1932

Abstract

Cells of the oligodendrocyte lineage express a wide range of Ca2+ channels and receptors that regulate oligodendrocyte progenitor cell (OPC) and oligodendrocyte formation and function. Here we define those key channels and receptors that regulate Ca2+ signaling and OPC development and myelination. We then discuss how the regulation of intracellular Ca2+ in turn affects OPC and oligodendrocyte biology in the healthy nervous system and under pathological conditions. Activation of Ca2+ channels and receptors in OPCs and oligodendrocytes by neurotransmitters converges on regulating intracellular Ca2+, making Ca2+ signaling a central candidate mediator of activity-driven myelination. Indeed, recent evidence indicates that localized changes in Ca2+ in oligodendrocytes can regulate the formation and remodeling of myelin sheaths and perhaps additional functions of oligodendrocytes and OPCs. Thus, decoding how OPCs and myelinating oligodendrocytes integrate and process Ca2+ signals will be important to fully understand central nervous system formation, health, and function.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-neuro-100719-093305
2020-07-08
2024-07-23
Loading full text...

Full text loading...

/deliver/fulltext/neuro/43/1/annurev-neuro-100719-093305.html?itemId=/content/journals/10.1146/annurev-neuro-100719-093305&mimeType=html&fmt=ahah

Literature Cited

  1. Abiraman K, Pol SU, O'Bara MA, Chen G-D, Khaku ZM et al. 2015. Anti-muscarinic adjunct therapy accelerates functional human oligodendrocyte repair. J. Neurosci. 35:83676–88
    [Google Scholar]
  2. Agarwal A, Wu P-H, Hughes EG, Fukaya M, Tischfield MA et al. 2017. Transient opening of the mitochondrial permeability transition pore induces microdomain calcium transients in astrocyte processes. Neuron 93:3587–605.e7
    [Google Scholar]
  3. Agresti C, Meomartini ME, Amadio S, Ambrosini E, Volonté C et al. 2005. ATP regulates oligodendrocyte progenitor migration, proliferation, and differentiation: involvement of metabotropic P2 receptors. Brain Res. Rev. 48:2157–65
    [Google Scholar]
  4. Allen NJ, Lyons DA. 2018. Glia as architects of central nervous system formation and function. Science 362:6411181–85
    [Google Scholar]
  5. Almeida RG, Lyons DA. 2014. On the resemblance of synapse formation and CNS myelination. Neuroscience 276:98–108
    [Google Scholar]
  6. Almeida RG, Lyons DA. 2017. On myelinated axon plasticity and neuronal circuit formation and function. J. Neurosci. 37:4210023–34
    [Google Scholar]
  7. Anagnostaras SG, Murphy GG, Hamilton SE, Mitchell SL, Rahnama NP et al. 2002. Selective cognitive dysfunction in acetylcholine M1 muscarinic receptor mutant mice. Nat. Neurosci. 6:151–58
    [Google Scholar]
  8. Arellano RO, Sánchez-Gómez MV, Alberdi E, Canedo-Antelo M, Chara JC et al. 2016. Axon-to-glia interaction regulates GABAA receptor expression in oligodendrocytes. Mol. Pharmacol. 89:163–74
    [Google Scholar]
  9. Bagayogo IP, Dreyfus CF. 2009. Regulated release of BDNF by cortical oligodendrocytes is mediated through metabotropic glutamate receptors and the PLC pathway. ASN Neuro 1:1e00001
    [Google Scholar]
  10. Balia M, Benamer N, Angulo MC 2017. A specific GABAergic synapse onto oligodendrocyte precursors does not regulate cortical oligodendrogenesis. Glia 65:1821–32
    [Google Scholar]
  11. Balice-Gordon RJ, Bone LJ, Scherer SS 1998. Functional gap junctions in the Schwann cell myelin sheath. J. Cell Biol. 142:41095–104
    [Google Scholar]
  12. Baraban M, Koudelka S, Lyons DA 2018. Ca2+ activity signatures of myelin sheath formation and growth in vivo. Nat. Neurosci. 21:119–23
    [Google Scholar]
  13. Battefeld A, Popovic MA, de Vries SI, Kole MHP 2019. High-frequency microdomain Ca2+ transients and waves during early myelin internode remodeling. Cell Rep 26:1182–91.e5
    [Google Scholar]
  14. Bechler ME, Byrne L, ffrench-Constant C 2015. CNS myelin sheath lengths are an intrinsic property of oligodendrocytes. Curr. Biol. 25:182411–16
    [Google Scholar]
  15. Bergles DE, Richardson WD. 2015. Oligodendrocyte development and plasticity. Cold Spring Harb. Perspect. Biol. 8:2a020453
    [Google Scholar]
  16. Bergles DE, Roberts JD, Somogyi P, Jahr CE 2000. Glutamatergic synapses on oligodendrocyte precursor cells in the hippocampus. Nature 405:6783187–91
    [Google Scholar]
  17. Boscia F, D'Avanzo C, Pannaccione A, Secondo A, Casamassa A et al. 2012. Silencing or knocking out the Na+/Ca2+ exchanger-3 (NCX3) impairs oligodendrocyte differentiation. Cell Death Differ 19:4562–72
    [Google Scholar]
  18. Brozzi F, Arcuri C, Giambanco I, Donato R 2009. S100B protein regulates astrocyte shape and migration via interaction with Src kinase. J. Biol. Chem. 284:138797–811
    [Google Scholar]
  19. Chang K-J, Redmond SA, Chan JR 2016. Remodeling myelination: implications for mechanisms of neural plasticity. Nat. Neurosci. 19:2190–97
    [Google Scholar]
  20. Chattopadhyay N, Espinosa-Jeffrey A, Tfelt-Hansen J, Yano S, Bandyopadhyay S et al. 2008. Calcium receptor expression and function in oligodendrocyte commitment and lineage progression: potential impact on reduced myelin basic protein in CaR-null mice. J. Neurosci. Res. 86:102159–67
    [Google Scholar]
  21. Cheli VT, Santiago González DA, Namgyal Lama T, Spreuer V, Handley V et al. 2016. Conditional deletion of the L-type calcium channel Cav1.2 in oligodendrocyte progenitor cells affects postnatal myelination in mice. J. Neurosci. 36:4210853–69
    [Google Scholar]
  22. Cheli VT, Santiago González DA, Spreuer V, Paez PM 2015. Voltage-gated Ca2+ entry promotes oligodendrocyte progenitor cell maturation and myelination in vitro. Exp. Neurol. 265:69–83
    [Google Scholar]
  23. Cheli VT, Santiago González DA, Zamora NN, Lama TN, Spreuer V et al. 2018. Enhanced oligodendrocyte maturation and myelination in a mouse model of Timothy syndrome. Glia 66:112324–39
    [Google Scholar]
  24. Chen T-J, Kula B, Nagy B, Barzan R, Gall A et al. 2018. In vivo regulation of oligodendrocyte precursor cell proliferation and differentiation by the AMPA-receptor subunit GluA2. Cell Rep 25:4852–61.e7
    [Google Scholar]
  25. Cisterna BA, Arroyo P, Puebla C 2019. Role of connexin-based gap junction channels in communication of myelin sheath in Schwann cells. Front. Cell Neurosci. 13:69
    [Google Scholar]
  26. Cohen RI, Almazan G. 1994. Rat oligodendrocytes express muscarinic receptors coupled to phosphoinositide hydrolysis and adenylyl cyclase. Eur. J. Neurosci. 6:71213–24
    [Google Scholar]
  27. Cree BAC, Niu J, Hoi KK, Zhao C, Caganap SD et al. 2018. Clemastine rescues myelination defects and promotes functional recovery in hypoxic brain injury. Brain 141:185–98
    [Google Scholar]
  28. Czopka T, ffrench-Constant C, Lyons DA 2013. Individual oligodendrocytes have only a few hours in which to generate new myelin sheaths in vivo. Dev. Cell. 25:6599–609
    [Google Scholar]
  29. De Angelis F, Bernardo A, Magnaghi V, Minghetti L, Tata AM 2012. Muscarinic receptor subtypes as potential targets to modulate oligodendrocyte progenitor survival, proliferation, and differentiation. Dev. Neurobiol. 72:5713–28
    [Google Scholar]
  30. De Biase LM, Kang SH, Baxi EG, Fukaya M, Pucak ML et al. 2011. NMDA receptor signaling in oligodendrocyte progenitors is not required for oligodendrogenesis and myelination. J. Neurosci. 31:3512650–62
    [Google Scholar]
  31. De Biase LM, Nishiyama A, Bergles DE 2010. Excitability and synaptic communication within the oligodendrocyte lineage. J. Neurosci. 30:103600–11
    [Google Scholar]
  32. Dolmetsch RE, Pajvani U, Fife K, Spotts JM, Greenberg ME 2001. Signaling to the nucleus by an L-type calcium channel-calmodulin complex through the MAP kinase pathway. Science 294:5541333–39
    [Google Scholar]
  33. Doyle S, Hansen DB, Vella J, Bond P, Harper G et al. 2018. Vesicular glutamate release from central axons contributes to myelin damage. Nat. Commun. 9:11032
    [Google Scholar]
  34. Etxeberria A, Mangin J-M, Aguirre A, Gallo V 2010. Adult-born SVZ progenitors receive transient synapses during remyelination in corpus callosum. Nat. Neurosci. 13:3287–89
    [Google Scholar]
  35. Falcão AM, van Bruggen D, Marques S, Meijer M, Jäkel S et al. 2018. Disease-specific oligodendrocyte lineage cells arise in multiple sclerosis. Nat. Med. 24:121837–44
    [Google Scholar]
  36. Fields RD. 2015. A new mechanism of nervous system plasticity: activity-dependent myelination. Nat. Rev. Neurosci. 16:12756–67
    [Google Scholar]
  37. Franklin RJM, ffrench-Constant C. 2017. Regenerating CNS myelin—from mechanisms to experimental medicines. Nat. Rev. Neurosci. 18:12753–69
    [Google Scholar]
  38. Fulton D, Paez PM, Fisher R, Handley V, Colwell CS, Campagnoni AT 2010. Regulation of L-type Ca++ currents and process morphology in white matter oligodendrocyte precursor cells by golli-myelin proteins. Glia 58:111292–303
    [Google Scholar]
  39. Gallo V, Mangin J-M, Kukley M, Dietrich D 2008. Synapses on NG2-expressing progenitors in the brain: multiple functions?. J. Physiol. 586:163767–81
    [Google Scholar]
  40. Gautier HOB, Evans KA, Volbracht K, James R, Sitnikov S et al. 2015. Neuronal activity regulates remyelination via glutamate signalling to oligodendrocyte progenitors. Nat. Commun. 6:8518
    [Google Scholar]
  41. Geraghty AC, Gibson EM, Ghanem RA, Greene JJ, Ocampo A et al. 2019. Loss of adaptive myelination contributes to methotrexate chemotherapy-related cognitive impairment. Neuron 103:2250–58
    [Google Scholar]
  42. Green AJ, Gelfand JM, Cree BA, Bevan C, Boscardin WJ et al. 2017. Clemastine fumarate as a remyelinating therapy for multiple sclerosis (ReBUILD): a randomised, controlled, double-blind, crossover trial. Lancet 390:2481–89
    [Google Scholar]
  43. Gudz TI, Komuro H, Macklin WB 2006. Glutamate stimulates oligodendrocyte progenitor migration mediated via an αv integrin/myelin proteolipid protein complex. J. Neurosci. 26:92458–66
    [Google Scholar]
  44. Guo F, Maeda Y, Ko EM, Delgado M, Horiuchi M et al. 2012. Disruption of NMDA receptors in oligodendroglial lineage cells does not alter their susceptibility to experimental autoimmune encephalomyelitis or their normal development. J. Neurosci. 32:2639–45
    [Google Scholar]
  45. Haberlandt C, Derouiche A, Wyczynski A, Haseleu J, Pohle J et al. 2011. Gray matter NG2 cells display multiple Ca2+-signaling pathways and highly motile processes. PLOS ONE 6:3e17575
    [Google Scholar]
  46. Habermacher C, Angulo MC, Benamer N 2019. Glutamate versus GABA in neuron-oligodendroglia communication. Glia 67:2092–106
    [Google Scholar]
  47. Hachem S, Aguirre A, Vives V, Marks A, Gallo V, Legraverend C 2005. Spatial and temporal expression of S100B in cells of oligodendrocyte lineage. Glia 51:281–97
    [Google Scholar]
  48. Hamilton N, Vayro S, Wigley R, Butt AM 2010. Axons and astrocytes release ATP and glutamate to evoke calcium signals in NG2-glia. Glia 58:166–79
    [Google Scholar]
  49. Hamilton NB, Clarke LE, Arancibia-Carcamo IL, Kougioumtzidou E, Matthey M et al. 2017. Endogenous GABA controls oligodendrocyte lineage cell number, myelination, and CNS internode length. Glia 65:2309–21
    [Google Scholar]
  50. Hamilton NB, Kolodziejczyk K, Kougioumtzidou E, Attwell D 2016. Proton-gated Ca2+-permeable TRP channels damage myelin in conditions mimicking ischaemia. Nat. Neurosci. 529:7587523–27
    [Google Scholar]
  51. Harlow DE, Saul KE, Komuro H, Macklin WB 2015. Myelin proteolipid protein complexes with αv integrin and AMPA receptors in vivo and regulates AMPA-dependent oligodendrocyte progenitor cell migration through the modulation of cell-surface GluR2 expression. J. Neurosci. 35:3412018–32
    [Google Scholar]
  52. Hell JW, Westenbroek RE, Breeze LJ, Wang K, Chavkin C, Catterall WA 1996. N-methyl-d-aspartate receptor-induced proteolytic conversion of postsynaptic class C L-type calcium channels in hippocampal neurons. PNAS 93:83362–67
    [Google Scholar]
  53. Hoche T, Marisca R, Agirre E, Hoodless LJ, Barkey W et al. 2019. Functionally distinct subgroups of oligodendrocyte precursor cells integrate neural activity and execute myelin formation. bioRxiv 689505. https://doi.org/10.1101/689505
    [Crossref]
  54. Hogan PG, Chen L, Nardone J, Rao A 2003. Transcriptional regulation by calcium, calcineurin, and NFAT. Genes Dev 17:182205–32
    [Google Scholar]
  55. Hughes EG, Kang SH, Fukaya M, Bergles DE 2013. Oligodendrocyte progenitors balance growth with self-repulsion to achieve homeostasis in the adult brain. Nat. Neurosci. 16:6668–76
    [Google Scholar]
  56. Jablonska B, Gierdalski M, Chew L-J, Hawley T, Catron M et al. 2016. Sirt1 regulates glial progenitor proliferation and regeneration in white matter after neonatal brain injury. Nat. Commun. 7:13866
    [Google Scholar]
  57. Jang M, Gould E, Xu J, Kim EJ, Kim JH 2019. Oligodendrocytes regulate presynaptic properties and neurotransmission through BDNF signaling in the mouse brainstem. eLife 8:e42156
    [Google Scholar]
  58. Karadottir R, Attwell D. 2007. Neurotransmitter receptors in the life and death of oligodendrocytes. Neuroscience 145:41426–38
    [Google Scholar]
  59. Karadottir R, Cavelier P, Bergersen LH, Attwell D 2005. NMDA receptors are expressed in oligodendrocytes and activated in ischaemia. Nature 438:70711162–66
    [Google Scholar]
  60. Karschin A, Wischmeyer E, Davidson N, Lester HA 1994. Fast inhibition of inwardly rectifying K+ channels by multiple neurotransmitter receptors in oligodendroglia. Eur. J. Neurosci. 6:111756–64
    [Google Scholar]
  61. Kirby BB, Takada N, Latimer AJ, Shin J, Carney TJ et al. 2006. In vivo time-lapse imaging shows dynamic oligodendrocyte progenitor behavior during zebrafish development. Nat. Neurosci. 9:121506–11
    [Google Scholar]
  62. Kirby L, Jin J, Cardona JG, Smith MD, Martin KA et al. 2019. Oligodendrocyte precursor cells present antigen and are cytotoxic targets in inflammatory demyelination. Nat. Commun. 10:13887
    [Google Scholar]
  63. Klingseisen A, Lyons DA. 2017. Axonal regulation of central nervous system myelination: structure and function. Neuroscientist 24:7–21
    [Google Scholar]
  64. Kougioumtzidou E, Shimizu T, Hamilton NB, Tohyama K, Sprengel R et al. 2017. Signalling through AMPA receptors on oligodendrocyte precursors promotes myelination by enhancing oligodendrocyte survival. eLife 6:e28080
    [Google Scholar]
  65. Krasnow AM, Ford MC, Valdivia LE, Wilson SW, Attwell D 2018. Regulation of developing myelin sheath elongation by oligodendrocyte calcium transients in vivo. Nat. Neurosci. 21:124–30
    [Google Scholar]
  66. Kukley M, Capetillo-Zarate E, Dietrich D 2007. Vesicular glutamate release from axons in white matter. Nat. Neurosci. 10:3311–20
    [Google Scholar]
  67. Larson VA, Mironova Y, Vanderpool KG, Waisman A, Rash JE et al. 2018. Oligodendrocytes control potassium accumulation in white matter and seizure susceptibility. eLife 7:e34829
    [Google Scholar]
  68. Lee S, Leach MK, Redmond SA, Chong SYC, Mellon SH et al. 2012. A culture system to study oligodendrocyte myelination processes using engineered nanofibers. Nat. Meth. 9:9917–22
    [Google Scholar]
  69. Lemieux M, Labrecque S, Tardif C, Labrie-Dion É, LeBel É, De Koninck P 2012. Translocation of CaMKII to dendritic microtubules supports the plasticity of local synapses. J. Cell Biol. 198:61055–73
    [Google Scholar]
  70. Li C, Xiao L, Liu X, Yang W, Shen W et al. 2013. A functional role of NMDA receptor in regulating the differentiation of oligodendrocyte precursor cells and remyelination. Glia 61:5732–49
    [Google Scholar]
  71. Li T, Wang L, Ma T, Wang S, Niu J et al. 2018. Dynamic calcium release from endoplasmic reticulum mediated by ryanodine receptor 3 is crucial for oligodendroglial differentiation. Front. Mol. Neurosci. 11:162
    [Google Scholar]
  72. Lin S-C, Bergles DE. 2003. Synaptic signaling between GABAergic interneurons and oligodendrocyte precursor cells in the hippocampus. Nat. Neurosci. 7:124–32
    [Google Scholar]
  73. Lin W, Popko B. 2009. Endoplasmic reticulum stress in disorders of myelinating cells. Nat. Neurosci. 12:4379–85
    [Google Scholar]
  74. Liu J, Dupree JL, Gacias M, Frawley R, Sikder T et al. 2016. Clemastine enhances myelination in the prefrontal cortex and rescues behavioral changes in socially isolated mice. J. Neurosci. 36:3957–62
    [Google Scholar]
  75. Lundgaard I, Luzhynskaya A, Stockley JH, Wang Z, Evans KA et al. 2013. Neuregulin and BDNF induce a switch to NMDA receptor-dependent myelination by oligodendrocytes. PLOS Biol 11:12e1001743
    [Google Scholar]
  76. Luyt K, Slade TP, Dorward JJ, Durant CF, Wu Y et al. 2007. Developing oligodendrocytes express functional GABAB receptors that stimulate cell proliferation and migration. J. Neurochem. 100:3822–40
    [Google Scholar]
  77. Luyt K, Váradi A, Durant CF, Molnár E 2006. Oligodendroglial metabotropic glutamate receptors are developmentally regulated and involved in the prevention of apoptosis. J. Neurochem. 99:2641–56
    [Google Scholar]
  78. Luyt K, Váradi A, Molnár E 2003. Functional metabotropic glutamate receptors are expressed in oligodendrocyte progenitor cells. J. Neurochem. 84:61452–64
    [Google Scholar]
  79. Mangin J-M, Gallo V. 2011. The curious case of NG2 cells: transient trend or game changer?. ASN Neuro 3:1e00052
    [Google Scholar]
  80. Markoullis K, Sargiannidou I, Gardner C, Hadjisavvas A, Reynolds R, Kleopa KA 2012a. Disruption of oligodendrocyte gap junctions in experimental autoimmune encephalomyelitis. Glia 60:71053–66
    [Google Scholar]
  81. Markoullis K, Sargiannidou I, Schiza N, Hadjisavvas A, Roncaroli F et al. 2012b. Gap junction pathology in multiple sclerosis lesions and normal-appearing white matter. Acta Neuropathol 123:6873–86
    [Google Scholar]
  82. Markoullis K, Sargiannidou I, Schiza N, Roncaroli F, Reynolds R, Kleopa KA 2014. Oligodendrocyte gap junction loss and disconnection from reactive astrocytes in multiple sclerosis gray matter. J. Neuropathol. Exp. Neurol. 73:9865–79
    [Google Scholar]
  83. McVicker DP, Millette MM, Dent EW 2015. Signaling to the microtubule cytoskeleton: an unconventional role for CaMKII. Dev. Neurobiol 75:4423–34
    [Google Scholar]
  84. Medina DL, Di Paola S, Peluso I, Armani A, De Stefani D et al. 2015. Lysosomal calcium signalling regulates autophagy through calcineurin and TFEB. Nat. Cell Biol. 17:3288–99
    [Google Scholar]
  85. Mei F, Fancy SPJ, Shen Y-AA, Niu J, Zhao C et al. 2014. Micropillar arrays as a high-throughput screening platform for therapeutics in multiple sclerosis. Nat. Med. 20:8954–60
    [Google Scholar]
  86. Mei F, Lehmann-Horn K, Shen Y-AA, Rankin KA, Stebbins KJ et al. 2016. Accelerated remyelination during inflammatory demyelination prevents axonal loss and improves functional recovery. eLife 5:e18246
    [Google Scholar]
  87. Mermelstein PG, Bito H, Deisseroth K, Tsien RW 2000. Critical dependence of cAMP response element-binding protein phosphorylation on L-type calcium channels supports a selective response to EPSPs in preference to action potentials. J. Neurosci. 20:1266–73
    [Google Scholar]
  88. Micu I, Jiang Q, Coderre E, Ridsdale A, Zhang L et al. 2006. NMDA receptors mediate calcium accumulation in myelin during chemical ischaemia. Nature 439:7079988–92
    [Google Scholar]
  89. Micu I, Plemel JR, Caprariello AV, Nave KA, Stys PK 2018. Axo-myelinic neurotransmission: a novel mode of cell signalling in the central nervous system. Nat. Rev. Neurosci. 19:149–57
    [Google Scholar]
  90. Micu I, Plemel JR, Lachance C, Proft J, Jansen AJ et al. 2016. The molecular physiology of the axo-myelinic synapse. Exp. Neurol. 276:41–50
    [Google Scholar]
  91. Micu I, Ridsdale A, Zhang L, Woulfe J, McClintock J et al. 2007. Real-time measurement of free Ca2+ changes in CNS myelin by two-photon microscopy. Nat. Med. 13:7874–79
    [Google Scholar]
  92. Miller RH. 2018. Calcium control of myelin sheath growth. Nat. Neurosci. 21:12–3
    [Google Scholar]
  93. Molina-Holgado E, Khorchid A, Liu H-N, Almazan G 2003. Regulation of muscarinic receptor function in developing oligodendrocytes by agonist exposure. Br. J. Pharmacol. 138:147–56
    [Google Scholar]
  94. Monje M. 2018. Myelin plasticity and nervous system function. Annu. Rev. Neurosci. 41:61–76
    [Google Scholar]
  95. Nanou E, Catterall WA. 2018. Calcium channels, synaptic plasticity, and neuropsychiatric disease. Neuron 98:3466–81
    [Google Scholar]
  96. Nawaz S, Sánchez P, Schmitt S, Snaidero N, Mitkovski M et al. 2015. Actin filament turnover drives leading edge growth during myelin sheath formation in the central nervous system. Dev. Cell. 34:2139–51
    [Google Scholar]
  97. Nualart-Marti A, Solsona C, Fields RD 2013. Gap junction communication in myelinating glia. Biochim. Biophys. Acta Biomembr. 1828 1:69–78
    [Google Scholar]
  98. Paez PM, Cheli VT, Ghiani CA, Spreuer V, Handley VW, Campagnoni AT 2012. Golli myelin basic proteins stimulate oligodendrocyte progenitor cell proliferation and differentiation in remyelinating adult mouse brain. Glia 60:71078–93
    [Google Scholar]
  99. Paez PM, Fulton D, Spreuer V, Handley V, Campagnoni AT 2011. Modulation of canonical transient receptor potential channel 1 in the proliferation of oligodendrocyte precursor cells by the golli products of the myelin basic protein gene. J. Neurosci. 31:103625–37
    [Google Scholar]
  100. Paez PM, Fulton DJ, Spreuer V, Handley V, Campagnoni CW, Campagnoni AT 2009a. Regulation of store-operated and voltage-operated Ca2+ channels in the proliferation and death of oligodendrocyte precursor cells by golli proteins. ASN Neuro 1:1e00003
    [Google Scholar]
  101. Paez PM, Fulton DJ, Spreur V, Handley V, Campagnoni AT 2010. Multiple kinase pathways regulate voltage-dependent Ca2+ influx and migration in oligodendrocyte precursor cells. J. Neurosci. 30:186422–33
    [Google Scholar]
  102. Paez PM, Fulton DJ, Spreuer V, Handley V, Campagnoni CW et al. 2009b. Golli myelin basic proteins regulate oligodendroglial progenitor cell migration through voltage-gated Ca2+ influx. J. Neurosci. 29:206663–76
    [Google Scholar]
  103. Paez PM, Spreuer V, Handley V, Feng J-M, Campagnoni C, Campagnoni AT 2007. Increased expression of golli myelin basic proteins enhances calcium influx into oligodendroglial cells. J. Neurosci. 27:4612690–99
    [Google Scholar]
  104. Papaneophytou C, Georgiou E, Kleopa KA 2019. The role of oligodendrocyte gap junctions in neuroinflammation. Channels 13:1247–63
    [Google Scholar]
  105. Papanikolaou M, Lewis A, Butt AM 2017. Store-operated calcium entry is essential for glial calcium signalling in CNS white matter. Brain Struct. Funct. 222:72993–3005
    [Google Scholar]
  106. Parys B, Côté A, Gallo V, De Koninck P, Sik A 2010. Intercellular calcium signaling between astrocytes and oligodendrocytes via gap junctions in culture. Neuroscience 167:41032–43
    [Google Scholar]
  107. Pitman KA, Ricci R, Gasperini R, Beasley S, Pavez M et al. 2020. The voltage-gated calcium channel Cav1.2 promotes adult oligodendrocyte progenitor cell survival in the mouse corpus callosum but not motor cortex. Glia 68:2376–92
    [Google Scholar]
  108. Rusakov DA. 2015. Disentangling calcium-driven astrocyte physiology. Nat. Rev. Neurosci. 16:4226–33
    [Google Scholar]
  109. Ryan XP, Alldritt J, Svenningsson P, Allen PB, Wu G-Y et al. 2005. The rho-specific GEF Lfc interacts with neurabin and spinophilin to regulate dendritic spine morphology. Neuron 47:185–100
    [Google Scholar]
  110. Saab AS, Nave K-A. 2017. Myelin dynamics: protecting and shaping neuronal functions. Curr. Opin. Neurobiol. 47:104–12
    [Google Scholar]
  111. Saab AS, Tzvetavona ID, Trevisiol A, Baltan S, Dibaj P et al. 2016. Oligodendroglial NMDA receptors regulate glucose import and axonal energy metabolism. Neuron 91:1119–32
    [Google Scholar]
  112. Sakry D, Neitz A, Singh J, Frischknecht R, Marongiu D et al. 2014. Oligodendrocyte precursor cells modulate the neuronal network by activity-dependent ectodomain cleavage of glial NG2. PLOS Biol 12:11e1001993
    [Google Scholar]
  113. Salmaso N, Jablonska B, Scafidi J, Vaccarino FM, Gallo V 2014. Neurobiology of premature brain injury. Nat. Neurosci. 17:3341–46
    [Google Scholar]
  114. Salter MG, Fern R. 2005. NMDA receptors are expressed in developing oligodendrocyte processes and mediate injury. Nature 438:70711167–71
    [Google Scholar]
  115. Santiago González DA, Cheli VT, Zamora NN, Lama TN, Spreuer V et al. 2017. Conditional deletion of the L-type calcium channel Cav1.2 in NG2-positive cells impairs remyelination in mice. J. Neurosci. 37:4210038–51
    [Google Scholar]
  116. Schirmer L, Möbius W, Zhao C, Cruz-Herranz A, Ben Haim L et al. 2018. Oligodendrocyte-encoded Kir4.1 function is required for axonal integrity. eLife 7:e36428
    [Google Scholar]
  117. Segel M, Neumann B, Hill MFE, Weber IP, Viscomi C et al. 2019. Niche stiffness underlies the ageing of central nervous system progenitor cells. Nature 573:7772130–34
    [Google Scholar]
  118. Sorci G, Agneletti AL, Donato R 2000. Effects of S100A1 and S100B on microtubule stability. An in vitro study using triton-cytoskeletons from astrocyte and myoblast cell lines. Neuroscience 99:4773–83
    [Google Scholar]
  119. Spampinato SF, Merlo S, Chisari M, Nicoletti F, Sortino MA 2014. Glial metabotropic glutamate receptor-4 increases maturation and survival of oligodendrocytes. Front. Cell Neurosci. 8:462
    [Google Scholar]
  120. Spitzer SO, Sitnikov S, Kamen Y, Evans KA, Kronenberg-Versteeg D et al. 2019. Oligodendrocyte progenitor cells become regionally diverse and heterogeneous with age. Neuron 101:3459–471.e5
    [Google Scholar]
  121. Stadelmann C, Timmler S, Barrantes-Freer A, Simons M 2019. Myelin in the central nervous system: structure, function, and pathology. Physiol. Rev. 99:31381–431
    [Google Scholar]
  122. Stevens B, Porta S, Haak LL, Gallo V, Fields RD 2002. Adenosine: a neuron-glial transmitter promoting myelination in the CNS in response to action potentials. Neuron 36:5855–68
    [Google Scholar]
  123. Suminaite D, Lyons DA, Livesey MR 2019. Myelinated axon physiology and regulation of neural circuit function. Glia 67:2050–62
    [Google Scholar]
  124. Sun LO, Mulinyawe SB, Collins HY, Ibrahim A, Li Q et al. 2018. Spatiotemporal control of CNS myelination by oligodendrocyte programmed cell death through the TFEB-PUMA axis. Cell 175:71811–21
    [Google Scholar]
  125. Sun W, Matthews EA, Nicolas V, Schoch S, Dietrich D 2016. NG2 glial cells integrate synaptic input in global and dendritic calcium signals. eLife 5:e16262
    [Google Scholar]
  126. Tanaka Y, Tozuka Y, Takata T, Shimazu N, Matsumura N et al. 2009. Excitatory GABAergic activation of cortical dividing glial cells. Cereb. Cortex 19:92181–95
    [Google Scholar]
  127. Tong X-P, Li X-Y, Zhou B, Shen W, Zhang Z-J et al. 2009. Ca2+ signaling evoked by activation of Na+ channels and Na+/Ca2+ exchangers is required for GABA-induced NG2 cell migration. J. Cell Biol. 186:1113–28
    [Google Scholar]
  128. Vélez-Fort M, Maldonado PP, Butt AM, Audinat E, Angulo MC 2010. Postnatal switch from synaptic to extrasynaptic transmission between interneurons and NG2 cells. J. Neurosci. 30:206921–29
    [Google Scholar]
  129. Von Blankenfeld G, Trotter J, Kettenmann H 1991. Expression and developmental regulation of a GABAA receptor in cultured murine cells of the oligodendrocyte lineage. Eur. J. Neurosci. 3:4310–16
    [Google Scholar]
  130. Waggener CT, Dupree JL, Elgersma Y, Fuss B 2013. CaMKII regulates oligodendrocyte maturation and CNS myelination. J. Neurosci. 33:2510453–58
    [Google Scholar]
  131. Wake H, Lee PR, Fields RD 2011. Control of local protein synthesis and initial events in myelination by action potentials. Science 333:60491647–51
    [Google Scholar]
  132. Walsh CM, Doherty MK, Tepikin AV, Burgoyne RD 2010. Evidence for an interaction between golli and STIM1 in store-operated calcium entry. Biochem. J. 430:3453–60
    [Google Scholar]
  133. Weider M, Starost LJ, Groll K, Küspert M, Sock E et al. 2018. Nfat/calcineurin signaling promotes oligodendrocyte differentiation and myelination by transcription factor network tuning. Nat. Commun. 9:899
    [Google Scholar]
  134. Weil M-T, Möbius W, Winkler A, Ruhwedel T, Wrzos C et al. 2016. Loss of myelin basic protein function triggers myelin breakdown in models of demyelinating diseases. Cell Rep 16:2314–22
    [Google Scholar]
  135. Welliver RR, Polanco JJ, Seidman RA, Sinha AK, O'Bara MA et al. 2018. Muscarinic receptor M3R signaling prevents efficient remyelination by human and mouse oligodendrocyte progenitor cells. J. Neurosci. 38:316921–32
    [Google Scholar]
  136. Williamson AV, Mellor JR, Grant AL, Randall AD 1998. Properties of GABAA receptors in cultured rat oligodendrocyte progenitor cells. Neuropharmacology 37:7859–73
    [Google Scholar]
  137. Xie Z, Srivastava DP, Photowala H, Kai L, Cahill ME et al. 2007. Kalirin-7 controls activity-dependent structural and functional plasticity of dendritic spines. Neuron 56:4640–56
    [Google Scholar]
  138. Young KM, Psachoulia K, Tripathi RB, Dunn S-J, Cossell L et al. 2013. Oligodendrocyte dynamics in the healthy adult CNS: evidence for myelin remodeling. Neuron 77:5873–85
    [Google Scholar]
  139. Zawadzka M, Rivers LE, Fancy SPJ, Zhao C, Tripathi R et al. 2010. CNS-resident glial progenitor/stem cells produce Schwann cells as well as oligodendrocytes during repair of CNS demyelination. Cell Stem Cell 6:6578–90
    [Google Scholar]
  140. Zhang Y, Chen K, Sloan SA, Bennett ML, Scholze AR et al. 2014. An RNA-sequencing transcriptome and splicing database of glia, neurons, and vascular cells of the cerebral cortex. J. Neurosci. 34:3611929–47
    [Google Scholar]
  141. Ziskin JL, Nishiyama A, Rubio M, Fukaya M, Bergles DE 2007. Vesicular release of glutamate from unmyelinated axons in white matter. Nat. Neurosci. 10:3321–30
    [Google Scholar]
  142. Zonouzi M, Renzi M, Farrant M, Cull-Candy SG 2011. Bidirectional plasticity of calcium-permeable AMPA receptors in oligodendrocyte lineage cells. Nat. Neurosci. 14:111430–38
    [Google Scholar]
  143. Zonouzi M, Scafidi J, Li P, McEllin B, Edwards J et al. 2015. GABAergic regulation of cerebellar NG2 cell development is altered in perinatal white matter injury. Nat. Neurosci. 18:5674–82
    [Google Scholar]
/content/journals/10.1146/annurev-neuro-100719-093305
Loading
/content/journals/10.1146/annurev-neuro-100719-093305
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error