1932

Abstract

This review explores the interface between circadian timekeeping and the regulation of brain function by astrocytes. Although astrocytes regulate neuronal activity across many time domains, their cell-autonomous circadian clocks exert a particular role in controlling longer-term oscillations of brain function: the maintenance of sleep states and the circadian ordering of sleep and wakefulness. This is most evident in the central circadian pacemaker, the suprachiasmatic nucleus, where the molecular clock of astrocytes suffices to drive daily cycles of neuronal activity and behavior. In Alzheimer's disease, sleep impairments accompany cognitive decline. In mouse models of the disease, circadian disturbances accelerate astroglial activation and other brain pathologies, suggesting that daily functions in astrocytes protect neuronal homeostasis. In brain cancer, treatment in the morning has been associated with prolonged survival, and gliomas have daily rhythms in gene expression and drug sensitivity. Thus, circadian time is fast becoming critical to elucidating reciprocal astrocytic-neuronal interactions in health and disease.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-neuro-100322-112249
2023-07-10
2024-12-07
Loading full text...

Full text loading...

/deliver/fulltext/neuro/46/1/annurev-neuro-100322-112249.html?itemId=/content/journals/10.1146/annurev-neuro-100322-112249&mimeType=html&fmt=ahah

Literature Cited

  1. Abe M, Herzog ED, Yamazaki S, Straume M, Tei H et al. 2002. Circadian rhythms in isolated brain regions. J. Neurosci. 22:350–56
    [Google Scholar]
  2. Abe YO, Yoshitane H, Kim DW, Kawakami S, Koebis M et al. 2022. Rhythmic transcription of Bmal1 stabilizes the circadian timekeeping system in mammals. Nat. Commun. 13:4652
    [Google Scholar]
  3. Acosta-Rodriguez VA, Rijo-Ferreira F, Green CB, Takahashi JS. 2021. Importance of circadian timing for aging and longevity. Nat. Commun. 12:2862
    [Google Scholar]
  4. Akhtar RA, Reddy AB, Maywood ES, Clayton JD, King VM et al. 2002. Circadian cycling of the mouse liver transcriptome, as revealed by cDNA microarray, is driven by the suprachiasmatic nucleus. Curr. Biol. 12:540–50
    [Google Scholar]
  5. Allen NJ, Eroglu C. 2017. Cell biology of astrocyte-synapse interactions. Neuron 96:697–708
    [Google Scholar]
  6. Andersen JV, Schousboe A, Verkhratsky A. 2022. Astrocyte energy and neurotransmitter metabolism in Alzheimer's disease: integration of the glutamate/GABA-glutamine cycle. Prog. Neurobiol. 217:102331
    [Google Scholar]
  7. Aziz NA, Pijl H, Frolich M, Roelfsema F, Roos RA. 2011a. Diurnal secretion profiles of growth hormone, thyrotrophin and prolactin in Parkinson's disease. J. Neuroendocrinol. 23:519–24
    [Google Scholar]
  8. Aziz NA, Pijl H, Frolich M, Roelfsema F, Roos RA. 2011b. Leptin, adiponectin, and resistin secretion and diurnal rhythmicity are unaltered in Parkinson's disease. Mov. Disord. 26:760–61
    [Google Scholar]
  9. Bagci T, Wu JK, Pfannl R, Ilag LL, Jay DG. 2009. Autocrine semaphorin 3A signaling promotes glioblastoma dispersal. Oncogene 28:3537–50
    [Google Scholar]
  10. Balsalobre A, Damiola F, Schibler U. 1998. A serum shock induces circadian gene expression in mammalian tissue culture cells. Cell 93:929–37
    [Google Scholar]
  11. Barca-Mayo O, Pons-Espinal M, Follert P, Armirotti A, Berdondini L, De Pietri Tonelli D. 2017. Astrocyte deletion of Bmal1 alters daily locomotor activity and cognitive functions via GABA signalling. Nat. Commun. 8:14336
    [Google Scholar]
  12. Basti A, Malhan D, Dumbani M, Dahlmann M, Stein U, Relogio A. 2022. Core-clock genes regulate proliferation and invasion via a reciprocal interplay with MACC1 in colorectal cancer cells. Cancers 14:3458
    [Google Scholar]
  13. Bazargani N, Attwell D. 2016. Astrocyte calcium signaling: the third wave. Nat. Neurosci. 19:182–89
    [Google Scholar]
  14. Blanchart A, Fernando R, Haring M, Assaife-Lopes N, Romanov RA et al. 2017. Endogenous GABAA receptor activity suppresses glioma growth. Oncogene 36:777–86
    [Google Scholar]
  15. Bojarskaite L, Bjornstad DM, Pettersen KH, Cunen C, Hermansen GH et al. 2020. Astrocytic Ca2+ signaling is reduced during sleep and is involved in the regulation of slow wave sleep. Nat. Commun. 11:3240
    [Google Scholar]
  16. Borbely AA, Daan S, Wirz-Justice A, Deboer T. 2016. The two-process model of sleep regulation: a reappraisal. J. Sleep Res. 25:131–43
    [Google Scholar]
  17. Brancaccio M, Edwards MD, Patton AP, Smyllie NJ, Chesham JE et al. 2019. Cell-autonomous clock of astrocytes drives circadian behavior in mammals. Science 363:187–92
    [Google Scholar]
  18. Brancaccio M, Maywood ES, Chesham JE, Loudon AS, Hastings MH. 2013. A Gq-Ca2+ axis controls circuit-level encoding of circadian time in the suprachiasmatic nucleus. Neuron 78:714–28
    [Google Scholar]
  19. Brancaccio M, Patton AP, Chesham JE, Maywood ES, Hastings MH. 2017. Astrocytes control circadian timekeeping in the suprachiasmatic nucleus via glutamatergic signaling. Neuron 93:1420–35.e5
    [Google Scholar]
  20. Brancaccio M, Wolfes AC, Ness N. 2021. Astrocyte circadian timekeeping in brain health and neurodegeneration. Adv. Exp. Med. Biol. 1344:87–110
    [Google Scholar]
  21. Breen DP, Vuono R, Nawarathna U, Fisher K, Shneerson JM et al. 2014. Sleep and circadian rhythm regulation in early Parkinson disease. JAMA Neurol. 71:589–95
    [Google Scholar]
  22. Cederroth CR, Albrecht U, Bass J, Brown SA, Dyhrfjeld-Johnsen J et al. 2019. Medicine in the fourth dimension. Cell Metab. 30:238–50
    [Google Scholar]
  23. Chen J, McKay RM, Parada LF. 2012. Malignant glioma: lessons from genomics, mouse models, and stem cells. Cell 149:36–47
    [Google Scholar]
  24. Cho H, Zhao X, Hatori M, Yu RT, Barish GD et al. 2012. Regulation of circadian behaviour and metabolism by REV-ERB-α and REV-ERB-β. Nature 485:123–27
    [Google Scholar]
  25. Clasadonte J, Scemes E, Wang Z, Boison D, Haydon PG. 2017. Connexin 43-mediated astroglial metabolic networks contribute to the regulation of the sleep-wake cycle. Neuron 95:1365–80.e5
    [Google Scholar]
  26. Cuddapah VA, Zhang SL, Sehgal A. 2019. Regulation of the blood-brain barrier by circadian rhythms and sleep. Trends Neurosci. 42:500–10
    [Google Scholar]
  27. Czeisler CA, Gooley JJ. 2007. Sleep and circadian rhythms in humans. Cold Spring Harb. Symp. Quant. Biol. 72:579–97
    [Google Scholar]
  28. Damato AR, Luo J, Katumba RGN, Talcott GR, Rubin JB et al. 2021. Temozolomide chronotherapy in patients with glioblastoma: a retrospective single-institute study. Neurooncol. Adv. 3:vdab041
    [Google Scholar]
  29. De Pablo-Fernández E, Courtney R, Warner TT, Holton JL. 2018. A histologic study of the circadian system in Parkinson disease, multiple system atrophy, and progressive supranuclear palsy. JAMA Neurol. 75:1008–12
    [Google Scholar]
  30. De Strooper B, Karran E. 2016. The cellular phase of Alzheimer's disease. Cell 164:603–15
    [Google Scholar]
  31. Diamantopoulou Z, Castro-Giner F, Schwab FD, Foerster C, Saini M et al. 2022. The metastatic spread of breast cancer accelerates during sleep. Nature 607:156–62
    [Google Scholar]
  32. Dolecek TA, Propp JM, Stroup NE, Kruchko C. 2012. CBTRUS statistical report: primary brain and central nervous system tumors diagnosed in the United States in 2005–2009. Neuro-Oncology 14:Suppl. 5v1–49
    [Google Scholar]
  33. Dong Z, Zhang G, Qu M, Gimple RC, Wu Q et al. 2019. Targeting glioblastoma stem cells through disruption of the circadian clock. Cancer Discov. 9:1556–73
    [Google Scholar]
  34. Dunlap JC, Loros JJ, Decoursey PJ, eds. 2004. Chronobiology: Biological Timekeeping Sunderland, MA: Sinauer
    [Google Scholar]
  35. Esposito Z, Belli L, Toniolo S, Sancesario G, Bianconi C, Martorana A. 2013. Amyloid β, glutamate, excitotoxicity in Alzheimer's disease: Are we on the right track?. CNS Neurosci. Ther. 19:549–55
    [Google Scholar]
  36. Frank MG. 2019. The role of glia in sleep regulation and function. Handb. Exp. Pharmacol. 253:83–96
    [Google Scholar]
  37. Franken P, Dijk DJ. 2009. Circadian clock genes and sleep homeostasis. Eur. J. Neurosci. 29:1820–29
    [Google Scholar]
  38. Freeman GM Jr., Nakajima M, Ueda HR, Herzog ED. 2013. Picrotoxin dramatically speeds the mammalian circadian clock independent of Cys-loop receptors. J. Neurophysiol. 110:103–8
    [Google Scholar]
  39. Grechez-Cassiau A, Rayet B, Guillaumond F, Teboul M, Delaunay F. 2008. The circadian clock component BMAL1 is a critical regulator of p21WAF1/CIP1 expression and hepatocyte proliferation. J. Biol. Chem. 283:4535–42
    [Google Scholar]
  40. Hablitz LM, Nedergaard M. 2021. The glymphatic system: a novel component of fundamental neurobiology. J. Neurosci. 41:7698–711
    [Google Scholar]
  41. Hablitz LM, Pla V, Giannetto M, Vinitsky HS, Staeger FF et al. 2020. Circadian control of brain glymphatic and lymphatic fluid flow. Nat. Commun. 11:4411
    [Google Scholar]
  42. Hamnett R, Crosby P, Chesham JE, Hastings MH. 2019. Vasoactive intestinal peptide controls the suprachiasmatic circadian clock network via ERK1/2 and DUSP4 signalling. Nat. Commun. 10:542
    [Google Scholar]
  43. Hanahan D. 2022. Hallmarks of cancer: new dimensions. Cancer Discov. 12:31–46
    [Google Scholar]
  44. Harper DG, Stopa EG, Kuo-Leblanc V, McKee AC, Asayama K et al. 2008. Dorsomedial SCN neuronal subpopulations subserve different functions in human dementia. Brain 131:1609–17
    [Google Scholar]
  45. Hastings MH, Maywood ES, Brancaccio M. 2018. Generation of circadian rhythms in the suprachiasmatic nucleus. Nat. Rev. Neurosci. 19:453–69
    [Google Scholar]
  46. Hatfield CF, Herbert J, van Someren EJ, Hodges JR, Hastings MH. 2004. Disrupted daily activity/rest cycles in relation to daily cortisol rhythms of home-dwelling patients with early Alzheimer's dementia. Brain 127:1061–74
    [Google Scholar]
  47. Herzog ED, Hermanstyne T, Smyllie NJ, Hastings MH. 2017. Regulating the suprachiasmatic nucleus (SCN) circadian clockwork: interplay between cell-autonomous and circuit-level mechanisms. Cold Spring Harb. Perspect. Biol. 9:a027706
    [Google Scholar]
  48. Hines DJ, Haydon PG. 2014. Astrocytic adenosine: from synapses to psychiatric disorders. Philos. Trans. R. Soc. B 369:20130594
    [Google Scholar]
  49. Holth JK, Fritschi SK, Wang C, Pedersen NP, Cirrito JR et al. 2019. The sleep-wake cycle regulates brain interstitial fluid tau in mice and CSF tau in humans. Science 363:880–84
    [Google Scholar]
  50. Hoyt KR, Obrietan K. 2022. Circadian clocks, cognition, and Alzheimer's disease: synaptic mechanisms, signaling effectors, and chronotherapeutics. Mol. Neurodegener. 17:35
    [Google Scholar]
  51. Hunt J, Coulson EJ, Rajnarayanan R, Oster H, Videnovic A, Rawashdeh O. 2022. Sleep and circadian rhythms in Parkinson's disease and preclinical models. Mol. Neurodegener. 17:2
    [Google Scholar]
  52. Iliff JJ, Chen MJ, Plog BA, Zeppenfeld DM, Soltero M et al. 2014. Impairment of glymphatic pathway function promotes tau pathology after traumatic brain injury. J. Neurosci. 34:16180–93
    [Google Scholar]
  53. Iliff JJ, Wang M, Liao Y, Plogg BA, Peng W et al. 2012. A paravascular pathway facilitates CSF flow through the brain parenchyma and the clearance of interstitial solutes, including amyloid β. Sci. Transl. Med. 4:147ra11
    [Google Scholar]
  54. Jones JR, Simon T, Lones L, Herzog ED. 2018. SCN VIP neurons are essential for normal light-mediated resetting of the circadian system. J. Neurosci. 38:7986–95
    [Google Scholar]
  55. Kalliolia E, Silajdzic E, Nambron R, Costelloe SJ, Martin NG et al. 2015. A 24-hour study of the hypothalamo-pituitary axes in Huntington's disease. PLOS ONE 10:e0138848
    [Google Scholar]
  56. Kang JE, Lim MM, Bateman RJ, Lee JJ, Smyth LP et al. 2009. Amyloid-β dynamics are regulated by orexin and the sleep-wake cycle. Science 326:1005–7
    [Google Scholar]
  57. Keough MB, Monje M. 2022. Neural signaling in cancer. Annu. Rev. Neurosci. 45:199–221
    [Google Scholar]
  58. Khakh BS, Sofroniew MV. 2015. Diversity of astrocyte functions and phenotypes in neural circuits. Nat. Neurosci. 18:942–52
    [Google Scholar]
  59. Kofuji P, Araque A. 2021. Astrocytes and behavior. Annu. Rev. Neurosci. 44:49–67
    [Google Scholar]
  60. Kress GJ, Liao F, Dimitry J, Cedeno MR, FitzGerald GA et al. 2018. Regulation of amyloid-β dynamics and pathology by the circadian clock. J. Exp. Med. 215:1059–68
    [Google Scholar]
  61. Lananna BV, McKee CA, King MW, Del-Aguila JL, Dimitry JM et al. 2020. Chi3l1/YKL-40 is controlled by the astrocyte circadian clock and regulates neuroinflammation and Alzheimer's disease pathogenesis. Sci. Transl. Med. 12:eaax3519
    [Google Scholar]
  62. Lananna BV, Nadarajah CJ, Izumo M, Cedeno MR, Xiong DD et al. 2018. Cell-autonomous regulation of astrocyte activation by the circadian clock protein BMAL1. Cell Rep. 25:1–9.e5
    [Google Scholar]
  63. Lee JH, Sancar A. 2011. Regulation of apoptosis by the circadian clock through NF-κB signaling. PNAS 108:12036–41
    [Google Scholar]
  64. Lee Y, Field JM, Sehgal A. 2021. Circadian rhythms, disease and chronotherapy. J. Biol. Rhythms 36:503–31
    [Google Scholar]
  65. Leng Y, Musiek ES, Hu K, Cappuccio FP, Yaffe K. 2019. Association between circadian rhythms and neurodegenerative diseases. Lancet Neurol. 18:307–18
    [Google Scholar]
  66. Li P, Gao L, Gaba A, Yu L, Cui L et al. 2020. Circadian disturbances in Alzheimer's disease progression: a prospective observational cohort study of community-based older adults. Lancet Healthy Longev. 1:e96–105
    [Google Scholar]
  67. Marpegan L, Krall TJ, Herzog ED. 2009. Vasoactive intestinal polypeptide entrains circadian rhythms in astrocytes. J. Biol. Rhythms 24:135–43
    [Google Scholar]
  68. Marpegan L, Swanstrom AE, Chung K, Simon T, Haydon PG et al. 2011. Circadian regulation of ATP release in astrocytes. J. Neurosci. 31:8342–50
    [Google Scholar]
  69. Marvin JS, Scholl B, Wilson DE, Podgorski K, Kazemipour A et al. 2018. Stability, affinity, and chromatic variants of the glutamate sensor iGluSnFR. Nat. Methods 15:936–39
    [Google Scholar]
  70. Maywood ES, Chesham JE, Winsky-Sommerer R, Hastings MH. 2021. Restoring the molecular clockwork within the suprachiasmatic hypothalamus of an otherwise clockless mouse enables circadian phasing and stabilization of sleep-wake cycles and reverses memory deficits. J. Neurosci. 41:8562–76
    [Google Scholar]
  71. Maywood ES, Elliott TS, Patton AP, Krogager TP, Chesham JE et al. 2018. Translational switching of Cry1 protein expression confers reversible control of circadian behavior in arrhythmic Cry-deficient mice. PNAS 115:E12388–97
    [Google Scholar]
  72. McKee CA, Lee J, Cai Y, Saito T, Saido T, Musiek ES. 2022. Astrocytes deficient in circadian clock gene Bmal1 show enhanced activation responses to amyloid-beta pathology without changing plaque burden. Sci. Rep. 12:1796
    [Google Scholar]
  73. Meng QJ, Logunova L, Maywood ES, Gallego M, Lebiecki J et al. 2008. Setting clock speed in mammals: the CK1ε tau mutation in mice accelerates circadian pacemakers by selectively destabilizing PERIOD proteins. Neuron 58:78–88
    [Google Scholar]
  74. Miller S, Kesherwani M, Chan P, Nagai Y, Yagi M et al. 2022. CRY2 isoform selectivity of a circadian clock modulator with antiglioblastoma efficacy. PNAS 119:e2203936119
    [Google Scholar]
  75. Morin LP, Allen CN. 2006. The circadian visual system, 2005. Brain Res. Rev. 51:1–60
    [Google Scholar]
  76. Musiek ES, Bhimasani M, Zangrilli MA, Morris JC, Holtzman DM, Ju YS. 2018. Circadian rest-activity pattern changes in aging and preclinical Alzheimer disease. JAMA Neurol. 75:582–90
    [Google Scholar]
  77. Musiek ES, Lim MM, Yang G, Bauer AQ, Qi L et al. 2013. Circadian clock proteins regulate neuronal redox homeostasis and neurodegeneration. J. Clin. Investig. 123:5389–400
    [Google Scholar]
  78. Nagai J, Yu X, Papouin T, Cheong E, Freeman MR et al. 2021. Behaviorally consequential astrocytic regulation of neural circuits. Neuron 109:576–96
    [Google Scholar]
  79. Nakazato R, Kawabe K, Yamada D, Ikeno S, Mieda M et al. 2017. Disruption of Bmal1 impairs blood-brain barrier integrity via pericyte dysfunction. J. Neurosci. 37:10052–62
    [Google Scholar]
  80. Nassan M, Videnovic A. 2022. Circadian rhythms in neurodegenerative disorders. Nat. Rev. Neurol. 18:7–24
    [Google Scholar]
  81. Ono D, Honma KI, Yanagawa Y, Yamanaka A, Honma S. 2019. GABA in the suprachiasmatic nucleus refines circadian output rhythms in mice. Commun. Biol. 2:232
    [Google Scholar]
  82. Osswald M, Jung E, Sahm F, Solecki G, Venkataramani V et al. 2015. Brain tumour cells interconnect to a functional and resistant network. Nature 528:93–98
    [Google Scholar]
  83. Pan Y, Hysinger JD, Barron T, Schindler NF, Cobb O et al. 2021. NF1 mutation drives neuronal activity-dependent initiation of optic glioma. Nature 594:277–82
    [Google Scholar]
  84. Panda S. 2016. Circadian physiology of metabolism. Science 354:1008–15
    [Google Scholar]
  85. Parsons MJ, Brancaccio M, Sethi S, Maywood ES, Satija R et al. 2015. The regulatory factor ZFHX3 modifies circadian function in SCN via an AT motif-driven axis. Cell 162:607–21
    [Google Scholar]
  86. Patton AP, Chesham JE, Hastings MH. 2016. Combined pharmacological and genetic manipulations unlock unprecedented temporal elasticity and reveal phase-specific modulation of the molecular circadian clock of the mouse suprachiasmatic nucleus. J. Neurosci. 36:9326–41
    [Google Scholar]
  87. Patton AP, Smyllie NJ, Chesham JE, Hastings MH. 2022. Astrocytes sustain circadian oscillation and bidirectionally determine circadian period, but do not regulate circadian phase in the suprachiasmatic nucleus. J. Neurosci. 42:285522–37
    [Google Scholar]
  88. Paul S, Hanna L, Harding C, Hayter EA, Walmsley L et al. 2020. Output from VIP cells of the mammalian central clock regulates daily physiological rhythms. Nat. Commun. 11:1453
    [Google Scholar]
  89. Phatnani H, Maniatis T. 2015. Astrocytes in neurodegenerative disease. Cold Spring Harb. Perspect. Biol. 7:a020628
    [Google Scholar]
  90. Pizarro A, Hayer K, Lahens NF, Hogenesch JB. 2013. CircaDB: a database of mammalian circadian gene expression profiles. Nucleic Acids Res. 41:D1009–13
    [Google Scholar]
  91. Poskanzer KE, Yuste R. 2016. Astrocytes regulate cortical state switching in vivo. PNAS 113:E2675–84
    [Google Scholar]
  92. Preitner N, Damiola F, Lopez-Molina L, Zakany J, Duboule D et al. 2002. The orphan nuclear receptor REV-ERBα controls circadian transcription within the positive limb of the mammalian circadian oscillator. Cell 110:251–60
    [Google Scholar]
  93. Prolo LM, Takahashi JS, Herzog ED. 2005. Circadian rhythm generation and entrainment in astrocytes. J. Neurosci. 25:404–8
    [Google Scholar]
  94. Prosser RA, Edgar DM, Heller HC, Miller JD. 1994. A possible glial role in the mammalian circadian clock. Brain Res. 643:296–301
    [Google Scholar]
  95. Reppert SM, Weaver DR. 2002. Coordination of circadian timing in mammals. Nature 418:935–41
    [Google Scholar]
  96. Rich JN, Hans C, Jones B, Iversen ES, McLendon RE et al. 2005. Gene expression profiling and genetic markers in glioblastoma survival. Cancer Res. 65:4051–58
    [Google Scholar]
  97. Rollag MD, Berson DM, Provencio I. 2003. Melanopsin, ganglion-cell photoreceptors, and mammalian photoentrainment. J. Biol. Rhythms 18:227–34
    [Google Scholar]
  98. Ruben MD, Smith DF, FitzGerald GA, Hogenesch JB. 2019. Dosing time matters. Science 365:547–49
    [Google Scholar]
  99. Saito T, Matsuba Y, Mihira N, Takano J, Nilsson P et al. 2014. Single App knock-in mouse models of Alzheimer's disease. Nat. Neurosci. 17:661–63
    [Google Scholar]
  100. Sancar A, Van Gelder RN. 2021. Clocks, cancer, and chronochemotherapy. Science 371:eabb0738
    [Google Scholar]
  101. Santello M, Toni N, Volterra A 2019. Astrocyte function from information processing to cognition and cognitive impairment. Nat. Neurosci. 22:154–66
    [Google Scholar]
  102. Sato TK, Panda S, Miraglia LJ, Reyes TM, Rudic RD et al. 2004. A functional genomics strategy reveals Rora as a component of the mammalian circadian clock. Neuron 43:527–37
    [Google Scholar]
  103. Serviere J, Lavialle M. 1996. Astrocytes in the mammalian circadian clock: putative roles. Prog. Brain Res. 111:57–73
    [Google Scholar]
  104. Shigeyoshi Y, Taguchi K, Yamamoto S, Takekida S, Yan L et al. 1997. Light-induced resetting of a mammalian circadian clock is associated with rapid induction of the mPer1 transcript. Cell 91:1043–53
    [Google Scholar]
  105. Shinohara K, Honma S, Katsuno Y, Honma K. 2000. Circadian release of excitatory amino acids in the suprachiasmatic nucleus culture is Ca2+-independent. Neurosci. Res. 36:245–50
    [Google Scholar]
  106. Shirbin CA, Chua P, Churchyard A, Lowndes G, Hannan AJ et al. 2013. Cortisol and depression in pre-diagnosed and early stage Huntington's disease. Psychoneuroendocrinology 38:2439–47
    [Google Scholar]
  107. Shukla M, Htoo HH, Wintachai P, Hernandez JF, Dubois C et al. 2015. Melatonin stimulates the nonamyloidogenic processing of βAPP through the positive transcriptional regulation of ADAM10 and ADAM17. J. Pineal Res. 58:151–65
    [Google Scholar]
  108. Slat EA, Sponagel J, Marpegan L, Simon T, Kfoury N et al. 2017. Cell-intrinsic, Bmal1-dependent circadian regulation of temozolomide sensitivity in glioblastoma. J. Biol. Rhythms 32:121–29
    [Google Scholar]
  109. Spanagel R, Pendyala G, Abarca C, Zghoul T, Sanchis-Segura C et al. 2005. The clock gene Per2 influences the glutamatergic system and modulates alcohol consumption. Nat. Med. 11:35–42
    [Google Scholar]
  110. Stopa EG, Volicer L, Kuo-Leblanc V, Harper DG, Lathi D et al. 1999. Pathologic evaluation of the human suprachiasmatic nucleus in severe dementia. J. Neuropathol. Exp. Neurol. 58:29–39
    [Google Scholar]
  111. Stratmann M, Suter DM, Molina N, Naef F, Schibler U. 2012. Circadian Dbp transcription relies on highly dynamic BMAL1-CLOCK interaction with E boxes and requires the proteasome. Mol. Cell 48:277–87
    [Google Scholar]
  112. Stupp R, Hegi ME, Mason WP, van den Bent MJ, Taphoorn MJ et al. 2009. Effects of radiotherapy with concomitant and adjuvant temozolomide versus radiotherapy alone on survival in glioblastoma in a randomised phase III study: 5-year analysis of the EORTC-NCIC trial. Lancet Oncol. 10:459–66
    [Google Scholar]
  113. Stupp R, Mason WP, van den Bent MJ, Weller M, Fisher B et al. 2005. Radiotherapy plus concomitant and adjuvant temozolomide for glioblastoma. N. Engl. J. Med. 352:987–96
    [Google Scholar]
  114. Swaab DF, Fliers E, Partiman TS. 1985. The suprachiasmatic nucleus of the human brain in relation to sex, age and senile dementia. Brain Res. 342:37–44
    [Google Scholar]
  115. Swanson RA, Graham SH. 1994. Fluorocitrate and fluoroacetate effects on astrocyte metabolism in vitro. Brain Res. 664:94–100
    [Google Scholar]
  116. Takahashi JS. 2017. Transcriptional architecture of the mammalian circadian clock. Nat. Rev. Genet. 18:164–79
    [Google Scholar]
  117. Tantillo E, Vannini E, Cerri C, Spalletti C, Colistra A et al. 2020. Differential roles of pyramidal and fast-spiking, GABAergic neurons in the control of glioma cell proliferation. Neurobiol. Dis. 141:104942
    [Google Scholar]
  118. Tranah GJ, Blackwell T, Stone KL, Ancoli-Israel S, Paudel ML et al. 2011. Circadian activity rhythms and risk of incident dementia and mild cognitive impairment in older women. Ann. Neurol. 70:722–32
    [Google Scholar]
  119. Trebucq LL, Cardama GA, Lorenzano Menna P, Golombek DA, Chiesa JJ, Marpegan L 2021. Timing of novel drug 1A-116 to circadian rhythms improves therapeutic effects against glioblastoma. Pharmaceutics 13:1091
    [Google Scholar]
  120. Tso CF, Simon T, Greenlaw AC, Puri T, Mieda M, Herzog ED. 2017. Astrocytes regulate daily rhythms in the suprachiasmatic nucleus and behavior. Curr. Biol. 27:1055–61
    [Google Scholar]
  121. Tso MC, Herzog ED. 2015. Was Cajal right about sleep?. BMC Biol. 13:67
    [Google Scholar]
  122. Vaidyanathan TV, Collard M, Yokoyama S, Reitman ME, Poskanzer KE. 2021. Cortical astrocytes independently regulate sleep depth and duration via separate GPCR pathways. eLife 10:e63329
    [Google Scholar]
  123. Venkatesh HS, Johung TB, Caretti V, Noll A, Tang Y et al. 2015. Neuronal activity promotes glioma growth through neuroligin-3 secretion. Cell 161:803–16
    [Google Scholar]
  124. Venkatesh HS, Tam LT, Woo PJ, Lennon J, Nagaraja S et al. 2017. Targeting neuronal activity-regulated neuroligin-3 dependency in high-grade glioma. Nature 549:533–37
    [Google Scholar]
  125. Videnovic A, Noble C, Reid KJ, Peng J, Turek FW et al. 2014. Circadian melatonin rhythm and excessive daytime sleepiness in Parkinson disease. JAMA Neurol. 71:463–69
    [Google Scholar]
  126. Wagner PM, Prucca CG, Caputto BL, Guido ME. 2021. Adjusting the molecular clock: the importance of circadian rhythms in the development of glioblastomas and its intervention as a therapeutic strategy. Int. J. Mol. Sci. 22:8289
    [Google Scholar]
  127. Wagner PM, Sosa Alderete LG, Gorne LD, Gaveglio V, Salvador G et al. 2019. Proliferative glioblastoma cancer cells exhibit persisting temporal control of metabolism and display differential temporal drug susceptibility in chemotherapy. Mol. Neurobiol. 56:1276–92
    [Google Scholar]
  128. Wen S, Ma D, Zhao M, Xie L, Wu Q et al. 2020. Spatiotemporal single-cell analysis of gene expression in the mouse suprachiasmatic nucleus. Nat. Neurosci. 23:456–67
    [Google Scholar]
  129. Xie L, Kang H, Xu Q, Chen MJ, Liao Y et al. 2013. Sleep drives metabolite clearance from the adult brain. Science 342:373–77
    [Google Scholar]
  130. Xu P, Berto S, Kulkarni A, Jeong B, Joseph C et al. 2021. NPAS4 regulates the transcriptional response of the suprachiasmatic nucleus to light and circadian behavior. Neuron 109:3268–82.e6
    [Google Scholar]
  131. Yoo SH, Yamazaki S, Lowrey PL, Shimomura K, Ko CH et al. 2004. PERIOD2::LUCIFERASE real-time reporting of circadian dynamics reveals persistent circadian oscillations in mouse peripheral tissues. PNAS 101:5339–46
    [Google Scholar]
  132. Yu K, Lin CJ, Hatcher A, Lozzi B, Kong K et al. 2020. PIK3CA variants selectively initiate brain hyperactivity during gliomagenesis. Nature 578:166–71
    [Google Scholar]
  133. Yu M, Li W, Wang Q, Wang Y, Lu F. 2018. Circadian regulator NR1D2 regulates glioblastoma cell proliferation and motility. Oncogene 37:4838–53
    [Google Scholar]
  134. Zhang R, Lahens NF, Ballance HI, Hughes ME, Hogenesch JB. 2014. A circadian gene expression atlas in mammals: implications for biology and medicine. PNAS 111:16219–24
    [Google Scholar]
  135. Zhang SL, Lahens NF, Yue Z, Arnold DM, Pakstis PP et al. 2021. A circadian clock regulates efflux by the blood-brain barrier in mice and human cells. Nat. Commun. 12:617
    [Google Scholar]
/content/journals/10.1146/annurev-neuro-100322-112249
Loading
/content/journals/10.1146/annurev-neuro-100322-112249
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error