1932

Abstract

All mammals must suckle and swallow at birth, and subsequently chew and swallow solid foods, for optimal growth and health. These initially innate behaviors depend critically upon coordinated development of the mouth, tongue, pharynx, and larynx as well as the cranial nerves that control these structures. Disrupted suckling, feeding, and swallowing from birth onward—perinatal dysphagia—is often associated with several neurodevelopmental disorders that subsequently alter complex behaviors. Apparently, a broad range of neurodevelopmental pathologic mechanisms also target oropharyngeal and cranial nerve differentiation. These aberrant mechanisms, including altered patterning, progenitor specification, and neurite growth, prefigure dysphagia and may then compromise circuits for additional behavioral capacities. Thus, perinatal dysphagia may be an early indicator of disrupted genetic and developmental programs that compromise neural circuits and yield a broad range of behavioral deficits in neurodevelopmental disorders.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-neuro-100419-100636
2020-07-08
2024-04-15
Loading full text...

Full text loading...

/deliver/fulltext/neuro/43/1/annurev-neuro-100419-100636.html?itemId=/content/journals/10.1146/annurev-neuro-100419-100636&mimeType=html&fmt=ahah

Literature Cited

  1. Abadie V, Champagnat J, Fortin G 2000. Branchiomotor activities in mouse embryo. Neuroreport 11:141–45
    [Google Scholar]
  2. Adam MP, Hudgins L, Hannibal M 2019. Kabuki syndrome. GeneReviews® MP Adam, HH Ardinger, RA Pagon, SE Wallace, LJH Bean, et al Seattle, WA: Univ. Washington
    [Google Scholar]
  3. Aghaz A, Alidad A, Hemmati E, Jadidi H, Ghelichi L 2018. Prevalence of dysphagia in multiple sclerosis and its related factors: systematic review and meta-analysis. Iran. J. Neurol. 17:180–88
    [Google Scholar]
  4. Al Ain S, Belin L, Schaal B, Patris B 2013. How does a newly born mouse get to the nipple? Odor substrates eliciting first nipple grasping and sucking responses. Dev. Psychobiol. 55:888–901
    [Google Scholar]
  5. Alexander T, Nolte C, Krumlauf R 2009. Hox genes and segmentation of the hindbrain and axial skeleton. Annu. Rev. Cell Dev. Biol. 25:431–56
    [Google Scholar]
  6. Amor DJ, Craig JE. 2001. Situs inversus totalis and congenital hypoglossia. Clin. Dysmorphol. 10:47–50
    [Google Scholar]
  7. Amos-Kroohs RM, Fink BA, Smith CJ, Chin L, Van Calcar SC et al. 2016. Abnormal eating behaviors are common in children with fetal alcohol spectrum disorder. J. Pediatr. 169:194–200.e1
    [Google Scholar]
  8. Asgarshirazi M, Farokhzadeh-Soltani M, Keihanidost Z, Shariat M 2017. Evaluation of feeding disorders including gastro-esophageal reflux and oropharyngeal dysfunction in children with cerebral palsy. J. Fam. Reprod. Health 11:197–201
    [Google Scholar]
  9. Ashiga H, Takei E, Magara J, Takeishi R, Tsujimura T et al. 2019. Effect of attention on chewing and swallowing behaviors in healthy humans. Sci. Rep. 9:6013
    [Google Scholar]
  10. Audag N, Goubau C, Toussaint M, Reychler G 2019. Screening and evaluation tools of dysphagia in adults with neuromuscular diseases: a systematic review. Ther. Adv. Chronic Dis. 10:2040622318821622
    [Google Scholar]
  11. Baple E, Crosby A 2004. Troyer syndrome. GeneReviews® MP Adam, HH Ardinger, RA Pagon, SE Wallace, LJH Bean, et al Seattle, WA: Univ. Washington https://www.ncbi.nlm.nih.gov/books/NBK1382/
    [Google Scholar]
  12. Baudon JJ, Renault F, Goutet JM, Biran-Mucignat V, Morgant G et al. 2009. Assessment of dysphagia in infants with facial malformations. Eur. J. Pediatr. 168:187–93
    [Google Scholar]
  13. Beck MH, Cataldo M, Slifer KJ, Pulbrook V, Guhman JK 2005. Teaching children with attention deficit hyperactivity disorder (ADHD) and autistic disorder (AD) how to swallow pills. Clin. Pediatr. 44:515–26
    [Google Scholar]
  14. Bergman JE, Janssen N, Hoefsloot LH, Jongmans MC, Hofstra RM, van Ravenswaaij-Arts CM 2011. CHD7 mutations and CHARGE syndrome: the clinical implications of an expanding phenotype. J. Med. Genet. 48:334–42
    [Google Scholar]
  15. Berlin KS, Lobato DJ, Pinkos B, Cerezo CS, LeLeiko NS 2011. Patterns of medical and developmental comorbidities among children presenting with feeding problems: a latent class analysis. J. Dev. Behav. Pediatr. 32:41–47
    [Google Scholar]
  16. Betalli P, Carretto E, Cananzi M, Zanatta L, Salvador R et al. 2013. Autism and esophageal achalasia in childhood: a possible correlation? Report on three cases. Dis. Esophagus 26:237–40
    [Google Scholar]
  17. Billmyre KK, Hutson M, Klingensmith J 2015. One shall become two: separation of the esophagus and trachea from the common foregut tube. Dev. Dyn. 244:277–88
    [Google Scholar]
  18. Bourque MJ, Kolta A 2001. Properties and interconnections of trigeminal interneurons of the lateral pontine reticular formation in the rat. J. Neurophysiol. 86:2583–96
    [Google Scholar]
  19. Breau MA, Schneider-Maunoury S 2015. Cranial placodes: models for exploring the multi-facets of cell adhesion in epithelial rearrangement, collective migration and neuronal movements. Dev. Biol. 401:25–36
    [Google Scholar]
  20. Breik O, Umapathysivam K, Tivey D, Anderson P 2016. Feeding and reflux in children after mandibular distraction osteogenesis for micrognathia: a systematic review. Int. J. Pediatr. Otorhinolaryngol. 85:128–35
    [Google Scholar]
  21. Brown JW 1990. Prenatal development of the human nucleus ambiguus during the embryonic and early fetal periods. Am. J. Anat. 189:267–83
    [Google Scholar]
  22. Buchman VL, Davies AM 1993. Different neurotrophins are expressed and act in a developmental sequence to promote the survival of embryonic sensory neurons. Development 118:989–1001
    [Google Scholar]
  23. Calmont A, Anderson N, Suntharalingham JP, Ang R, Tinker A, Scambler PJ 2018. Defective vagal innervation in murine Tbx1 mutant hearts. J. Cardiovasc. Dev. Dis. 5:49
    [Google Scholar]
  24. Celletti C, Mari G, Ghibellini G, Celli M, Castori M, Camerota F 2015. Phenotypic variability in developmental coordination disorder: clustering of generalized joint hypermobility with attention deficit/hyperactivity disorder, atypical swallowing and narrative difficulties. Am. J. Med. Genet. C Semin. Med. Genet. 169C:117–22
    [Google Scholar]
  25. Chai Y, Maxson RE Jr 2006. Recent advances in craniofacial morphogenesis. Dev. Dyn. 235:2353–75
    [Google Scholar]
  26. Chandrasekhar A 2004. Turning heads: development of vertebrate branchiomotor neurons. Dev. Dyn. 229:143–61
    [Google Scholar]
  27. Chouinard J 2000. Dysphagia in Alzheimer disease: a review. J. Nutr. Health Aging 4:214–17
    [Google Scholar]
  28. Cifra A, Nani F, Sharifullina E, Nistri A 2009. A repertoire of rhythmic bursting produced by hypoglossal motoneurons in physiological and pathological conditions. Philos. Trans. R. Soc. Lond. B Biol. Sci. 364:2493–500
    [Google Scholar]
  29. Cobourne MT, Iseki S, Birjandi AA, Adel Al-Lami H, Thauvin-Robinet C et al. 2019. How to make a tongue: cellular and molecular regulation of muscle and connective tissue formation during mammalian tongue development. Semin. Cell Dev. Biol. 91:45–54
    [Google Scholar]
  30. Cohen S, Earing MG 2018. Neurocognitive impairment and its long-term impact on adults with congenital heart disease. Prog. Cardiovasc. Dis. 61:287–93
    [Google Scholar]
  31. Compton MT, Walker EF 2009. Physical manifestations of neurodevelopmental disruption: Are minor physical anomalies part of the syndrome of schizophrenia?. Schizophr. Bull. 35:425–36
    [Google Scholar]
  32. Cordes SP 2001. Molecular genetics of cranial nerve development in mouse. Nat. Rev. Neurosci. 2:611–23
    [Google Scholar]
  33. Coureaud G, Moncomble AS, Montigny D, Dewas M, Perrier G, Schaal B 2006. A pheromone that rapidly promotes learning in the newborn. Curr. Biol. 16:1956–61
    [Google Scholar]
  34. Dastjerdi A, Robson L, Walker R, Hadley J, Zhang Z et al. 2007. Tbx1 regulation of myogenic differentiation in the limb and cranial mesoderm. Dev. Dyn. 236:353–63
    [Google Scholar]
  35. Delaney AL, Arvedson JC 2008. Development of swallowing and feeding: prenatal through first year of life. Dev. Disabil. Res. Rev. 14:105–17
    [Google Scholar]
  36. Dellow PG, Lund JP 1971. Evidence for central timing of rhythmical mastication. J. Physiol. 215:1–13
    [Google Scholar]
  37. Demontis D, Walters RK, Martin J, Mattheisen M, Als TD et al. 2019. Discovery of the first genome-wide significant risk loci for attention deficit/hyperactivity disorder. Nat. Genet. 51:63–75
    [Google Scholar]
  38. Ding P, Campbell-Malone R, Holman SD, Lukasik SL, Fukuhara T et al. 2013. Unilateral superior laryngeal nerve lesion in an animal model of dysphagia and its effect on sucking and swallowing. Dysphagia 28:404–12
    [Google Scholar]
  39. Diogo R, Kelly RG, Christiaen L, Levine M, Ziermann JM et al. 2015. A new heart for a new head in vertebrate cardiopharyngeal evolution. Nature 520:466–73
    [Google Scholar]
  40. Dobbelsteyn C, Peacocke SD, Blake K, Crist W, Rashid M 2008. Feeding difficulties in children with CHARGE syndrome: prevalence, risk factors, and prognosis. Dysphagia 23:127–35
    [Google Scholar]
  41. Domenech-Ratto G 1977. Development and peripheral innervation of the palatal muscles. Acta Anat 97:4–14
    [Google Scholar]
  42. Eicher PS, McDonald-Mcginn DM, Fox CA, Driscoll DA, Emanuel BS, Zackai EH 2000. Dysphagia in children with a 22q11.2 deletion: unusual pattern found on modified barium swallow. J. Pediatr. 137:158–64
    [Google Scholar]
  43. Ernsberger U 2009. Role of neurotrophin signalling in the differentiation of neurons from dorsal root ganglia and sympathetic ganglia. Cell Tissue Res 336:349–84
    [Google Scholar]
  44. Fahey MC, Maclennan AH, Kretzschmar D, Gecz J, Kruer MC 2017. The genetic basis of cerebral palsy. Dev. Med. Child Neurol 59:462–69
    [Google Scholar]
  45. Festila D, Ghergie M, Muntean A, Matiz D, Serb Nescu A 2014. Suckling and non-nutritive sucking habit: What should we know?. Clujul Med 87:11–14
    [Google Scholar]
  46. Field D, Garland M, Williams K 2003. Correlates of specific childhood feeding problems. J. Paediatr. Child Health 39:299–304
    [Google Scholar]
  47. Filip C, Impieri D, Aagenaes I, Breugem C, Hogevold HE et al. 2018. Adults with 22q11.2 deletion syndrome have a different velopharyngeal anatomy with predisposition to velopharyngeal insufficiency. J. Plastic Reconstr. Aesthet. Surg. 71:524–36
    [Google Scholar]
  48. Fode C, Gradwohl G, Morin X, Dierich A, LeMeur M et al. 1998. The bHLH protein NEUROGENIN 2 is a determination factor for epibranchial placode–derived sensory neurons. Neuron 20:483–94
    [Google Scholar]
  49. Gonzalez-Fernandez M, Brodsky MB, Palmer JB 2015. Poststroke communication disorders and dysphagia. Phys. Med. Rehabil. Clin. North Am. 26:657–70
    [Google Scholar]
  50. Gould FDH, Yglesias B, Ohlemacher J, German RZ 2017. Pre-pharyngeal swallow effects of recurrent laryngeal nerve lesion on bolus shape and airway protection in an infant pig model. Dysphagia 32:362–73
    [Google Scholar]
  51. Grifone R, Jarry T, Dandonneau M, Grenier J, Duprez D, Kelly RG 2008. Properties of branchiomeric and somite-derived muscle development in Tbx1 mutant embryos. Dev. Dyn. 237:3071–78
    [Google Scholar]
  52. Gust J, Wright JJ, Pratt EB, Bosma MM 2003. Development of synchronized activity of cranial motor neurons in the segmented embryonic mouse hindbrain. J. Physiol. 550:123–33
    [Google Scholar]
  53. Hadders-Algra M 2018. Early human motor development: from variation to the ability to vary and adapt. Neurosci. Biobehav. Rev. 90:411–27
    [Google Scholar]
  54. Huang EJ, Wilkinson GA, Farinas I, Backus C, Zang K et al. 1999. Expression of Trk receptors in the developing mouse trigeminal ganglion: in vivo evidence for NT-3 activation of TrkA and TrkB in addition to TrkC. Development 126:2191–203
    [Google Scholar]
  55. Huang RY, Shapiro NL 2000. Structural airway anomalies in patients with DiGeorge syndrome: a current review. Am. J. Otolaryngol. 21:326–30
    [Google Scholar]
  56. Indramohan G, Pedigo TP, Rostoker N, Cambare M, Grogan T, Federman MD 2017. Identification of risk factors for poor feeding in infants with congenital heart disease and a novel approach to improve oral feeding. J. Pediatr. Nurs. 35:149–54
    [Google Scholar]
  57. Isaacs JS, Murdock M, Lane J, Percy AK 2003. Eating difficulties in girls with Rett syndrome compared with other developmental disabilities. J. Am. Diet. Assoc. 103:224–30
    [Google Scholar]
  58. Jacobs IJ, Ku WY, Que J 2012. Genetic and cellular mechanisms regulating anterior foregut and esophageal development. Dev. Biol. 369:54–64
    [Google Scholar]
  59. Jean A 2001. Brain stem control of swallowing: neuronal network and cellular mechanisms. Physiol. Rev. 81:929–69
    [Google Scholar]
  60. Jerome LA, Papaioannou VE 2001. DiGeorge syndrome phenotype in mice mutant for the T-box gene. Tbx1. Nat. Genet. 27:286–91
    [Google Scholar]
  61. Kaplan N, Razy-Krajka F, Christiaen L 2015. Regulation and evolution of cardiopharyngeal cell identity and behavior: insights from simple chordates. Curr. Opin. Genet. Dev. 32:119–28
    [Google Scholar]
  62. Karpinski BA, Bryan CA, Paronett EM, Baker JL, Fernandez A et al. 2016. A cellular and molecular mosaic establishes growth and differentiation states for cranial sensory neurons. Dev. Biol. 415:228–41
    [Google Scholar]
  63. Karpinski BA, Maynard TM, Fralish MS, Nuwayhid S, Zohn IE et al. 2014. Dysphagia and disrupted cranial nerve development in a mouse model of DiGeorge (22q11) deletion syndrome. Dis. Model. Mech. 7:245–57
    [Google Scholar]
  64. Kelly RG, Jerome-Majewska LA, Papaioannou VE 2004. The del22q11.2 candidate gene Tbx1 regulates branchiomeric myogenesis. Hum. Mol. Genet. 13:2829–40
    [Google Scholar]
  65. Keyte A, Hutson MR. 2012. The neural crest in cardiac congenital anomalies. Differentiation 84:25–40
    [Google Scholar]
  66. Klein R, Silos-Santiago I, Smeyne RJ, Lira SA, Brambilla R et al. 1994. Disruption of the neurotrophin-3 receptor gene trkC eliminates la muscle afferents and results in abnormal movements. Nature 368:249–51
    [Google Scholar]
  67. Kleinert JO. 2017. Pediatric feeding disorders and severe developmental disabilities. Semin. Speech Lang. 38:116–25
    [Google Scholar]
  68. Koffman DJ, Petrov ES, Varlinskaya EI, Smotherman WP 1998. Thermal, olfactory, and tactile stimuli increase oral grasping of an artificial nipple by the newborn rat. Dev. Psychobiol. 33:317–26
    [Google Scholar]
  69. Kollara L, Baylis AL, Kirschner RE, Bates DG, Smith M et al. 2019. Velopharyngeal structural and muscle variations in children with 22q11.2 deletion syndrome: an unsedated MRI study. Cleft Palate Craniofac. J. 56:1139–48
    [Google Scholar]
  70. Kolta A 1997. In vitro investigation of synaptic relations between interneurons surrounding the trigeminal motor nucleus and masseteric motoneurons. J. Neurophysiol. 78:1720–25
    [Google Scholar]
  71. Kong P, Racedo SE, Macchiarulo S, Hu Z, Carpenter C et al. 2014. Tbx1 is required autonomously for cell survival and fate in the pharyngeal core mesoderm to form the muscles of mastication. Hum. Mol. Genet. 23:4215–31
    [Google Scholar]
  72. Krishnan A, Zhang R, Yao V, Theesfeld CL, Wong AK et al. 2016. Genome-wide prediction and functional characterization of the genetic basis of autism spectrum disorder. Nat. Neurosci. 19:1454–62
    [Google Scholar]
  73. Kuratani S 2018. The neural crest and origin of the neurocranium in vertebrates. Genesis 56:e23213
    [Google Scholar]
  74. Laitman JT, Crelin ES, Conlogue GJ 1977. The function of the epiglottis in monkey and man. Yale J. Biol. Med. 50:43–48
    [Google Scholar]
  75. LaMantia A-S, Moody SA, Maynard TM, Karpinski BA, Zohn IE et al. 2016. Hard to swallow: developmental biological insights into pediatric dysphagia. Dev. Biol. 409:329–42
    [Google Scholar]
  76. Lau C 2015. Development of suck and swallow mechanisms in infants. Ann. Nutr. Metab. 66:Suppl. 57–14
    [Google Scholar]
  77. Lewis SL, Tam PP 2006. Definitive endoderm of the mouse embryo: formation, cell fates, and morphogenetic function. Dev. Dyn. 235:2315–29
    [Google Scholar]
  78. Lindsay EA, Vitelli F, Su H, Morishima M, Huynh T et al. 2001. Tbx1 haploinsufficieny in the DiGeorge syndrome region causes aortic arch defects in mice. Nature 410:97–101
    [Google Scholar]
  79. Lindsay RM 1996. Role of neurotrophins and trk receptors in the development and maintenance of sensory neurons: an overview. Philos. Trans. R. Soc. Lond. B Biol. Sci. 351:365–73
    [Google Scholar]
  80. Logan DW, Brunet LJ, Webb WR, Cutforth T, Ngai J, Stowers L 2012. Learned recognition of maternal signature odors mediates the first suckling episode in mice. Curr. Biol. 22:1998–2007
    [Google Scholar]
  81. Loos HM, Reger D, Schaal B 2019. The odour of human milk: its chemical variability and detection by newborns. Physiol. Behav. 199:88–99
    [Google Scholar]
  82. Matsuo K, Palmer JB 2008. Anatomy and physiology of feeding and swallowing: normal and abnormal. Phys. Med. Rehabil. Clin. N. Am. 19:691–707
    [Google Scholar]
  83. Matsuo K, Palmer JB 2015. Coordination of oro-pharyngeal food transport during chewing and respiratory phase. Physiol. Behav. 142:52–56
    [Google Scholar]
  84. Maynard TM, Gopalakrishna D, Meechan DW, Paronett EM, Newbern JM, LaMantia A-S 2013. 22q11 Gene dosage establishes an adaptive range for sonic hedgehog and retinoic acid signaling during early development. Hum. Mol. Genet. 22:300–12
    [Google Scholar]
  85. Maynard TM, Haskell GT, Peters AZ, Sikich L, Lieberman JA, LaMantia A-S 2003. A comprehensive analysis of 22q11 gene expression in the developing and adult brain. PNAS 100:14433–38
    [Google Scholar]
  86. Maynard TM, Meechan DW, Dudevoir ML, Gopalakrishna D, Peters AZ et al. 2008. Mitochondrial localization and function of a subset of 22q11 deletion syndrome candidate genes. Mol. Cell. Neurosci. 39:439–51
    [Google Scholar]
  87. McCain GC 2003. An evidence-based guideline for introducing oral feeding to healthy preterm infants. Neonatal Netw 22:45–50
    [Google Scholar]
  88. McDonald-McGinn DM, Sullivan KE, Marino B, Philip N, Swillen A et al. 2015. 22q11.2 deletion syndrome. Nat. Rev. Dis. Primers 1:15071
    [Google Scholar]
  89. Medoff-Cooper B, Bilker W, Kaplan JM 2010. Sucking patterns and behavioral state in 1- and 2-day-old full-term infants. J. Obstet. Gynecol. Neonatal Nurs. 39:519–24
    [Google Scholar]
  90. Meechan DW, Maynard TM, Gopalakrishna D, Wu Y, LaMantia A-S 2007. When half is not enough: gene expression and dosage in the 22q11 deletion syndrome. Gene Expr 13:299–310
    [Google Scholar]
  91. Meechan DW, Maynard TM, Tucker ES, Fernandez A, Karpinski BA et al. 2015. Modeling a model: mouse genetics, 22q11.2 deletion syndrome, and disorders of cortical circuit development. Prog. Neurobiol. 130:1–28
    [Google Scholar]
  92. Merscher S, Funke B, Epstein JA, Heyer J, Puech A et al. 2001. TBX1 is responsible for cardiovascular defects in velo-cardio-facial/DiGeorge syndrome. Cell 104:619–29
    [Google Scholar]
  93. Mezzedimi C, Livi W, De Felice C, Cocca S 2017. Dysphagia in Rett syndrome: a descriptive study. Ann. Otol. Rhinol. Laryngol. 126:640–45
    [Google Scholar]
  94. Mikaels A, Livet J, Westphal H, De Lapeyriere O, Ernfors P 2000. A dynamic regulation of GDNF-family receptors correlates with a specific trophic dependency of cranial motor neuron subpopulations during development. Eur. J. Neurosci. 12:446–56
    [Google Scholar]
  95. Milam RW Jr., Cabrera MT, Carter LA, Warner DD, Wereszczak JK, Aylsworth AS 2014. Further support for first-trimester disruption causing the oromandibular-limb hypogenesis spectrum of anomalies. Clin. Dysmorphol. 23:101–4
    [Google Scholar]
  96. Miller CK 2011. Feeding issues and interventions in infants and children with clefts and craniofacial syndromes. Semin. Speech Lang. 32:115–26
    [Google Scholar]
  97. Miller JL, Sonies BC, Macedonia C 2003. Emergence of oropharyngeal, laryngeal and swallowing activity in the developing fetal upper aerodigestive tract: an ultrasound evaluation. Early Hum. Dev. 71:61–87
    [Google Scholar]
  98. Morquette P, Lavoie R, Fhima MD, Lamoureux X, Verdier D, Kolta A 2012. Generation of the masticatory central pattern and its modulation by sensory feedback. Prog. Neurobiol. 96:340–55
    [Google Scholar]
  99. Morrow EM, Pescosolido MF 2018. Christianson syndrome. GeneReviews® MP Adam, HH Ardinger, RA Pagon, SE Wallace, LJH Bean, et al Seattle, WA: Univ. Washington https://www.ncbi.nlm.nih.gov/books/NBK475801/
    [Google Scholar]
  100. Motahari Z, Moody SA, Maynard TM, LaMantia A-S 2019. In the line-up: deleted genes associated with DiGeorge/22q11.2 deletion syndrome: Are they all suspects?. J. Neurodevelopmental Disord. 11:7
    [Google Scholar]
  101. Muller F, O'Rahilly R 2011. The initial appearance of the cranial nerves and related neuronal migration in staged human embryos. Cells Tissues Organs 193:215–38
    [Google Scholar]
  102. Muscatelli F, Bouret SG 2018. Wired for eating: How is an active feeding circuitry established in the postnatal brain. ? Curr. Opin. Neurobiol. 52:165–71
    [Google Scholar]
  103. Nakamura Y, Katakura N, Nakajima M, Liu J 2004. Rhythm generation for food-ingestive movements. Prog. Brain Res. 143:97–103
    [Google Scholar]
  104. Nicholls D, Bryant-Waugh R 2009. Eating disorders of infancy and childhood: definition, symptomatology, epidemiology, and comorbidity. Child Adolesc. Psychiatr. Clin. N. Am. 18:17–30
    [Google Scholar]
  105. Nowotschin S, Hadjantonakis AK, Campbell K 2019. The endoderm: a divergent cell lineage with many commonalities. Development 146:dev150920
    [Google Scholar]
  106. Okubo T, Takada S 2015. Pharyngeal arch deficiencies affect taste bud development in the circumvallate papilla with aberrant glossopharyngeal nerve formation. Dev. Dyn. 244:874–87
    [Google Scholar]
  107. O'Rahilly R, Muller F 1984. The early development of the hypoglossal nerve and occipital somites in staged human embryos. Am. J. Anat. 169:237–57
    [Google Scholar]
  108. Osugo M, Morrison J, Allan L, Kinnear D, Cooper SA 2017. Prevalence, types and associations of medically unexplained symptoms and signs. A cross-sectional study of 1023 adults with intellectual disabilities. J. Intellect. Disabil. Res. 61:637–42
    [Google Scholar]
  109. Oystreck DT, Engle EC, Bosley TM 2011. Recent progress in understanding congenital cranial dysinnervation disorders. J. Neuroophthalmol. 31:69–77
    [Google Scholar]
  110. Parada C, Chai Y 2015. Mandible and tongue development. Curr. Top. Dev. Biol. 115:31–58
    [Google Scholar]
  111. Parada C, Han D, Chai Y 2012. Molecular and cellular regulatory mechanisms of tongue myogenesis. J. Dent. Res. 91:528–35
    [Google Scholar]
  112. Parker HJ, Bronner ME, Krumlauf R 2016. The vertebrate Hox gene regulatory network for hindbrain segmentation: evolution and diversification: Coupling of a Hox gene regulatory network to hindbrain segmentation is an ancient trait originating at the base of vertebrates. BioEssays 38:526–38
    [Google Scholar]
  113. Pereira KDR, Firpo C, Gasparin M, Teixeira AR, Dornelles S et al. 2015. Evaluation of swallowing in infants with congenital heart defect. Int. Arch. Otorhinolaryngol. 19:55–60
    [Google Scholar]
  114. Pharoah PO 2007. Prevalence and pathogenesis of congenital anomalies in cerebral palsy. Arch. Dis. Child. Fetal Neonatal Ed. 92:F489–93
    [Google Scholar]
  115. Pinelli J, Symington A 2000. How rewarding can a pacifier be? A systematic review of nonnutritive sucking in preterm infants. Neonatal Netw 19:41–48
    [Google Scholar]
  116. Plein A, Fantin A, Ruhrberg C 2015. Neural crest cells in cardiovascular development. Curr. Top. Dev. Biol. 111:183–200
    [Google Scholar]
  117. Polychronis S, Dervenoulas G, Yousaf T, Niccolini F, Pagano G, Politis M 2019. Dysphagia is associated with presynaptic dopaminergic dysfunction and greater non-motor symptom burden in early drug-naive Parkinson's patients. PLOS ONE 14:e0214352
    [Google Scholar]
  118. Que J 2015. The initial establishment and epithelial morphogenesis of the esophagus: a new model of tracheal-esophageal separation and transition of simple columnar into stratified squamous epithelium in the developing esophagus. Wiley Interdiscip. Rev. Dev. Biol. 4:419–30
    [Google Scholar]
  119. Que J, Choi M, Ziel JW, Klingensmith J, Hogan BL 2006. Morphogenesis of the trachea and esophagus: current players and new roles for noggin and Bmps. Differentiation 74:422–37
    [Google Scholar]
  120. Reissland N, Mason C, Schaal B, Lincoln K 2012. Prenatal mouth movements: Can we identify co-ordinated fetal mouth and lip actions necessary for feeding?. Int. J. Pediatr. 2012:848596
    [Google Scholar]
  121. Rinon A, Lazar S, Marshall H, Buchmann-Moller S, Neufeld A et al. 2007. Cranial neural crest cells regulate head muscle patterning and differentiation during vertebrate embryogenesis. Development 134:3065–75
    [Google Scholar]
  122. Roberts AE, Allanson JE, Tartaglia M, Gelb BD 2013. Noonan syndrome. Lancet 381:333–42
    [Google Scholar]
  123. Robertson J, Chadwick D, Baines S, Emerson E, Hatton C 2017. Prevalence of dysphagia in people with intellectual disability: a systematic review. Intellect. Dev. Disabil. 55:377–91
    [Google Scholar]
  124. Rommel N, Hamdy S 2016. Oropharyngeal dysphagia: manifestations and diagnosis. Nat. Rev. Gastroenterol. Hepatol. 13:49–59
    [Google Scholar]
  125. Rossi MA, Stuber GD 2018. Overlapping brain circuits for homeostatic and hedonic feeding. Cell Metab 27:42–56
    [Google Scholar]
  126. Ruder L, Arber S 2019. Brainstem circuits controlling action diversification. Annu. Rev. Neurosci. 42:485–504
    [Google Scholar]
  127. Sant'Anna LB, Tosello DO 2006. Fetal alcohol syndrome and developing craniofacial and dental structures—a review. Orthod. Craniofac. Res. 9:172–85
    [Google Scholar]
  128. Sasegbon A, Hamdy S 2017. The anatomy and physiology of normal and abnormal swallowing in oropharyngeal dysphagia. Neurogastroenterol. Motil. 29:e13100
    [Google Scholar]
  129. Scambler PJ 2010. 22q11 Deletion syndrome: a role for TBX1 in pharyngeal and cardiovascular development. Pediatr. Cardiol. 31:378–90
    [Google Scholar]
  130. Schmidt J, Piekarski N, Olsson L 2013. Cranial muscles in amphibians: development, novelties and the role of cranial neural crest cells. J. Anat. 222:134–46
    [Google Scholar]
  131. Self L, Dagenais L, Shevell M 2012. Congenital non-central nervous system malformations in cerebral palsy: a distinct subset. ? Dev. Med. Child Neurol. 54:748–52
    [Google Scholar]
  132. Shah N, Rodriguez M, Louis DS, Lindley K, Milla PJ 1999. Feeding difficulties and foregut dysmotility in Noonan's syndrome. Arch. Dis. Child. 81:28–31
    [Google Scholar]
  133. Shen L, Ai H, Liang Y, Ren X, Anthony CB et al. 2013. Effect of prenatal alcohol exposure on bony craniofacial development: a mouse MicroCT study. Alcohol 47:405–15
    [Google Scholar]
  134. Smeyne RJ, Klein R, Schnapp A, Long LK, Bryant S et al. 1994. Severe sensory and sympathetic neuropathies in mice carrying a disrupted Trk/NGF receptor gene. Nature 368:246–49
    [Google Scholar]
  135. Snider WD, Silos-Santiago I 1996. Dorsal root ganglion neurons require functional neurotrophin receptors for survival during development. Philos. Trans. R. Soc. Lond. B Biol. Sci. 351:395–403
    [Google Scholar]
  136. Snookes SH, Gunn JK, Eldridge BJ, Donath SM, Hunt RW et al. 2010. A systematic review of motor and cognitive outcomes after early surgery for congenital heart disease. Pediatrics 125:e818–27
    [Google Scholar]
  137. Solzak JP, Liang Y, Zhou FC, Roper RJ 2013. Commonality in Down and fetal alcohol syndromes. Birth Defects Res. A Clin. Mol. Teratol. 97:187–97
    [Google Scholar]
  138. Stanley MA, Shepherd N, Duvall N, Jenkinson SB, Jalou HE et al. 2019. Clinical identification of feeding and swallowing disorders in 0–6 month old infants with Down syndrome. Am. J. Med. Genet. A 179:177–82
    [Google Scholar]
  139. Steventon B, Mayor R, Streit A 2014. Neural crest and placode interaction during the development of the cranial sensory system. Dev. Biol. 389:28–38
    [Google Scholar]
  140. Tamura Y, Matsushita S, Shinoda K, Yoshida S 1998. Development of perioral muscle activity during suckling in infants: a cross-sectional and follow-up study. Dev. Med. Child Neurol. 40:344–48
    [Google Scholar]
  141. Timonen-Soivio L, Sourander A, Malm H, Hinkka-Yli-Salomaki S, Gissler M et al. 2015. The association between autism spectrum disorders and congenital anomalies by organ systems in a Finnish national birth cohort. J. Autism Dev. Disord. 45:3195–203
    [Google Scholar]
  142. Tischfield MA, Baris HN, Wu C, Rudolph G, Van Maldergem L et al. 2010. Human TUBB3 mutations perturb microtubule dynamics, kinesin interactions, and axon guidance. Cell 140:74–87
    [Google Scholar]
  143. Tischfield MA, Bosley TM, Salih MA, Alorainy IA, Sener EC et al. 2005. Homozygous HOXA1 mutations disrupt human brainstem, inner ear, cardiovascular and cognitive development. Nat. Genet. 37:1035–37
    [Google Scholar]
  144. Torfs CP, Curry CJ, Bateson TF 1995. Population-based study of tracheoesophageal fistula and esophageal atresia. Teratology 52:220–32
    [Google Scholar]
  145. Tripi G, Roux S, Matranga D, Maniscalco L, Glorioso P et al. 2019. Cranio-facial characteristics in children with autism spectrum disorders (ASD). J. Clin. Med. 8:641
    [Google Scholar]
  146. Twachtman-Reilly J, Amaral SC, Zebrowski PP 2008. Addressing feeding disorders in children on the autism spectrum in school-based settings: physiological and behavioral issues. Lang. Speech Hear. Serv. Sch. 39:261–72
    [Google Scholar]
  147. Vantrappen G, Rommel N, Devriendt K, Cremers CW, Feenstra L, Fryns JP 2001. Clinical features in 130 patients with the velo-cardio-facial syndrome. The Leuven experience. Acta Otorhinolaryngol. Belg. 55:43–48
    [Google Scholar]
  148. Versacci P, Di Carlo D, Digilio MC, Marino B 2018. Cardiovascular disease in Down syndrome. Curr. Opin. Pediatr. 30:616–22
    [Google Scholar]
  149. Vogel KS, Davies AM 1991. The duration of neurotrophic factor independence in early sensory neurons is matched to the time course of target field innervation. Neuron 7:819–30
    [Google Scholar]
  150. Wang X, Bryan C, LaMantia A-S, Mendelowitz D 2017. Altered neurobiological function of brainstem hypoglossal neurons in DiGeorge/22q11.2 deletion syndrome. Neuroscience 359:1–7
    [Google Scholar]
  151. Werts RL, Van Calcar SC, Wargowski DS, Smith SM 2014. Inappropriate feeding behaviors and dietary intakes in children with fetal alcohol spectrum disorder or probable prenatal alcohol exposure. Alcohol. Clin. Exp. Res. 38:871–78
    [Google Scholar]
  152. Westhorpe RN 1987. The position of the larynx in children and its relationship to the ease of intubation. Anaesth. Intensive Care 15:384–88
    [Google Scholar]
  153. Whitman MC, Engle EC 2017. Ocular congenital cranial dysinnervation disorders (CCDDs): insights into axon growth and guidance. Hum. Mol. Genet. 26:R37–44
    [Google Scholar]
  154. Widdershoven JC, Spruijt NE, Spliet WG, Breugem CC, Kon M, Mink van der Molen AB 2011. Histology of the pharyngeal constrictor muscle in 22q11.2 deletion syndrome and non-syndromic children with velopharyngeal insufficiency. PLOS ONE 6:e21672
    [Google Scholar]
  155. Willsey AJ, Morris MT, Wang S, Willsey HR, Sun N et al. 2018. The psychiatric cell map initiative: a convergent systems biological approach to illuminating key molecular pathways in neuropsychiatric disorders. Cell 174:505–20
    [Google Scholar]
  156. Woda A, Foster K, Mishellany A, Peyron MA 2006. Adaptation of healthy mastication to factors pertaining to the individual or to the food. Physiol. Behav. 89:28–35
    [Google Scholar]
  157. Wright DE, Snider WD 1995. Neurotrophin receptor mRNA expression defines distinct populations of neurons in rat dorsal root ganglia. J. Comp. Neurol. 351:329–38
    [Google Scholar]
  158. Yamada K, Andrews C, Chan WM, McKeown CA, Magli A et al. 2003. Heterozygous mutations of the kinesin KIF21A in congenital fibrosis of the extraocular muscles type 1 (CFEOM1). Nat. Genet. 35:318–21
    [Google Scholar]
  159. Yamane A 2005. Embryonic and postnatal development of masticatory and tongue muscles. Cell Tissue Res 322:183–89
    [Google Scholar]
  160. Ziermann JM, Diogo R, Noden DM 2018. Neural crest and the patterning of vertebrate craniofacial muscles. Genesis 56:e23097
    [Google Scholar]
  161. Zim S, Schelper R, Kellman R, Tatum S, Ploutz-Snyder R, Shprintzen R 2003. Thickness and histologic and histochemical properties of the superior pharyngeal constrictor muscle in velocardiofacial syndrome. Arch. Facial Plastic Surg. 5:503–10
    [Google Scholar]
  162. Zimmer MR, Schmitz AE, Dietrich MO 2019. Activation of Agrp neurons modulates memory-related cognitive processes in mice. Pharmacol. Res. 141:303–9
    [Google Scholar]
/content/journals/10.1146/annurev-neuro-100419-100636
Loading
/content/journals/10.1146/annurev-neuro-100419-100636
Loading

Data & Media loading...

Supplemental Material

Supplementary Data

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error