
    [Google Scholar]
  66. Logothetis NK, Wandell BA. 2004. Interpreting the BOLD signal. Annu. Rev. Physiol. 66:735–69
    [Google Scholar]
  67. Mantini D, Marzetti L, Corbetta M, Romani G, Del Gratta C. 2010. Multimodal integration of fMRI and EEG data for high spatial and temporal resolution analysis of brain networks. Brain Topogr 23:150–58
    [Google Scholar]
  68. Mantini D, Perrucci MG, Del Gratta C, Romani GL, Corbetta M 2007. Electrophysiological signatures of resting state networks in the human brain. PNAS 104:13170–75
    [Google Scholar]
  69. Marino M, Liu Q, Koudelka V, Porcaro C, Hlinka J et al. 2018. Adaptive optimal basis set for BCG artifact removal in simultaneous EEG-fMRI. Sci. Rep. 8:8902
    [Google Scholar]
  70. McIntosh JR, Yao J, Hong L, Faller J, Sajda P. 2020. Ballistocardiogram artifact reduction in simultaneous EEG-fMRI using deep learning. IEEE Trans. Biomed. Eng. 68:7889
    [Google Scholar]
  71. McMillan R, Sumner R, Forsyth A, Campbell D, Malpas G et al. 2020. Simultaneous EEG/fMRI recorded during ketamine infusion in patients with major depressive disorder. Prog. Neuropsychopharmacol. Biol. Psychiatry 99:109838
    [Google Scholar]
  72. Michel CM, Murray MM. 2012. Towards the utilization of EEG as a brain imaging tool. NeuroImage 61:371–85
    [Google Scholar]
  73. Mijović B, Vanderperren K, Novitskiy N, Vanrumste B, Stiers P et al. 2012. The “why” and “how” of JointICA: results from a visual detection task. NeuroImage 60:1171–85
    [Google Scholar]
  74. Miniussi C, Thut G. 2010. Combining TMS and EEG offers new prospects in cognitive neuroscience. Brain Topogr 22:249–56
    [Google Scholar]
  75. Mullinger KJ, Yan WX, Bowtell R. 2011. Reducing the gradient artefact in simultaneous EEG-fMRI by adjusting the subject's axial position. NeuroImage 54:1942–50
    [Google Scholar]
  76. Muraskin J, Brown TR, Walz JM, Tu T, Conroy B et al. 2018. A multimodal encoding model applied to imaging decision-related neural cascades in the human brain. NeuroImage 180:211–22
    [Google Scholar]
  77. Muraskin J, Dodhia S, Lieberman G, Garcia JO, Verstynen T et al. 2016a. Brain dynamics of post-task resting state are influenced by expertise: insights from baseball players. Hum. Brain Mapp. 37:4454–71
    [Google Scholar]
  78. Muraskin J, Sherwin J, Lieberman G, Garcia JO, Verstynen T et al. 2016b. Fusing multiple neuroimaging modalities to assess group differences in perception–action coupling. Proc. IEEE Inst. Electr. Electron. Eng. 105:83–100
    [Google Scholar]
  79. Murta T, Leite M, Carmichael DW, Figueiredo P, Lemieux L. 2015. Electrophysiological correlates of the BOLD signal for EEG-informed fMRI. Hum. Brain Mapp. 36:391–414
    [Google Scholar]
  80. Nakamura W, Anami K, Mori T, Saitoh O, Cichocki A, Amari S. 2006. Removal of ballistocardiogram artifacts from simultaneously recorded EEG and fMRI data using independent component analysis. IEEE Trans. Biomed. Eng. 53:1294–308
    [Google Scholar]
  81. Negishi M, Abildgaard M, Nixon T, Constable RT. 2004. Removal of time-varying gradient artifacts from EEG data acquired during continuous fMRI. Clin. Neurophysiol. 115:2181–92
    [Google Scholar]
  82. Niazy RK, Beckmann CF, Iannetti GD, Brady JM, Smith SM. 2005. Removal of fMRI environment artifacts from EEG data using optimal basis sets. NeuroImage 28:720–37
    [Google Scholar]
  83. Novitskiy N, Ramautar JR, Vanderperren K, De Vos M, Mennes M et al. 2011. The BOLD correlates of the visual p1 and n1 in single-trial analysis of simultaneous EEG-fMRI recordings during a spatial detection task. NeuroImage 54:824–35
    [Google Scholar]
  84. Ou W, Nummenmaa A, Ahveninen J, Belliveau JW, Hämäläinen MS, Golland P. 2010. Multimodal functional imaging using fMRI-informed regional EEG/MEG source estimation. NeuroImage 52:97–108
    [Google Scholar]
  85. Paterson G, McElhinney P, Philiastides MG, Gunamon S. 2020. A tight-fit 8-channel transceiver array for simultaneous EEG-fMRI at 7-tesla Poster presented at the International Society for Magnetic Resonance in Medicine Annual Meeting (ISMRM’20), Aug. 8–14
    [Google Scholar]
  86. Pereira M, Faivre N, Iturrate I, Wirthlin M, Serafini L et al. 2020. Disentangling the origins of confidence in speeded perceptual judgments through multimodal imaging. PNAS 117:8382–90
    [Google Scholar]
  87. Pfurtscheller G. 2003. Induced oscillations in the alpha band: functional meaning. Epilepsia 44:2–8
    [Google Scholar]
  88. Philiastides MG, Auksztulewicz R, Heekeren HR, Blankenburg F. 2011. Causal role of dorsolateral prefrontal cortex in human perceptual decision making. Curr. Biol. 21:980–83
    [Google Scholar]
  89. Philiastides MG, Biele G, Heekeren HR 2010a. A mechanistic account of value computation in the human brain. PNAS 107:9430–35
    [Google Scholar]
  90. Philiastides MG, Biele G, Vavatzanidis N, Kazzer P, Heekeren HR. 2010b. Temporal dynamics of prediction error processing during reward-based decision making. NeuroImage 53:221–32
    [Google Scholar]
  91. Philiastides MG, Sajda P. 2007. EEG-informed fMRI reveals spatiotemporal characteristics of perceptual decision making. J. Neurosci. 27:13082–91
    [Google Scholar]
  92. Pisauro MA, Fouragnan E, Retzler C, Philiastides MG. 2017. Neural correlates of evidence accumulation during value-based decisions revealed via simultaneous EEG-fMRI. Nat. Commun. 8:15808
    [Google Scholar]
  93. Purdon PL, Lamus C, Hämäläinen MS, Brown EN. 2010. A state space approach to multimodal integration of simultaneously recorded EEG and fMRI. 2010 IEEE International Conference on Acoustics, Speech and Signal Processing5454–57 New York: IEEE
    [Google Scholar]
  94. Queirazza F, Fouragnan E, Steele JD, Cavanagh J, Philiastides MG. 2019. Neural correlates of weighted reward prediction error during reinforcement learning classify response to cognitive behavioral therapy in depression. Sci. Adv. 5:7eaav4962
    [Google Scholar]
  95. Rice GE, Lambon Ralph MA, Hoffman P 2015. The roles of left versus right anterior temporal lobes in conceptual knowledge: an ALE meta-analysis of 97 functional neuroimaging studies. Cereb. Cortex 25:4374–91
    [Google Scholar]
  96. Riera JJ, Jimenez JC, Wan X, Kawashima R, Ozaki T. 2007. Nonlinear local electrovascular coupling. II: from data to neuronal masses. Hum. Brain Mapp. 28:335–54
    [Google Scholar]
  97. Riera JJ, Wan X, Jimenez JC, Kawashima R. 2006. Nonlinear local electrovascular coupling. I: a theoretical model. Hum. Brain Mapp. 27:896–914
    [Google Scholar]
  98. Ritter P, Becker R, Graefe C, Villringer A. 2007. Evaluating gradient artifact correction of EEG data acquired simultaneously with fMRI. Magnet. Reson. Imaging 25:923–32
    [Google Scholar]
  99. Rosa MJ, Daunizeau J, Friston KJ. 2010a. EEG-fMRI integration: a critical review of biophysical modeling and data analysis approaches. J. Integr. Neurosci. 9:453–76
    [Google Scholar]
  100. Rosa MJ, Kilner J, Blankenburg F, Josephs O, Penny W. 2010b. Estimating the transfer function from neuronal activity to BOLD using simultaneous EEG-fMRI. NeuroImage 49:1496–509
    [Google Scholar]
  101. Ruff CC, Driver J, Bestmann S. 2009. Combining TMS and fMRI: from virtual lesions to functional-network accounts of cognition. Cortex 45:1043–49
    [Google Scholar]
  102. Sajda P, Goldman RI, Dyrholm M, Brown TR. 2010. Signal processing and machine learning for single-trial analysis of simultaneously acquired EEG and fMRI. Statistical Signal Processing for Neuroscience and Neurotechnology KG Oweiss 311–34 Burlington, MA: Elsevier
    [Google Scholar]
  103. Sajda P, Philiastides MG, Heekeren HR, Ratcliff R 2011. Linking neuronal variability to perceptual decision making via neuroimaging. The Dynamic Brain: An Exploration of Neuronal Variability and its Functional Significance M Ding, DL Glanzman 214–32 New York: Oxford Univ. Press
    [Google Scholar]
  104. Scheeringa R, Koopmans PJ, van Mourik T, Jensen O, Norris DG 2016. The relationship between oscillatory EEG activity and the laminar-specific BOLD signal. PNAS 113:6761–66
    [Google Scholar]
  105. Schmüser L, Sebastian A, Mobascher A, Lieb K, Tüscher O, Feige B. 2014. Data-driven analysis of simultaneous EEG/fMRI using an ICA approach. Front. Neurosci. 8:175
    [Google Scholar]
  106. Shams N, Alain C, Strother S 2015. Comparison of BCG artifact removal methods for evoked responses in simultaneous EEG-fMRI. J. Neurosci. Methods 245:137–46
    [Google Scholar]
  107. Sui J, Adali T, Yu Q, Chen J, Calhoun VD 2012. A review of multivariate methods for multimodal fusion of brain imaging data. J. Neurosci. Methods 204:68–81
    [Google Scholar]
  108. Tu T, Sajda P. 2018. Relating deep neural network representations to EEG-fMRI spatiotemporal dynamics in a perceptual decision-making task. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops1985–91 New York: IEEE
    [Google Scholar]
  109. Tyvaert L, LeVan P, Grova C, Dubeau F, Gotman J. 2008. Effects of fluctuating physiological rhythms during prolonged EEG-fMRI studies. Clin. Neurophysiol. 119:2762–74
    [Google Scholar]
  110. Uji M, Wilson R, Francis ST, Mullinger KJ, Mayhew SD. 2018. Exploring the advantages of multiband fMRI with simultaneous EEG to investigate coupling between gamma frequency neural activity and the BOLD response in humans. Hum. Brain Mapp. 39:1673–87
    [Google Scholar]
  111. Uludağ K, Roebroeck A. 2014. General overview on the merits of multimodal neuroimaging data fusion. NeuroImage 102:3–10
    [Google Scholar]
  112. Valdes-Sosa PA, Sanchez-Bornot JM, Sotero RC, Iturria-Medina Y, Aleman-Gomez Y et al. 2009. Model driven EEG/fMRI fusion of brain oscillations. Hum. Brain Mapp. 30:2701–21
    [Google Scholar]
  113. van den Broek SP, Reinders F, Donderwinkel M, Peters M. 1998. Volume conduction effects in EEG and MEG. Electroencephalogr. Clin. Neurophysiol. 106:522–34
    [Google Scholar]
  114. Van Veen BD, van Drongelen W, Yuchtman M, Suzuki A. 1997. Localization of brain electrical activity via linearly constrained minimum variance spatial filtering. IEEE Trans. Biomed. Eng. 44:867–80
    [Google Scholar]
  115. Vitali P, Di Perri C, Vaudano AE, Meletti S, Villani F. 2015. Integration of multimodal neuroimaging methods: a rationale for clinical applications of simultaneous EEG-fMRI. Funct. Neurol. 30:9–20
    [Google Scholar]
  116. Walz JM, Goldman RI, Carapezza M, Muraskin J, Brown TR, Sajda P. 2013. Simultaneous EEG-fMRI reveals temporal evolution of coupling between supramodal cortical attention networks and the brainstem. J. Neurosci. 33:19212–22
    [Google Scholar]
  117. Walz JM, Goldman RI, Carapezza M, Muraskin J, Brown TR, Sajda P. 2014. Simultaneous EEG-fMRI reveals a temporal cascade of task-related and default-mode activations during a simple target detection task. NeuroImage 102:229–39
    [Google Scholar]
  118. Walz JM, Goldman RI, Carapezza M, Muraskin J, Brown TR, Sajda P. 2015. Prestimulus EEG alpha oscillations modulate task-related fMRI BOLD responses to auditory stimuli. NeuroImage 113:153–63
    [Google Scholar]
  119. Warbrick T, Arrubla J, Boers F, Neuner I, Shah NJ. 2014. Attention to detail: why considering task demands is essential for single-trial analysis of BOLD correlates of the visual P1 and N1. J. Cogn. Neurosci. 26:529–42
    [Google Scholar]
  120. Yeung N, Summerfield C. 2012. Metacognition in human decision-making: confidence and error monitoring. Philos. Trans. R. Soc. B Biol. Sci. 367:1310–21
    [Google Scholar]
  121. Zotev V, Phillips R, Misaki M, Wong CK, Wurfel BE et al. 2018. Real-time fMRI neurofeedback training of the amygdala activity with simultaneous EEG in veterans with combat-related PTSD. NeuroImage Clin 19:106–21
    [Google Scholar]
  122. Zotev V, Phillips R, Yuan H, Misaki M, Bodurka J. 2014. Self-regulation of human brain activity using simultaneous real-time fMRI and EEG neurofeedback. NeuroImage 85:985–95
    [Google Scholar]
  123. Zrenner C, Belardinelli P, Müller-Dahlhaus F, Ziemann U. 2016. Closed-loop neuroscience and non-invasive brain stimulation: a tale of two loops. Front. Cell. Neurosci. 10:92
    [Google Scholar]
/content/journals/10.1146/annurev-neuro-100220-093239
Loading
/content/journals/10.1146/annurev-neuro-100220-093239
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error