1932

Abstract

The cerebellum has a well-established role in controlling motor functions, including coordination, posture, and the learning of skilled movements. The mechanisms for how it carries out motor behavior remain under intense investigation. Interestingly though, in recent years the mechanisms of cerebellar function have faced additional scrutiny since nonmotor behaviors may also be controlled by the cerebellum. With such complexity arising, there is now a pressing need to better understand how cerebellar structure, function, and behavior intersect to influence behaviors that are dynamically called upon as an animal experiences its environment. Here, we discuss recent experimental work that frames possible neural mechanisms for how the cerebellum shapes disparate behaviors and why its dysfunction is catastrophic in hereditary and acquired conditions—both motor and nonmotor. For these reasons, the cerebellum might be the ideal therapeutic target.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-neuro-100423-104943
2024-08-08
2025-04-26
Loading full text...

Full text loading...

/deliver/fulltext/neuro/47/1/annurev-neuro-100423-104943.html?itemId=/content/journals/10.1146/annurev-neuro-100423-104943&mimeType=html&fmt=ahah

Literature Cited

  1. Ackermann H, Wildgruber D, Daum I, Grodd W. 1998.. Does the cerebellum contribute to cognitive aspects of speech production? A functional magnetic resonance imaging (fMRI) study in humans. . Neurosci. Lett. 247:(2–3):18790
    [Crossref] [Google Scholar]
  2. Adamaszek M, D'Agata F, Ferrucci R, Habas C, Keulen S, et al. 2017.. Consensus paper: cerebellum and emotion. . Cerebellum 16:(2):55276
    [Crossref] [Google Scholar]
  3. Aertsen AM, Gerstein GL, Habib MK, Palm G. 1989.. Dynamics of neuronal firing correlation: modulation of “effective connectivity. .” J. Neurophysiol. 61:(5):90017
    [Crossref] [Google Scholar]
  4. Akbari S, Hassani-Abharian P, Tajeri B. 2022.. The effect of transcranial direct current stimulation (tDCS) on cerebellum in reduction of the symptoms of obsessive-compulsive disorder. . Neurocase 28:(2):13539
    [Crossref] [Google Scholar]
  5. Albus JS. 1971.. A theory of cerebellar function. . Math. Biosci. 10:(1–2):2561
    [Crossref] [Google Scholar]
  6. Aldinger KA, Thomson Z, Phelps IG, Haldipur P, Deng M, et al. 2021.. Spatial and cell type transcriptional landscape of human cerebellar development. . Nat. Neurosci. 24:(8):116375
    [Crossref] [Google Scholar]
  7. Alviña K, Ellis-Davies G, Khodakhah K. 2009.. T-type calcium channels mediate rebound firing in intact deep cerebellar neurons. . Neuroscience 158:(2):63541
    [Crossref] [Google Scholar]
  8. Am. Psychiatr. Assoc. 2013.. Diagnostic and Statistical Manual of Mental Disorders. Washington, DC:: Am. Psychiatr. Assoc. , 5th ed..
    [Google Scholar]
  9. Apps R, Hawkes R. 2009.. Cerebellar cortical organization: a one-map hypothesis. . Nat. Rev. Neurosci. 10:(9):67081
    [Crossref] [Google Scholar]
  10. Apps R, Hawkes R, Aoki S, Bengtsson F, Brown AM, et al. 2018.. Cerebellar modules and their role as operational cerebellar processing units: a consensus paper. . Cerebellum 17:(5):65482
    [Crossref] [Google Scholar]
  11. Åström M, Diczfalusy E, Martens H, Wardell K. 2015.. Relationship between neural activation and electric field distribution during deep brain stimulation. . IEEE Trans Biomed. Eng. 62:(2):66472
    [Crossref] [Google Scholar]
  12. Åström M, Samuelsson J, Roothans J, Fytagoridis A, Ryzhkov M, et al. 2018.. Prediction of electrode contacts for clinically effective deep brain stimulation in essential tremor. . Stereotact. Funct. Neurosurg. 96:(5):28188
    [Crossref] [Google Scholar]
  13. Azevedo FAC, Carvalho LRB, Grinberg LT, Farfel JM, Ferretti REL, et al. 2009.. Equal numbers of neuronal and nonneuronal cells make the human brain an isometrically scaled-up primate brain. . J. Comp. Neurol. 513:(5):53241
    [Crossref] [Google Scholar]
  14. Badura A, Schonewille M, Voges K, Galliano E, Renier N, et al. 2013.. Climbing fiber input shapes reciprocity of Purkinje cell firing. . Neuron 78:(4):70013
    [Crossref] [Google Scholar]
  15. Baek SJ, Park JS, Kim J, Yamamoto Y, Tanaka-Yamamoto K. 2022.. VTA-projecting cerebellar neurons mediate stress-dependent depression-like behaviors. . eLife 11::e72981
    [Crossref] [Google Scholar]
  16. Baker KB, Plow EB, Nagel S, Rosenfeldt AB, Gopalakrishnan R, et al. 2023.. Cerebellar deep brain stimulation for chronic post-stroke motor rehabilitation: a phase I trial. . Nat. Med. 29::236674
    [Crossref] [Google Scholar]
  17. Bareš M, Apps R, Avanzino L, Breska A, D'Angelo E, et al. 2019.. Consensus paper: decoding the contributions of the cerebellum as a time machine. From neurons to clinical applications. . Cerebellum 18:(2):26686
    [Crossref] [Google Scholar]
  18. Bastian AJ. 2006.. Learning to predict the future: The cerebellum adapts feedforward movement control. . Curr. Opin. Neurobiol. 16:(6):64549
    [Crossref] [Google Scholar]
  19. Baumann O, Borra RJ, Bower JM, Cullen KE, Habas C, et al. 2015.. Consensus paper: the role of the cerebellum in perceptual processes. . Cerebellum 14:(2):197220
    [Crossref] [Google Scholar]
  20. Becker MI, Person AL. 2019.. Cerebellar control of reach kinematics for endpoint precision. . Neuron 103:(2):33548.e5
    [Crossref] [Google Scholar]
  21. Beckinghausen J, Sillitoe RV. 2019.. Insights into cerebellar development and connectivity. . Neurosci. Lett. 688::213
    [Crossref] [Google Scholar]
  22. Beier KT, Steinberg EE, DeLoach KE, Xie S, Miyamichi K, et al. 2015.. Circuit architecture of VTA dopamine neurons revealed by systematic input-output mapping. . Cell 162:(3):62234
    [Crossref] [Google Scholar]
  23. Benarroch E. 2023.. What is the involvement of the cerebellum during sleep?. Neurology 100:(12):57277
    [Crossref] [Google Scholar]
  24. Benussi A, Batsikadze G, França C, Cury RG, Maas RPPWM. 2023.. The therapeutic potential of non-invasive and invasive cerebellar stimulation techniques in hereditary ataxias. . Cells 12:(8):1193
    [Crossref] [Google Scholar]
  25. Bjerke IE, Yates SC, Laja A, Witter MP, Puchades MA, et al. 2021.. Densities and numbers of calbindin and parvalbumin positive neurons across the rat and mouse brain. . iScience 24:(1):101906
    [Crossref] [Google Scholar]
  26. Blot FGC, White JJ, van Hattem A, Scotti L, Balaji V, et al. 2023.. Purkinje cell microzones mediate distinct kinematics of a single movement. . Nat. Commun. 14:(1):4358
    [Crossref] [Google Scholar]
  27. Bodranghien F, Bastian A, Casali C, Hallett M, Louis ED, et al. 2016.. Consensus paper: revisiting the symptoms and signs of cerebellar syndrome. . Cerebellum 15:(3):36991
    [Crossref] [Google Scholar]
  28. Bohne P, Schwarz MK, Herlitze S, Mark MD. 2019.. A new projection from the deep cerebellar nuclei to the hippocampus via the ventrolateral and laterodorsal thalamus in mice. . Front. Neural Circuits 13::51
    [Crossref] [Google Scholar]
  29. Brown AM, White JJ, van der Heijden ME, Zhou J, Lin T, Sillitoe RV. 2020.. Purkinje cell misfiring generates high-amplitude action tremors that are corrected by cerebellar deep brain stimulation. . eLife 9::e51928
    [Crossref] [Google Scholar]
  30. Brown EG, Bledsoe IO, Luthra NS, Miocinovic S, Starr PA, Ostrem JL. 2020.. Cerebellar deep brain stimulation for acquired hemidystonia. . Mov. Disord. Clin. Pract. 7:(2):18893
    [Crossref] [Google Scholar]
  31. Buisseret-Delmas C, Angaut P. 1993.. The cerebellar olivo-corticonuclear connections in the rat. . Prog. Neurobiol. 40:(1):6387
    [Crossref] [Google Scholar]
  32. Cajigas I, Morrison MA, Luciano MS, Starr PA. 2023.. Cerebellar deep brain stimulation for the treatment of movement disorders in cerebral palsy. . J. Neurosurg. 139:(3):60514
    [Crossref] [Google Scholar]
  33. Canto CB, Onuki Y, Bruinsma B, van der Werf YD, De Zeeuw CI. 2017.. The sleeping cerebellum. . Trends Neurosci. 40:(5):30923
    [Crossref] [Google Scholar]
  34. Carta I, Chen CH, Schott AL, Dorizan S, Khodakhah K. 2019.. Cerebellar modulation of the reward circuitry and social behavior. . Science 363:(6424):eaav0581
    [Crossref] [Google Scholar]
  35. Cerminara NL, Lang EJ, Sillitoe RV, Apps R. 2015.. Redefining the cerebellar cortex as an assembly of non-uniform Purkinje cell microcircuits. . Nat. Rev. Neurosci. 16:(2):7993
    [Crossref] [Google Scholar]
  36. Chabrol FP, Arenz A, Wiechert MT, Margrie TW, DiGregorio DA. 2015.. Synaptic diversity enables temporal coding of coincident multisensory inputs in single neurons. . Nat. Neurosci. 18:(5):71827
    [Crossref] [Google Scholar]
  37. Cheron G, Dan B, Márquez-Ruiz J. 2013.. Translational approach to behavioral learning: lessons from cerebellar plasticity. . Neural Plast. 2013::853654
    [Crossref] [Google Scholar]
  38. Ciapponi C, Li Y, Osorio Becerra DA, Rodarie D, Casellato C, et al. 2023.. Variations on the theme: focus on cerebellum and emotional processing. . Front. Syst. Neurosci. 17::1185752
    [Crossref] [Google Scholar]
  39. Cisek P. 2022.. Evolution of behavioural control from chordates to primates. . Philos. Trans. R. Soc. B 377:(1844):20200522
    [Crossref] [Google Scholar]
  40. Clausi S, Siciliano L, Olivito G, Leggio M. 2022.. Cerebellum and emotion in social behavior. . Adv. Exp. Med. Biol. 1378::23553
    [Crossref] [Google Scholar]
  41. Clifford H, Dulneva A, Ponting CP, Haerty W, Becker EBE. 2019.. A gene expression signature in developing Purkinje cells predicts autism and intellectual disability co-morbidity status. . Sci. Rep. 9:(1):485
    [Crossref] [Google Scholar]
  42. Cooperrider J, Furmaga H, Plow E, Park H-J, Chen Z, et al. 2014.. Chronic deep cerebellar stimulation promotes long-term potentiation, microstructural plasticity, and reorganization of perilesional cortical representation in a rodent model. . J. Neurosci. 34:(27):904050
    [Crossref] [Google Scholar]
  43. D'Angelo E, Mapelli L, Casellato C, Garrido JA, Luque N, et al. 2016.. Distributed circuit plasticity: new clues for the cerebellar mechanisms of learning. . Cerebellum 15:(2):13951
    [Crossref] [Google Scholar]
  44. D'Urso G, Dini M, Bonato M, Gallucci S, Parazzini M, et al. 2022.. Simultaneous bilateral frontal and bilateral cerebellar transcranial direct current stimulation in treatment-resistant depression—clinical effects and electrical field modelling of a novel electrodes montage. . Biomedicines 10:(7):1681
    [Crossref] [Google Scholar]
  45. Damasio AR, Grabowski TJ, Bechara A, Damasio H, Ponto LL, et al. 2000.. Subcortical and cortical brain activity during the feeling of self-generated emotions. . Nat. Neurosci. 3:(10):104956
    [Crossref] [Google Scholar]
  46. De Schepper R, Geminiani A, Masoli S, Rizza MF, Antonietti A, et al. 2022.. Model simulations unveil the structure-function-dynamics relationship of the cerebellar cortical microcircuit. . Commun. Biol. 5:(1):1240
    [Crossref] [Google Scholar]
  47. De Zeeuw CI. 2021.. Bidirectional learning in upbound and downbound microzones of the cerebellum. . Nat. Rev. Neurosci. 22:(2):92110
    [Crossref] [Google Scholar]
  48. De Zeeuw CI, Lisberger SG, Raymond JL. 2021.. Diversity and dynamism in the cerebellum. . Nat. Neurosci. 24:(2):16067
    [Crossref] [Google Scholar]
  49. Dean P, Porrill J. 2016.. The importance of Marr's three levels of analysis for understanding cerebellar function. . In Computational Theories and Their Implementation in the Brain: The Legacy of David Marr, ed. LM Vaina, RE Passingham , pp. 79114. Oxford, UK:: Oxford Univ. Press
    [Google Scholar]
  50. Diedrichsen J, Hashambhoy Y, Rane T, Shadmehr R. 2005.. Neural correlates of reach errors. . J. Neurosci. 25:(43):991931
    [Crossref] [Google Scholar]
  51. Diedrichsen J, King M, Hernandez-Castillo C, Sereno M, Ivry RB. 2019.. Universal transform or multiple functionality? Understanding the contribution of the human cerebellum across task domains. . Neuron 102:(5):91828
    [Crossref] [Google Scholar]
  52. Dooley JC, Sokoloff G, Blumberg MS. 2021.. Movements during sleep reveal the developmental emergence of a cerebellar-dependent internal model in motor thalamus. . Curr. Biol. 31:(24):550111.e5
    [Crossref] [Google Scholar]
  53. Doubliez A, Nio E, Senovilla-Sanz F, Spatharioti V, Apps R, et al. 2023.. The cerebellum and fear extinction: evidence from rodent and human studies. . Front. Syst. Neurosci. 17::1166166
    [Crossref] [Google Scholar]
  54. Farzan F, Wu Y, Manor B, Anastasio EM, Lough M, et al. 2013.. Cerebellar TMS in treatment of a patient with cerebellar ataxia: evidence from clinical, biomechanics and neurophysiological assessments. . Cerebellum 12:(5):70712
    [Crossref] [Google Scholar]
  55. Fatemi SH, Aldinger KA, Ashwood P, Bauman ML, Blaha CD, et al. 2012.. Consensus paper: pathological role of the cerebellum in autism. . Cerebellum 11:(3):777807
    [Crossref] [Google Scholar]
  56. Fernandez L, Rogasch NC, Do M, Clark G, Major BP, et al. 2020.. Cerebral cortical activity following non-invasive cerebellar stimulation—a systematic review of combined TMS and EEG studies. . Cerebellum 19:(2):30935
    [Crossref] [Google Scholar]
  57. Flament D, Ellermann JM, Kim SG, Ugurbil K, Ebner TJ. 1996.. Functional magnetic resonance imaging of cerebellar activation during the learning of a visuomotor dissociation task. . Hum. Brain Mapp. 4:(3):21026
    [Crossref] [Google Scholar]
  58. Fonteneau C, Redoute J, Haesebaert F, Le Bars D, Costes N, et al. 2018.. Frontal transcranial direct current stimulation induces dopamine release in the ventral striatum in human. . Cereb. Cortex 28:(7):263646
    [Crossref] [Google Scholar]
  59. Fox MD. 2018.. Mapping symptoms to brain networks with the human connectome. . N. Engl. J. Med. 379:(23):223745
    [Crossref] [Google Scholar]
  60. Fries P. 2009.. Neuronal gamma-band synchronization as a fundamental process in cortical computation. . Annu. Rev. Neurosci. 32::20924
    [Crossref] [Google Scholar]
  61. Fujita H, Kodama T, du Lac S. 2020.. Modular output circuits of the fastigial nucleus for diverse motor and nonmotor functions of the cerebellar vermis. . eLife 9::e58613
    [Crossref] [Google Scholar]
  62. Gao Z, van Beugen BJ, De Zeeuw CI. 2012.. Distributed synergistic plasticity and cerebellar learning. . Nat. Rev. Neurosci. 13:(9):61935
    [Crossref] [Google Scholar]
  63. Garg S, Goyal N, Tikka SK, Sinha VK. 2013.. Exacerbation of auditory verbal hallucinations with adjunctive high-frequency cerebellar vermal repetitive transcranial magnetic stimulation in schizophrenia: a case report. . J. ECT 29:(1):6566
    [Crossref] [Google Scholar]
  64. Garg S, Sinha VK, Tikka SK, Mishra P, Goyal N. 2016.. The efficacy of cerebellar vermal deep high frequency (theta range) repetitive transcranial magnetic stimulation (rTMS) in schizophrenia: a randomized rater blind-sham controlled study. . Psychiatry Res. 243::41320
    [Crossref] [Google Scholar]
  65. Gatti D, Rinaldi L, Cristea I, Vecchi T. 2021.. Probing cerebellar involvement in cognition through a meta-analysis of TMS evidence. . Sci. Rep. 11:(1):14777
    [Crossref] [Google Scholar]
  66. Geva-Sagiv M, Nir Y. 2019.. Local sleep oscillations: implications for memory consolidation. . Front. Neurosci. 13::813
    [Crossref] [Google Scholar]
  67. Gill JS, Sillitoe RV. 2019.. Functional outcomes of cerebellar malformations. . Front. Cell. Neurosci. 13::441
    [Crossref] [Google Scholar]
  68. Gornati SV, Schäfer CB, Eelkman Rooda OHJ, Nigg AL, De Zeeuw CI, Hoebeek FE. 2018.. Differentiating cerebellar impact on thalamic nuclei. . Cell Rep. 23:(9):2690704
    [Crossref] [Google Scholar]
  69. Grafton ST, Schmitt P, Van Horn J, Diedrichsen J. 2008.. Neural substrates of visuomotor learning based on improved feedback control and prediction. . NeuroImage 39:(3):138395
    [Crossref] [Google Scholar]
  70. Graziano MSA. 2016.. Ethological action maps: a paradigm shift for the motor cortex. . Trends Cogn. Sci. 20:(2):12132
    [Crossref] [Google Scholar]
  71. Grimaldi G, Argyropoulos GP, Boehringer A, Celnik P, Edwards MJ, et al. 2014.. Non-invasive cerebellar stimulation—a consensus paper. . Cerebellum 13:(1):12138
    [Crossref] [Google Scholar]
  72. Guell X, Schmahmann JD, Gabrieli JD, Ghosh SS. 2018.. Functional gradients of the cerebellum. . eLife 7::e36652
    [Crossref] [Google Scholar]
  73. Habas C, Manto M, Cabaraux P. 2019.. The cerebellar thalamus. . Cerebellum 18:(3):63548
    [Google Scholar]
  74. Haldipur P, Millen KJ. 2019.. What cerebellar malformations tell us about cerebellar development. . Neurosci. Lett. 688::1425
    [Crossref] [Google Scholar]
  75. Haldipur P, Millen KJ, Aldinger KA. 2022.. Human cerebellar development and transcriptomics: implications for neurodevelopmental disorders. . Annu. Rev. Neurosci. 45::51531
    [Crossref] [Google Scholar]
  76. Hanakawa T, Dimyan MA, Hallett M. 2008.. Motor planning, imagery, and execution in the distributed motor network: a time-course study with functional MRI. . Cereb. Cortex 18:(12):277588
    [Crossref] [Google Scholar]
  77. Heck DH, Fox MB, Correia Chapman B, McAfee SS, Liu Y. 2023.. Cerebellar control of thalamocortical circuits for cognitive function: a review of pathways and a proposed mechanism. . Front. Syst. Neurosci. 17::1126508
    [Crossref] [Google Scholar]
  78. Heiney SA, Wojaczynski GJ, Medina JF. 2021.. Action-based organization of a cerebellar module specialized for predictive control of multiple body parts. . Neuron 109:(18):298194.e5
    [Crossref] [Google Scholar]
  79. Henschke JU, Pakan JM. 2020.. Disynaptic cerebrocerebellar pathways originating from multiple functionally distinct cortical areas. . eLife 9::e59148
    [Crossref] [Google Scholar]
  80. Herculano-Houzel S, Catania K, Manger PR, Kaas JH. 2015.. Mammalian brains are made of these: a dataset of the numbers and densities of neuronal and nonneuronal cells in the brain of glires, primates, Scandentia, Eulipotyphlans, Afrotherians and Artiodactyls, and their relationship with body mass. . Brain Behav. Evol. 86:(3–4):14563
    [Crossref] [Google Scholar]
  81. Hernandez-Martin E, Arguelles E, Liker M, Robison A, Sanger TD. 2022.. Increased movement-related signals in both basal ganglia and cerebellar output pathways in two children with dystonia. . Front. Neurol. 13::989340
    [Crossref] [Google Scholar]
  82. Herzfeld DJ, Kojima Y, Soetedjo R, Shadmehr R. 2018.. Encoding of error and learning to correct that error by the Purkinje cells of the cerebellum. . Nat. Neurosci. 21:(5):73643
    [Crossref] [Google Scholar]
  83. Horisawa S, Kohara K, Nonaka T, Mochizuki T, Kawamata T, Taira T. 2021.. Case report: deep cerebellar stimulation for tremor and dystonia. . Front. Neurol. 12::642904
    [Crossref] [Google Scholar]
  84. Houck BD, Person AL. 2014.. Cerebellar loops: a review of the nucleocortical pathway. . Cerebellum 13:(3):37885
    [Crossref] [Google Scholar]
  85. Hua JPY, Abram SV, Ford JM. 2022.. Cerebellar stimulation in schizophrenia: a systematic review of the evidence and an overview of the methods. . Front. Psychiatry 13::1069488
    [Crossref] [Google Scholar]
  86. Huang C-C, Sugino K, Shima Y, Guo C, Bai S, et al. 2013.. Convergence of pontine and proprioceptive streams onto multimodal cerebellar granule cells. . eLife 2::e00400
    [Crossref] [Google Scholar]
  87. Huang Y-Z, Chen R-S, Rothwell JC, Wen H-Y. 2007.. The after-effect of human theta burst stimulation is NMDA receptor dependent. . Clin. Neurophysiol. 118:(5):102832
    [Crossref] [Google Scholar]
  88. Hull C, Regehr WG. 2022.. The cerebellar cortex. . Annu. Rev. Neurosci. 45::15175
    [Crossref] [Google Scholar]
  89. Hwang K-D, Baek J, Ryu H-H, Lee J, Shim HG, et al. 2023.. Cerebellar nuclei neurons projecting to the lateral parabrachial nucleus modulate classical fear conditioning. . Cell Rep. 42:(4):112291
    [Crossref] [Google Scholar]
  90. Hyman JM, Zilli EA, Paley AM, Hasselmo ME. 2010.. Working memory performance correlates with prefrontal-hippocampal theta interactions but not with prefrontal neuron firing rates. . Front. Integr. Neurosci. 4::2
    [Google Scholar]
  91. Ishikawa T, Shimuta M, Häusser M. 2015.. Multimodal sensory integration in single cerebellar granule cells in vivo. . eLife 4::e12916
    [Crossref] [Google Scholar]
  92. Ito M. 1972.. Neural design of the cerebellar motor control system. . Brain Res. 40:(1):8184
    [Crossref] [Google Scholar]
  93. Ito M. 2008.. Control of mental activities by internal models in the cerebellum. . Nat. Rev. Neurosci. 9:(4):30413
    [Crossref] [Google Scholar]
  94. Ito M. 2013.. Error detection and representation in the olivo-cerebellar system. . Front. Neural Circuits 7::1
    [Crossref] [Google Scholar]
  95. Jackson A, Xu W. 2023.. Role of cerebellum in sleep-dependent memory processes. . Front. Syst. Neurosci. 17::1154489
    [Crossref] [Google Scholar]
  96. Jones EG. 2001.. The thalamic matrix and thalamocortical synchrony. . Trends Neurosci. 24:(10):595601
    [Crossref] [Google Scholar]
  97. Jones MW, Wilson MA. 2005.. Theta rhythms coordinate hippocampal-prefrontal interactions in a spatial memory task. . PLOS Biol. 3:(12):e402
    [Crossref] [Google Scholar]
  98. Jörntell H, Ekerot C-F. 2002.. Reciprocal bidirectional plasticity of parallel fiber receptive fields in cerebellar Purkinje cells and their afferent interneurons. . Neuron 34:(5):797806
    [Crossref] [Google Scholar]
  99. Kawato M, Ohmae S, Hoang H, Sanger T. 2021.. 50 Years since the Marr, Ito, and Albus models of the cerebellum. . Neuroscience 462::15174
    [Crossref] [Google Scholar]
  100. Kebschull JM, Casoni F, Consalez GG, Goldowitz D, Hawkes R, et al. 2024.. Cerebellum lecture: the cerebellar nuclei—core of the cerebellum. . Cerebellum 23::62077
    [Crossref] [Google Scholar]
  101. King M, Hernandez-Castillo CR, Poldrack RA, Ivry RB, Diedrichsen J. 2019.. Functional boundaries in the human cerebellum revealed by a multi-domain task battery. . Nat. Neurosci. 22:(8):137178
    [Crossref] [Google Scholar]
  102. Koch G, Bonnì S, Casula EP, Iosa M, Paolucci S, et al. 2019.. Effect of cerebellar stimulation on gait and balance recovery in patients with hemiparetic stroke: a randomized clinical trial. . JAMA Neurol. 76:(2):17078
    [Crossref] [Google Scholar]
  103. Koch G, Porcacchia P, Ponzo V, Carrillo F, Cáceres-Redondo MT, et al. 2014.. Effects of two weeks of cerebellar theta burst stimulation in cervical dystonia patients. . Brain Stimulat. 7:(4):56472
    [Crossref] [Google Scholar]
  104. Koziol LF, Budding D, Andreasen N, D'Arrigo S, Bulgheroni S, et al. 2014.. Consensus paper: the cerebellum's role in movement and cognition. . Cerebellum 13:(1):15177
    [Crossref] [Google Scholar]
  105. Kumar G, Asthana P, Yung WH, Kwan KM, Tin C, Ma CHE. 2022.. Deep brain stimulation of the interposed nucleus reverses motor deficits and stimulates production of anti-inflammatory cytokines in ataxia mice. . Mol. Neurobiol. 59:(7):457892
    [Crossref] [Google Scholar]
  106. Lang EJ, Apps R, Bengtsson F, Cerminara NL, De Zeeuw CI, et al. 2017.. The roles of the olivocerebellar pathway in motor learning and motor control. A consensus paper. . Cerebellum 16:(1):23052
    [Crossref] [Google Scholar]
  107. Lee DJ, Lozano CS, Dallapiazza RF, Lozano AM. 2019.. Current and future directions of deep brain stimulation for neurological and psychiatric disorders. . J. Neurosurg. 131:(2):33342
    [Crossref] [Google Scholar]
  108. Liebetanz D, Nitsche MA, Tergau F, Paulus W. 2002.. Pharmacological approach to the mechanisms of transcranial DC-stimulation-induced after-effects of human motor cortex excitability. . Brain 125:(10):223847
    [Crossref] [Google Scholar]
  109. Liu Y, McAfee SS, Van Der Heijden ME, Dhamala M, Sillitoe RV, Heck DH. 2022.. Causal evidence for a role of cerebellar lobulus simplex in prefrontal-hippocampal interaction in spatial working memory decision-making. . Cerebellum 21:(5):76275
    [Crossref] [Google Scholar]
  110. Liu Y, Qi S, Thomas F, Correia BL, Taylor AP, et al. 2020.. Loss of cerebellar function selectively affects intrinsic rhythmicity of eupneic breathing. . Biol. Open 9:(4):bio048785
    [Crossref] [Google Scholar]
  111. Manni E, Petrosini L. 2004.. A century of cerebellar somatotopy: a debated representation. . Nat. Rev. Neurosci. 5:(3):24149
    [Crossref] [Google Scholar]
  112. Mano N. 1970.. Changes of simple and complex spike activity of cerebellar Purkinje cells with sleep and waking. . Science 170:(3964):132527
    [Crossref] [Google Scholar]
  113. Manto M, Bower JM, Conforto AB, Delgado-García JM, Farias da Guarda SN, et al. 2012.. Consensus paper: roles of the cerebellum in motor control—the diversity of ideas on cerebellar involvement in movement. . Cerebellum 11:(2):45787
    [Crossref] [Google Scholar]
  114. Marchesi GF, Strata P. 1970.. Climbing fibers of cat cerebellum: modulation of activity during sleep. . Brain Res. 17:(1):14548
    [Crossref] [Google Scholar]
  115. Marchesi GF, Strata P. 1971.. Mossy and climbing fiber activity during phasic and tonic phenomena of sleep. . Pflugers Arch. 323:(3):21940
    [Crossref] [Google Scholar]
  116. Mariën P, Ackermann H, Adamaszek M, Barwood CHS, Beaton A, et al. 2014.. Consensus paper: Language and the cerebellum: an ongoing enigma. . Cerebellum 13:(3):386410
    [Google Scholar]
  117. Marr D. 1969.. A theory of cerebellar cortex. . J. Physiol. 202:(2):43770
    [Crossref] [Google Scholar]
  118. McAfee SS, Liu Y, Sillitoe RV, Heck DH. 2021.. Cerebellar coordination of neuronal communication in cerebral cortex. . Front. Syst. Neurosci. 15::781527
    [Crossref] [Google Scholar]
  119. McCarley RW, Hobson JA. 1972.. Simple spike firing patterns of cat cerebellar Purkinje cells in sleep and waking. . Electroencephalogr. Clin. Neurophysiol. 33:(5):47183
    [Crossref] [Google Scholar]
  120. Mehta UM, Shadakshari D, Vani P, Naik SS, Kiran Raj V, et al. 2020.. Case report: obsessive compulsive disorder in posterior cerebellar infarction—illustrating clinical and functional connectivity modulation using MRI-informed transcranial magnetic stimulation. . Wellcome Open Res. 5::189
    [Crossref] [Google Scholar]
  121. Mendoza J, Pévet P, Felder-Schmittbuhl M-P, Bailly Y, Challet E. 2010.. The cerebellum harbors a circadian oscillator involved in food anticipation. . J. Neurosci. 30:(5):1894904
    [Crossref] [Google Scholar]
  122. Miterko LN, Baker KB, Beckinghausen J, Bradnam LV, Cheng MY, et al. 2019.. Consensus paper: experimental neurostimulation of the cerebellum. . Cerebellum 18:(6):106497
    [Crossref] [Google Scholar]
  123. Miterko LN, Lin T, Zhou J, van der Heijden ME, Beckinghausen J, et al. 2021.. Neuromodulation of the cerebellum rescues movement in a mouse model of ataxia. . Nat. Commun. 12:(1):1295
    [Crossref] [Google Scholar]
  124. Mittleman G, Goldowitz D, Heck DH, Blaha CD. 2008.. Cerebellar modulation of frontal cortex dopamine efflux in mice: relevance to autism and schizophrenia. . Synapse 62:(7):54450
    [Crossref] [Google Scholar]
  125. Molineux ML, Mehaffey WH, Tadayonnejad R, Anderson D, Tennent AF, Turner RW. 2008.. Ionic factors governing rebound burst phenotype in rat deep cerebellar neurons. . J. Neurophysiol. 100:(5):2684701
    [Crossref] [Google Scholar]
  126. Nakamura M, Bekki M, Miura Y, Itatani M, Jie LX. 2019.. Cerebellar transcranial magnetic stimulation improves ataxia in Minamata disease. . Case Rep. Neurol. 11:(2):16772
    [Crossref] [Google Scholar]
  127. Nieuwhof F, Toni I, Dirkx MF, Gallea C, Vidailhet M, et al. 2022.. Cerebello-thalamic activity drives an abnormal motor network into dystonic tremor. . NeuroImage Clin. 33::102919
    [Crossref] [Google Scholar]
  128. Olivito G, Siciliano L, Leggio M. 2023.. Theory of mind and cerebellum. . In Essentials of Cerebellum and Cerebellar Disorders: A Primer for Graduate Students, ed. DL Gruol, N Koibuchi, M Manto, M Molinari, JD Schmahmann, Y Shen , pp. 37985. Cham, Switz:.: Springer
    [Google Scholar]
  129. Ozol K, Hayden JM, Oberdick J, Hawkes R. 1999.. Transverse zones in the vermis of the mouse cerebellum. . J. Comp. Neurol. 412:(1):95111
    [Crossref] [Google Scholar]
  130. Pauly MG, Steinmeier A, Bolte C, Hamami F, Tzvi E, et al. 2021.. Cerebellar rTMS and PAS effectively induce cerebellar plasticity. . Sci. Rep. 11:(1):3070
    [Crossref] [Google Scholar]
  131. Pisano TJ, Dhanerawala ZM, Kislin M, Bakshinskaya D, Engel EA, et al. 2021.. Homologous organization of cerebellar pathways to sensory, motor, and associative forebrain. . Cell Rep. 36:(12):109721
    [Crossref] [Google Scholar]
  132. Ploghaus A, Tracey I, Clare S, Gati JS, Rawlins JN, Matthews PM. 2000.. Learning about pain: the neural substrate of the prediction error for aversive events. . PNAS 97:(16):928186
    [Crossref] [Google Scholar]
  133. Ploghaus A, Tracey I, Gati JS, Clare S, Menon RS, et al. 1999.. Dissociating pain from its anticipation in the human brain. . Science 284:(5422):197981
    [Crossref] [Google Scholar]
  134. Popa LS, Ebner TJ. 2018.. Cerebellum, predictions and errors. . Front. Cell. Neurosci. 12::524
    [Crossref] [Google Scholar]
  135. Rastogi A, Cash R, Dunlop K, Vesia M, Kucyi A, et al. 2017.. Modulation of cognitive cerebello-cerebral functional connectivity by lateral cerebellar continuous theta burst stimulation. . NeuroImage 158::4857
    [Crossref] [Google Scholar]
  136. Rath MF, Rohde K, Møller M. 2012.. Circadian oscillations of molecular clock components in the cerebellar cortex of the rat. . Chronobiol. Int. 29:(10):128999
    [Crossref] [Google Scholar]
  137. Rath MF, Rovsing L, Møller M. 2014.. Circadian oscillators in the mouse brain: molecular clock components in the neocortex and cerebellar cortex. . Cell Tissue Res. 357:(3):74355
    [Crossref] [Google Scholar]
  138. Rogers TD, Dickson PE, Heck DH, Goldowitz D, Mittleman G, Blaha CD. 2011.. Connecting the dots of the cerebro-cerebellar role in cognitive function: neuronal pathways for cerebellar modulation of dopamine release in the prefrontal cortex. . Synapse 65:(11):120412
    [Crossref] [Google Scholar]
  139. Rowland NC, Goldberg JA, Jaeger D. 2010.. Cortico-cerebellar coherence and causal connectivity during slow-wave activity. . Neuroscience 166:(2):698711
    [Crossref] [Google Scholar]
  140. Ruigrok TJH, Sillitoe RV, Voogd J. 2015.. Cerebellum and cerebellar connections. . In The Rat Nervous System, pp. 133205. London:: Elsevier. , 4th ed..
    [Google Scholar]
  141. Sacchetti B, Scelfo B, Tempia F, Strata P. 2004.. Long-term synaptic changes induced in the cerebellar cortex by fear conditioning. . Neuron 42:(6):97382
    [Crossref] [Google Scholar]
  142. Salazar Leon LE, Sillitoe RV. 2022.. Potential interactions between cerebellar dysfunction and sleep disturbances in dystonia. . Dystonia 1::10691
    [Crossref] [Google Scholar]
  143. Saper CB, Fuller PM, Pedersen NP, Lu J, Scammell TE. 2010.. Sleep state switching. . Neuron 68:(6):102342
    [Crossref] [Google Scholar]
  144. Schlerf J, Ivry RB, Diedrichsen J. 2012.. Encoding of sensory prediction errors in the human cerebellum. . J. Neurosci. 32:(14):491322
    [Crossref] [Google Scholar]
  145. Schmahmann JD, Guell X, Stoodley CJ, Halko MA. 2019.. The theory and neuroscience of cerebellar cognition. . Annu. Rev. Neurosci. 42::33764
    [Crossref] [Google Scholar]
  146. Schweighofer N, Doya K, Kuroda S. 2004.. Cerebellar aminergic neuromodulation: towards a functional understanding. . Brain Res. Brain Res. Rev. 44:(2–3):10316
    [Crossref] [Google Scholar]
  147. Segal A, Parkes L, Aquino K, Kia SM, Wolfers T, et al. 2023.. Regional, circuit and network heterogeneity of brain abnormalities in psychiatric disorders. . Nat. Neurosci. 26:(9):161329
    [Crossref] [Google Scholar]
  148. Shadmehr R, Smith MA, Krakauer JW. 2010.. Error correction, sensory prediction, and adaptation in motor control. . Annu. Rev. Neurosci. 33::89108
    [Crossref] [Google Scholar]
  149. Shimuta M, Sugihara I, Ishikawa T. 2020.. Multiple signals evoked by unisensory stimulation converge onto cerebellar granule and Purkinje cells in mice. . Commun. Biol. 3:(1):381
    [Crossref] [Google Scholar]
  150. Sokolov AA, Miall RC, Ivry RB. 2017.. The cerebellum: adaptive prediction for movement and cognition. . Trends Cogn. Sci. 21:(5):31332
    [Crossref] [Google Scholar]
  151. Song P, Li S, Wang S, Wei H, Lin H, Wang Y. 2020.. Repetitive transcranial magnetic stimulation of the cerebellum improves ataxia and cerebello-fronto plasticity in multiple system atrophy: a randomized, double-blind, sham-controlled and TMS-EEG study. . Aging 12:(20):2061122
    [Crossref] [Google Scholar]
  152. Spaeth L, Bahuguna J, Gagneux T, Dorgans K, Sugihara I, et al. 2022.. Cerebellar connectivity maps embody individual adaptive behavior in mice. . Nat. Commun. 13:(1):580
    [Crossref] [Google Scholar]
  153. Spix TA, Nanivadekar S, Toong N, Kaplow IM, Isett BR, et al. 2021.. Population-specific neuromodulation prolongs therapeutic benefits of deep brain stimulation. . Science 374:(6564):2016
    [Crossref] [Google Scholar]
  154. Stoodley CJ, Valera EM, Schmahmann JD. 2012.. Functional topography of the cerebellum for motor and cognitive tasks: an fMRI study. . NeuroImage 59:(2):156070
    [Crossref] [Google Scholar]
  155. Streng ML, Popa LS, Ebner TJ. 2017.. Climbing fibers control Purkinje cell representations of behavior. . J. Neurosci. 37:(8):19972009
    [Crossref] [Google Scholar]
  156. Streng ML, Popa LS, Ebner TJ. 2018.. Modulation of sensory prediction error in Purkinje cells during visual feedback manipulations. . Nat. Commun. 9:(1):1099
    [Crossref] [Google Scholar]
  157. Streng ML, Popa LS, Ebner TJ. 2022.. Cerebellar representations of errors and internal models. . Cerebellum 21:(5):81420
    [Crossref] [Google Scholar]
  158. Strick PL, Dum RP, Fiez JA. 2009.. Cerebellum and nonmotor function. . Annu. Rev. Neurosci. 32::41334
    [Crossref] [Google Scholar]
  159. Stroud A, Tisch S, Jonker BP. 2022.. Cerebellar cortex stimulation for acquired dystonia: a case report and review of its role in modern surgical practice. . Stereotact. Funct. Neurosurg. 100:(5–6):32130
    [Crossref] [Google Scholar]
  160. Sugihara I. 2011.. Compartmentalization of the deep cerebellar nuclei based on afferent projections and aldolase C expression. . Cerebellum 10:(3):44963
    [Crossref] [Google Scholar]
  161. Tai C-H, Tseng S-H. 2022.. Cerebellar deep brain stimulation for movement disorders. . Neurobiol. Dis. 175::105899
    [Crossref] [Google Scholar]
  162. Tanaka H, Ishikawa T, Lee J, Kakei S. 2020.. The cerebro-cerebellum as a locus of forward model: a review. . Front. Syst. Neurosci. 14::19
    [Crossref] [Google Scholar]
  163. Tedesco AM, Chiricozzi FR, Clausi S, Lupo M, Molinari M, Leggio MG. 2011.. The cerebellar cognitive profile. . Brain 134:(12):367286
    [Crossref] [Google Scholar]
  164. Teune TM, van der Burg J, van der Moer J, Voogd J, Ruigrok TJ. 2000.. Topography of cerebellar nuclear projections to the brain stem in the rat. . Prog. Brain Res. 124::14172
    [Crossref] [Google Scholar]
  165. Thach WT, Goodkin HP, Keating JG. 1992.. The cerebellum and the adaptive coordination of movement. . Annu. Rev. Neurosci. 15::40342
    [Crossref] [Google Scholar]
  166. Thanawalla AR, Chen AI, Azim E. 2020.. The cerebellar nuclei and dexterous limb movements. . Neuroscience 450::16883
    [Crossref] [Google Scholar]
  167. Torres-Herraez A, Watson TC, Rondi-Reig L. 2022.. Delta oscillations coordinate intracerebellar and cerebello-hippocampal network dynamics during sleep. . J. Neurosci. 42:(11):226881
    [Crossref] [Google Scholar]
  168. Vaadia E, Haalman I, Abeles M, Bergman H, Prut Y, et al. 1995.. Dynamics of neuronal interactions in monkey cortex in relation to behavioural events. . Nature 373:(6514):51518
    [Crossref] [Google Scholar]
  169. van der Heijden ME, Gill JS, Sillitoe RV. 2021a.. Abnormal cerebellar development in autism spectrum disorders. . Dev. Neurosci. 43:(3–4):18190
    [Crossref] [Google Scholar]
  170. van der Heijden ME, Lackey EP, Perez R, Işleyen FS, Brown AM, et al. 2021b.. Maturation of Purkinje cell firing properties relies on neurogenesis of excitatory neurons. . eLife 10::e68045
    [Crossref] [Google Scholar]
  171. van Dun K, Bodranghien FCAA, Mariën P, Manto MU. 2016.. tDCS of the cerebellum: Where do we stand in 2016? Technical issues and critical review of the literature. . Front. Hum. Neurosci. 10::199
    [Crossref] [Google Scholar]
  172. Van Overwalle F, Manto M, Cattaneo Z, Clausi S, Ferrari C, et al. 2020.. Consensus paper: cerebellum and social cognition. . Cerebellum 19:(6):83368
    [Crossref] [Google Scholar]
  173. Verpeut JL, Bergeler S, Kislin M, Townes FW, Klibaite U, et al. 2023.. Cerebellar contributions to a brainwide network for flexible behavior in mice. . Commun. Biol. 6:(1):605
    [Crossref] [Google Scholar]
  174. Voogd J. 2011.. Cerebellar zones: a personal history. . Cerebellum 10:(3):33450
    [Crossref] [Google Scholar]
  175. Wagner MJ, Luo L. 2020.. Neocortex-cerebellum circuits for cognitive processing. . Trends Neurosci. 43:(1):4254
    [Crossref] [Google Scholar]
  176. Walker MP, Brakefield T, Seidman J, Morgan A, Hobson JA, Stickgold R. 2003.. Sleep and the time course of motor skill learning. . Learn. Mem. 10:(4):27584
    [Crossref] [Google Scholar]
  177. White JJ, Sillitoe RV. 2017.. Genetic silencing of olivocerebellar synapses causes dystonia-like behaviour in mice. . Nat. Commun. 8::14912
    [Crossref] [Google Scholar]
  178. Whitney ER, Kemper TL, Rosene DL, Bauman ML, Blatt GJ. 2009.. Density of cerebellar basket and stellate cells in autism: evidence for a late developmental loss of Purkinje cells. . J. Neurosci. Res. 87:(10):224554
    [Crossref] [Google Scholar]
  179. Willett RT, Bayin NS, Lee AS, Krishnamurthy A, Wojcinski A, et al. 2019.. Cerebellar nuclei excitatory neurons regulate developmental scaling of presynaptic Purkinje cell number and organ growth. . eLife 8::e50617
    [Crossref] [Google Scholar]
  180. Wolpert DM, Miall RC, Kawato M. 1998.. Internal models in the cerebellum. . Trends Cogn. Sci. 2:(9):33847
    [Crossref] [Google Scholar]
  181. Wu B, Blot FG, Wong AB, Osório C, Adolfs Y, et al. 2019.. TRPC3 is a major contributor to functional heterogeneity of cerebellar Purkinje cells. . eLife 8::e45590
    [Crossref] [Google Scholar]
  182. Xu W, De Carvalho F, Clarke AK, Jackson A. 2021.. Communication from the cerebellum to the neocortex during sleep spindles. . Prog. Neurobiol. 199::101940
    [Crossref] [Google Scholar]
  183. Xu W, De Carvalho F, Jackson A. 2022.. Conserved population dynamics in the cerebro-cerebellar system between waking and sleep. . J. Neurosci. 42:(50):941525
    [Crossref] [Google Scholar]
  184. Zhang L-B, Zhang J, Sun M-J, Chen H, Yan J, et al. 2020.. Neuronal activity in the cerebellum during the sleep-wakefulness transition in mice. . Neurosci. Bull. 36:(8):91931
    [Crossref] [Google Scholar]
/content/journals/10.1146/annurev-neuro-100423-104943
Loading
/content/journals/10.1146/annurev-neuro-100423-104943
Loading

Data & Media loading...

Supplemental Materials

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error