1932

Abstract

Predictive processing is a computational framework that aims to explain how the brain processes sensory information by making predictions about the environment and minimizing prediction errors. It can also be used to explain some of the key symptoms of psychotic disorders such as schizophrenia. In recent years, substantial advances have been made in our understanding of the neuronal circuitry that underlies predictive processing in cortex. In this review, we summarize these findings and how they might relate to psychosis and to observed cell type–specific effects of antipsychotic drugs. We argue that quantifying the effects of antipsychotic drugs on specific neuronal circuit elements is a promising approach to understanding not only the mechanism of action of antipsychotic drugs but also psychosis. Finally, we outline some of the key experiments that should be done. The aims of this review are to provide an overview of the current circuit-based approaches to psychosis and to encourage further research in this direction.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-neuro-100223-121214
2024-08-08
2025-06-19
Loading full text...

Full text loading...

/deliver/fulltext/neuro/47/1/annurev-neuro-100223-121214.html?itemId=/content/journals/10.1146/annurev-neuro-100223-121214&mimeType=html&fmt=ahah

Literature Cited

  1. Adams RA, Huys QJM, Roiser JP. 2016.. Computational psychiatry: towards a mathematically informed understanding of mental illness. . J. Neurol. Neurosurg. Psychiatry 87::5363
    [Crossref] [Google Scholar]
  2. Adams RA, Stephan KE, Brown HR, Frith CD, Friston KJ. 2013.. The computational anatomy of psychosis. . Front. Psychiatry 4::47
    [Crossref] [Google Scholar]
  3. Anticevic A, Hu X, Xiao Y, Hu J, Li F, et al. 2015.. Early-course unmedicated schizophrenia patients exhibit elevated prefrontal connectivity associated with longitudinal change. . J. Neurosci. 35::26786
    [Crossref] [Google Scholar]
  4. Assran M, Duval Q, Misra I, Bojanowski P, Vincent P, et al. 2023.. Self-supervised learning from images with a joint-embedding predictive architecture. . arXiv:2301.08243 [cs.CV]
  5. Attinger A, Wang B, Keller GB. 2017.. Visuomotor coupling shapes the functional development of mouse visual cortex. . Cell 169::1291302.e14
    [Crossref] [Google Scholar]
  6. Attneave F. 1954.. Some informational aspects of visual perception. . Psychol. Rev. 61::18393
    [Crossref] [Google Scholar]
  7. Audette NJ, Schneider DM. 2023.. Stimulus-specific prediction error neurons in mouse auditory cortex. . bioRxiv 2023.01.06.523032. https://doi.org/10.1101/2023.01.06.523032
  8. Ayaz A, Stäuble A, Hamada M, Wulf MA, Saleem AB, Helmchen F. 2019.. Layer-specific integration of locomotion and sensory information in mouse barrel cortex. . Nat. Commun. 10::2585
    [Crossref] [Google Scholar]
  9. Barlow HB. 1961.. Possible principles underlying the transformations of sensory messages. . In Sensory Communication, ed. WA Rosenblith , pp. 21734. Cambridge, MA:: MIT Press
    [Google Scholar]
  10. Barron HC, Auksztulewicz R, Friston K. 2020.. Prediction and memory: a predictive coding account. . Prog. Neurobiol. 192::101821
    [Crossref] [Google Scholar]
  11. Bastos AM, Usrey WM, Adams RA, Mangun GR, Fries P, Friston KJ. 2012.. Canonical microcircuits for predictive coding. . Neuron 76::695711
    [Crossref] [Google Scholar]
  12. Bharioke A, Munz M, Brignall A, Kosche G, Eizinger MF, et al. 2022.. General anesthesia globally synchronizes activity selectively in layer 5 cortical pyramidal neurons. . Neuron 110::202440.e10
    [Crossref] [Google Scholar]
  13. Buffalo EA, Fries P, Landman R, Buschman TJ, Desimone R. 2011.. Laminar differences in gamma and alpha coherence in the ventral stream. . PNAS 108::1126267
    [Crossref] [Google Scholar]
  14. Clark A. 2013.. Whatever next? Predictive brains, situated agents, and the future of cognitive science. . Behav. Brain Sci. 36::181204
    [Crossref] [Google Scholar]
  15. Constantinople CM, Bruno RM. 2013.. Deep cortical layers are activated directly by thalamus. . Science 340::159194
    [Crossref] [Google Scholar]
  16. Corlett PR, Horga G, Fletcher PC, Alderson-Day B, Schmack K, Powers AR. 2019.. Hallucinations and strong priors. . Trends Cogn. Sci. 23::11427
    [Crossref] [Google Scholar]
  17. Cumming P, Abi-Dargham A, Gründer G. 2021.. Molecular imaging of schizophrenia: neurochemical findings in a heterogeneous and evolving disorder. . Behav. Brain Res. 398::113004
    [Crossref] [Google Scholar]
  18. Dan Y, Atick JJ, Reid RC. 1996.. Efficient coding of natural scenes in the lateral geniculate nucleus: experimental test of a computational theory. . J. Neurosci. 16::335162
    [Crossref] [Google Scholar]
  19. Douglas RJ, Martin KA. 1991.. A functional microcircuit for cat visual cortex. . J. Physiol. 440::73569
    [Crossref] [Google Scholar]
  20. Du J, Palaniyappan L, Liu Z, Cheng W, Gong W, et al. 2021.. The genetic determinants of language network dysconnectivity in drug-naïve early stage schizophrenia. . NPJ Schizophr. 7::18
    [Crossref] [Google Scholar]
  21. Egger R, Narayanan RT, Guest JM, Bast A, Udvary D, et al. 2020.. Cortical output is gated by horizontally projecting neurons in the deep layers. . Neuron 105::12237.e8
    [Crossref] [Google Scholar]
  22. Eliades SJ, Wang X. 2008.. Neural substrates of vocalization feedback monitoring in primate auditory cortex. . Nature 453::11026
    [Crossref] [Google Scholar]
  23. Feinberg I. 1978.. Efference copy and corollary discharge: implications for thinking and its disorders. . Schizophr. Bull. 4::63640
    [Crossref] [Google Scholar]
  24. Felleman DJ, Van Essen DC. 1991.. Distributed hierarchical processing in the primate cerebral cortex. . Cereb. Cortex 1::147
    [Crossref] [Google Scholar]
  25. Fineberg SK, Corlett PR. 2016.. The doxastic shear pin: delusions as errors of learning and memory. . Cogn. Neuropsychiatry 21::7389
    [Crossref] [Google Scholar]
  26. Fiorillo CD, Newsome WT, Schultz W. 2008.. The temporal precision of reward prediction in dopamine neurons. . Nat. Neurosci. 11::96673
    [Crossref] [Google Scholar]
  27. Fiser A, Mahringer D, Oyibo HK, Petersen AV, Leinweber M, Keller GB. 2016.. Experience-dependent spatial expectations in mouse visual cortex. . Nat. Neurosci. 19::165864
    [Crossref] [Google Scholar]
  28. Fletcher PC, Frith CD. 2009.. Perceiving is believing: a Bayesian approach to explaining the positive symptoms of schizophrenia. . Nat. Rev. Neurosci. 10::4858
    [Crossref] [Google Scholar]
  29. Frankle WG, Himes M, Mason NS, Mathis CA, Narendran R. 2022.. Prefrontal and striatal dopamine release are inversely correlated in schizophrenia. . Biol. Psychiatry 92::79199
    [Crossref] [Google Scholar]
  30. Friston K. 2005.. A theory of cortical responses. . Philos. Trans. R. Soc. B 360::81536
    [Crossref] [Google Scholar]
  31. Frith CD, Done DJ. 1989.. Experiences of alien control in schizophrenia reflect a disorder in the central monitoring of action. . Psychol. Med. 19::35963
    [Crossref] [Google Scholar]
  32. Gao R, Penzes P. 2015.. Common mechanisms of excitatory and inhibitory imbalance in schizophrenia and autism spectrum disorders. . Curr. Mol. Med. 15::14667
    [Crossref] [Google Scholar]
  33. Garner AR, Keller GB. 2022.. A cortical circuit for audio-visual predictions. . Nat. Neurosci. 25::98105
    [Crossref] [Google Scholar]
  34. Gilbert CD. 1983.. Microcircuitry of the visual cortex. . Annu. Rev. Neurosci. 6::21747
    [Crossref] [Google Scholar]
  35. Giraldo-Chica M, Woodward ND. 2017.. Review of thalamocortical resting-state fMRI studies in schizophrenia. . Schizophr. Res. 180::5863
    [Crossref] [Google Scholar]
  36. Grill J-B, Strub F, Altché F, Tallec C, Richemond PH, et al. 2020.. Bootstrap your own latent: a new approach to self-supervised learning. . arXiv:2006.07733 [cs.LG]
  37. Haarsma J, Knolle F, Griffin JD, Taverne H, Mada M, et al. 2020.. Influence of prior beliefs on perception in early psychosis: effects of illness stage and hierarchical level of belief. . J. Abnorm. Psychol. 129::58198
    [Crossref] [Google Scholar]
  38. Haber SN. 2016.. Corticostriatal circuitry. . Dialogues Clin. Neurosci. 18::721
    [Crossref] [Google Scholar]
  39. Heindorf M, Arber S, Keller GB. 2018.. Mouse motor cortex coordinates the behavioral response to unpredicted sensory feedback. . Neuron 99::104054.e5
    [Crossref] [Google Scholar]
  40. Heindorf M, Keller G. 2023.. Antipsychotic drugs selectively decorrelate long-range interactions in deep cortical layers. . eLife 12::RP86805
    [Crossref] [Google Scholar]
  41. Heinz A. 2002.. Dopaminergic dysfunction in alcoholism and schizophrenia—psychopathological and behavioral correlates. . Eur. Psychiatry J. Assoc. Eur. Psychiatr. 17::916
    [Crossref] [Google Scholar]
  42. Heinz A, Murray GK, Schlagenhauf F, Sterzer P, Grace AA, Waltz JA. 2019.. Towards a unifying cognitive, neurophysiological, and computational neuroscience account of schizophrenia. . Schizophr. Bull. 45::1092100
    [Crossref] [Google Scholar]
  43. Hemsley DR, Garety PA. 1986.. The formation of maintenance of delusions: a Bayesian analysis. . Br. J. Psychiatry J. Ment. Sci. 149::5156
    [Crossref] [Google Scholar]
  44. Howes OD, Kapur S. 2009.. The dopamine hypothesis of schizophrenia: version III—the final common pathway. . Schizophr. Bull. 35::54962
    [Crossref] [Google Scholar]
  45. Howes OD, Shatalina E. 2022.. Integrating the neurodevelopmental and dopamine hypotheses of schizophrenia and the role of cortical excitation-inhibition balance. . Biol. Psychiatry 92::50113
    [Crossref] [Google Scholar]
  46. Huerta-Ocampo I, Mena-Segovia J, Bolam JP. 2014.. Convergence of cortical and thalamic input to direct and indirect pathway medium spiny neurons in the striatum. . Brain Struct. Funct. 219::1787800
    [Crossref] [Google Scholar]
  47. Jiang J, Wang J, Li C. 2016.. Potential mechanisms underlying the therapeutic effects of electroconvulsive therapy. . Neurosci. Bull. 33::33947
    [Crossref] [Google Scholar]
  48. Jordan MI, Rumelhart DE. 1992.. Forward models: supervised learning with a distal teacher. . Cogn. Sci. 16::30754
    [Crossref] [Google Scholar]
  49. Jordan R, Keller GB. 2020.. Opposing influence of top-down and bottom-up input on excitatory layer 2/3 neurons in mouse primary visual cortex. . Neuron 108::1194206.e5
    [Crossref] [Google Scholar]
  50. Jordan R, Keller GB. 2023.. The locus coeruleus broadcasts prediction errors across the cortex to promote sensorimotor plasticity. . eLife 12::RP85111
    [Crossref] [Google Scholar]
  51. Kapur S. 2003.. Psychosis as a state of aberrant salience: a framework linking biology, phenomenology, and pharmacology in schizophrenia. . Am. J. Psychiatry 160::1323
    [Crossref] [Google Scholar]
  52. Karten HJ. 1997.. Evolutionary developmental biology meets the brain: the origins of mammalian cortex. . PNAS 94::28004
    [Crossref] [Google Scholar]
  53. Kawato M. 1990.. Feedback-error-learning neural network for supervised motor learning. . In Advanced Neural Computers, ed. R Eckmiller , pp. 36572. Amsterdam:: Elsevier
    [Google Scholar]
  54. Keller GB, Bonhoeffer T, Hübener M. 2012.. Sensorimotor mismatch signals in primary visual cortex of the behaving mouse. . Neuron 74::80915
    [Crossref] [Google Scholar]
  55. Keller GB, Hahnloser RHR. 2009.. Neural processing of auditory feedback during vocal practice in a songbird. . Nature 457::18790
    [Crossref] [Google Scholar]
  56. Keller GB, Mrsic-Flogel TD. 2018.. Predictive processing: a canonical cortical computation. . Neuron 100::42435
    [Crossref] [Google Scholar]
  57. Ko H, Cossell L, Baragli C, Antolik J, Clopath C, et al. 2013.. The emergence of functional microcircuits in visual cortex. . Nature 496::96100
    [Crossref] [Google Scholar]
  58. Ko H, Hofer SB, Pichler B, Buchanan KA, Sjöström PJ, Mrsic-Flogel TD. 2011.. Functional specificity of local synaptic connections in neocortical networks. . Nature 473::8791
    [Crossref] [Google Scholar]
  59. Kuan CY, Elliott EA, Flavell RA, Rakic P. 1997.. Restrictive clonal allocation in the chimeric mouse brain. . PNAS 94::337479
    [Crossref] [Google Scholar]
  60. Larsen RS, Turschak E, Daigle T, Zeng H, Zhuang J, Waters J. 2018.. Activation of neuromodulatory axon projections in primary visual cortex during periods of locomotion and pupil dilation. . bioRxiv 502013. https://doi.org/10.1101/502013
  61. Lawrence SJD, Formisano E, Muckli L, de Lange FP. 2019.. Laminar fMRI: applications for cognitive neuroscience. . NeuroImage 197::78591
    [Crossref] [Google Scholar]
  62. Leinweber M, Ward DR, Sobczak JM, Attinger A, Keller GB. 2017.. A sensorimotor circuit in mouse cortex for visual flow predictions. . Neuron 95::142032.e5
    [Crossref] [Google Scholar]
  63. Leptourgos P, Denève S, Jardri R. 2017.. Can circular inference relate the neuropathological and behavioral aspects of schizophrenia?. Curr. Opin. Neurobiol. 46::15461
    [Crossref] [Google Scholar]
  64. Li T, Wang Q, Zhang J, Rolls ET, Yang W, et al. 2017.. Brain-wide analysis of functional connectivity in first-episode and chronic stages of schizophrenia. . Schizophr. Bull. 43::43648
    [Crossref] [Google Scholar]
  65. Lisman JE, Coyle JT, Green RW, Javitt DC, Benes FM, et al. 2008.. Circuit-based framework for understanding neurotransmitter and risk gene interactions in schizophrenia. . Trends Neurosci. 31::23442
    [Crossref] [Google Scholar]
  66. Lopes G, Nogueira J, Dimitriadis G, Menendez JA, Paton JJ, Kampff AR. 2023.. A robust role for motor cortex. . Front. Neurosci. 17::971980
    [Crossref] [Google Scholar]
  67. Luzzati F. 2015.. A hypothesis for the evolution of the upper layers of the neocortex through co-option of the olfactory cortex developmental program. . Front. Neurosci. 9::162
    [Crossref] [Google Scholar]
  68. MacKay DM. 1956.. The epistemological problem for automata. . In Automata Studies, ed. CE Shannon, J McCarthy , pp. 23552. Princeton, NJ:: Princeton Univ. Press
    [Google Scholar]
  69. Mackintosh AJ, de Bock R, Lim Z, Trulley V-N, Schmidt A, et al. 2021.. Psychotic disorders, dopaminergic agents and EEG/MEG resting-state functional connectivity: a systematic review. . Neurosci. Biobehav. Rev. 120::35471
    [Crossref] [Google Scholar]
  70. Maher BA. 1974.. Delusional thinking and perceptual disorder. . J. Individ. Psychol. 30::98113
    [Google Scholar]
  71. Maier A, Adams GK, Aura C, Leopold DA. 2010.. Distinct superficial and deep laminar domains of activity in the visual cortex during rest and stimulation. . Front. Syst. Neurosci. 4::31
    [Google Scholar]
  72. Markov NT, Ercsey-Ravasz M, Van Essen DC, Knoblauch K, Toroczkai Z, Kennedy H. 2013.. Cortical high-density counterstream architectures. . Science 342::1238406
    [Crossref] [Google Scholar]
  73. Meltzer HY. 1999.. The role of serotonin in antipsychotic drug action. . Neuropsychopharmacology 21::106S15S
    [Crossref] [Google Scholar]
  74. Menniti FS, Chappie TA, Schmidt CJ. 2020.. PDE10A inhibitors-clinical failure or window into antipsychotic drug action?. Front. Neurosci. 14::600178
    [Crossref] [Google Scholar]
  75. Mikulasch FA, Rudelt L, Wibral M, Priesemann V. 2023.. Where is the error? Hierarchical predictive coding through dendritic error computation. . Trends Neurosci. 46::4559
    [Crossref] [Google Scholar]
  76. Mohan H, An X, Xu XH, Kondo H, Zhao S, et al. 2023.. Cortical glutamatergic projection neuron types contribute to distinct functional subnetworks. . Nat. Neurosci. 26::48194
    [Google Scholar]
  77. Moran RJ, Campo P, Symmonds M, Stephan KE, Dolan RJ, Friston KJ. 2013.. Free energy, precision and learning: the role of cholinergic neuromodulation. . J. Neurosci. 33::822736
    [Crossref] [Google Scholar]
  78. Musall S, Sun XR, Mohan H, An X, Gluf S, et al. 2023.. Pyramidal cell types drive functionally distinct cortical activity patterns during decision-making. . Nat. Neurosci. 26::495505
    [Google Scholar]
  79. Narayanan RT, Udvary D, Oberlaender M. 2017.. Cell type-specific structural organization of the six layers in rat barrel cortex. . Front. Neuroanat. 11::91
    [Crossref] [Google Scholar]
  80. Notredame C-E, Pins D, Deneve S, Jardri R. 2014.. What visual illusions teach us about schizophrenia. . Front. Integr. Neurosci. 8::63
    [Crossref] [Google Scholar]
  81. Nowak LG, Bullier J. 1998.. Axons, but not cell bodies, are activated by electrical stimulation in cortical gray matter. I. Evidence from chronaxie measurements. . Exp. Brain Res. 118::47788
    [Crossref] [Google Scholar]
  82. O'Toole SM, Oyibo HK, Keller GB. 2023.. Molecularly targetable cell types in mouse visual cortex have distinguishable prediction error responses. . Neuron 111::29182928.e8
    [Crossref] [Google Scholar]
  83. Petrovic P, Sterzer P. 2023.. Resolving the delusion paradox. . Schizophr. Bull. 49::142536
    [Crossref] [Google Scholar]
  84. Pluta SR, Telian GI, Naka A, Adesnik H. 2019.. Superficial layers suppress the deep layers to fine-tune cortical coding. . J. Neurosci. 39::205264
    [Crossref] [Google Scholar]
  85. Rao RPN, Ballard DH. 1999.. Predictive coding in the visual cortex: a functional interpretation of some extra-classical receptive-field effects. . Nat. Neurosci. 2::7987
    [Crossref] [Google Scholar]
  86. Roopun AK, Kramer MA, Carracedo LM, Kaiser M, Davies CH, et al. 2008.. Temporal interactions between cortical rhythms. . Front. Neurosci. 2::14554
    [Crossref] [Google Scholar]
  87. Schmack K, Bosc M, Ott T, Sturgill JF, Kepecs A. 2021.. Striatal dopamine mediates hallucination-like perception in mice. . Science 372::eabf4740
    [Crossref] [Google Scholar]
  88. Schmack K, Gòmez-Carrillo de Castro A, Rothkirch M, Sekutowicz M, Rössler H, et al. 2013.. Delusions and the role of beliefs in perceptual inference. . J. Neurosci. 33::1370112
    [Crossref] [Google Scholar]
  89. Schultz W, Dayan P, Montague PR. 1997.. A neural substrate of prediction and reward. . Science 275::159399
    [Crossref] [Google Scholar]
  90. Schultz W, Preuschoff K, Camerer C, Hsu M, Fiorillo CD, et al. 2008.. Explicit neural signals reflecting reward uncertainty. . Philos. Trans. R. Soc. B 363::380111
    [Crossref] [Google Scholar]
  91. Seignette K, Jamann N, Papale P, Terra H, Porneso RPO, et al. 2023.. Visuomotor experience induces functional and structural plasticity of chandelier cells. . bioRxiv 2023.04.21.537780. https://doi.org/10.1101/2023.04.21.537780
  92. Shi YQ, Sun H. 2008.. Image and Video Compression for Multimedia Engineering: Fundamentals, Algorithms, and Standards. Boca Raton, FL:: CRC Press. , 2nd ed..
    [Google Scholar]
  93. Sinclair DJ, Zhao S, Qi F, Nyakyoma K, Kwong JS, Adams CE. 2019.. Electroconvulsive therapy for treatment-resistant schizophrenia. . Cochrane Database Syst. Rev. 3::CD011847
    [Google Scholar]
  94. Singh T, Poterba T, Curtis D, Akil H, Al Eissa M, et al. 2022.. Rare coding variants in ten genes confer substantial risk for schizophrenia. . Nature 604::50916
    [Crossref] [Google Scholar]
  95. Sperry R. 1950.. Neural basis of the spontaneous optokinetic response produced by visual inversion. . J. Comp. Physiol. Psychol. 43::48289
    [Crossref] [Google Scholar]
  96. Spratling MW. 2017.. A review of predictive coding algorithms. . Brain Cogn. 112::9297
    [Crossref] [Google Scholar]
  97. Spratling MW. 2019.. Fitting predictive coding to the neurophysiological data. . Brain Res. 1720::146313
    [Crossref] [Google Scholar]
  98. Srinivasan MV, Laughlin SB, Dubs A. 1982.. Predictive coding: a fresh view of inhibition in the retina. . Proc. R. Soc. B 216::42759
    [Google Scholar]
  99. Stanley J, Miall RC. 2007.. Functional activation in parieto-premotor and visual areas dependent on congruency between hand movement and visual stimuli during motor-visual priming. . NeuroImage 34::29099
    [Crossref] [Google Scholar]
  100. Sterzer P, Adams RA, Fletcher P, Frith C, Lawrie SM, et al. 2018.. The predictive coding account of psychosis. . Biol. Psychiatry 84::63443
    [Crossref] [Google Scholar]
  101. Synofzik M, Vosgerau G, Voss M. 2013.. The experience of agency: an interplay between prediction and postdiction. . Front. Psychol. 4::127
    [Crossref] [Google Scholar]
  102. Trubetskoy V, Pardiñas AF, Qi T, Panagiotaropoulou G, Awasthi S, et al. 2022.. Mapping genomic loci implicates genes and synaptic biology in schizophrenia. . Nature 604::5028
    [Crossref] [Google Scholar]
  103. Uhlhaas PJ, Singer W. 2015.. Oscillations and neuronal dynamics in schizophrenia: the search for basic symptoms and translational opportunities. . Biol. Psychiatry 77::10019
    [Crossref] [Google Scholar]
  104. Urbanczik R, Senn W. 2014.. Learning by the dendritic prediction of somatic spiking. . Neuron 81::52128
    [Crossref] [Google Scholar]
  105. von Helmholtz H. 1867.. Handbuch der physiologischen Optik. Leipzig, Ger:.: L. Voss
    [Google Scholar]
  106. von Holst E, Mittelstaedt H. 1950.. Das Reafferenzprinzip. . Naturwissenschaften 37::46476
    [Crossref] [Google Scholar]
  107. Weber ET, Andrade R. 2010.. Htr2a gene and 5-HT2A receptor expression in the cerebral cortex studied using genetically modified mice. . Front. Neurosci. 4::36
    [Google Scholar]
  108. Weinberger DR. 2022.. It's dopamine and schizophrenia all over again. . Biol. Psychiatry 92::75759
    [Crossref] [Google Scholar]
  109. Weinstein JJ, Chohan MO, Slifstein M, Kegeles LS, Moore H, Abi-Dargham A. 2017.. Pathway-specific dopamine abnormalities in schizophrenia. . Biol. Psychiatry 81::3142
    [Crossref] [Google Scholar]
  110. Widmer FC, O'Toole SM, Keller GB. 2022.. NMDA receptors in visual cortex are necessary for normal visuomotor integration and skill learning. . eLife 11::e71476
    [Crossref] [Google Scholar]
  111. Winton-Brown TT, Fusar-Poli P, Ungless MA, Howes OD. 2014.. Dopaminergic basis of salience dysregulation in psychosis. . Trends Neurosci. 37::8594
    [Crossref] [Google Scholar]
  112. Wolpert DM, Ghahramani Z, Jordan M. 1995.. An internal model for sensorimotor integration. . Science 269::188082
    [Crossref] [Google Scholar]
  113. Wolpert DM, Miall RC, Kawato M. 1998.. Internal models in the cerebellum. . Trends Cogn. Sci. 2::33847
    [Crossref] [Google Scholar]
  114. Yogesh B, Keller GB. 2023.. Cholinergic input to mouse visual cortex signals a movement state and acutely enhances layer 5 responsiveness. . bioRxiv 2023.06.07.543871. https://doi.org/10.1101/2023.06.07.543871
  115. Yun S, Yang B, Anair JD, Martin MM, Fleps SW, et al. 2023.. Antipsychotic drug efficacy correlates with the modulation of D1 rather than D2 receptor-expressing striatal projection neurons. . Nat. Neurosci. 26::141728
    [Crossref] [Google Scholar]
/content/journals/10.1146/annurev-neuro-100223-121214
Loading
/content/journals/10.1146/annurev-neuro-100223-121214
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error