1932

Abstract

Parkinson's disease (PD) is a common neurodegenerative disorder characterized by degeneration of the substantia nigra pars compacta and by accumulation of α-synuclein in Lewy bodies. PD is caused by a combination of environmental factors and genetic variants. These variants range from highly penetrant Mendelian alleles to alleles that only modestly increase disease risk. Here, we review what is known about the genetics of PD. We also describe how PD genetics have solidified the role of endosomal, lysosomal, and mitochondrial dysfunction in PD pathophysiology. Finally, we highlight how all three pathways are affected by α-synuclein and how this knowledge may be harnessed for the development of disease-modifying therapeutics.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-neuro-100720-034518
2021-07-08
2024-06-23
Loading full text...

Full text loading...

/deliver/fulltext/neuro/44/1/annurev-neuro-100720-034518.html?itemId=/content/journals/10.1146/annurev-neuro-100720-034518&mimeType=html&fmt=ahah

Literature Cited

  1. Abou-Sleiman PM, Healy DG, Quinn N, Lees AJ, Wood NW. 2003. The role of pathogenic DJ-1 mutations in Parkinson's disease. Ann. Neurol. 54:3283–86
    [Google Scholar]
  2. Aharon-Peretz J, Badarny S, Rosenbaum H, Gershoni-Baruch R 2005. Mutations in the glucocerebrosidase gene and Parkinson disease: phenotype–genotype correlation. Neurology 65:91460–61
    [Google Scholar]
  3. Alcalay RN, Mallett V, Vanderperre B, Tavassoly O, Dauvilliers Y et al. 2019. SMPD1 mutations, activity, and α-synuclein accumulation in Parkinson's disease. Mov. Disord. 34:4526–35
    [Google Scholar]
  4. Alessi DR, Sammler E. 2018. LRRK2 kinase in Parkinson's disease. Science 360:638436–37
    [Google Scholar]
  5. Araki M, Ito G, Tomita T. 2018. Physiological and pathological functions of LRRK2: implications from substrate proteins. Neuronal Signal 2:4NS20180005
    [Google Scholar]
  6. Arnaoutoglou NA, O'Brien JT, Underwood BR. 2019. Dementia with Lewy bodies—from scientific knowledge to clinical insights. Nat. Rev. Neurol. 15:2103–12
    [Google Scholar]
  7. Athanassiadou A, Voutsinas G, Psiouri L, Leroy E, Polymeropoulos MH et al. 1999. Genetic analysis of families with Parkinson disease that carry the Ala53Thr mutation in the gene encoding α-synuclein. Am. J. Hum. Genet. 65:2555–58
    [Google Scholar]
  8. Barrenschee M, Zorenkov D, Böttner M, Lange C, Cossais F et al. 2017. Distinct pattern of enteric phospho-alpha-synuclein aggregates and gene expression profiles in patients with Parkinson's disease. Acta Neuropathol. Commun. 5:11
    [Google Scholar]
  9. Bendor JT, Logan TP, Edwards RH. 2013. The function of α-synuclein. Neuron 79:61044–66
    [Google Scholar]
  10. Betarbet R, Canet-Aviles RM, Sherer TB, Mastroberardino PG, McLendon C et al. 2006. Intersecting pathways to neurodegeneration in Parkinson's disease: effects of the pesticide rotenone on DJ-1, α-synuclein, and the ubiquitin-proteasome system. Neurobiol. Dis. 22:2404–20
    [Google Scholar]
  11. Beyer K, Munoz-Marmol AM, Sanz C, Marginet-Flinch R, Ferrer I, Ariza A. 2012. New brain-specific beta-synuclein isoforms show expression ratio changes in Lewy body diseases. Neurogenetics 13:161–72
    [Google Scholar]
  12. Billingsley KJ, Bandres-Ciga S, Saez-Atienzar S, Singleton AB. 2018. Genetic risk factors in Parkinson's disease. Cell Tissue Res 373:19–20
    [Google Scholar]
  13. Bostantjopoulou S, Katsarou Z, Papadimitriou A, Veletza V, Hatzigeorgiou G, Lees A. 2001. Clinical features of Parkinsonian patients with the α-synuclein (G209A) mutation. Mov. Disord. 16:61007–13
    [Google Scholar]
  14. Braak H, Del Tredici K, Rüb U, de Vos RA, Jansen Steur EN, Braak E 2003. Staging of brain pathology related to sporadic Parkinson's disease. Neurobiol. Aging 24:2197–211
    [Google Scholar]
  15. Brady R. 1965. The metabolism of glucocerebrosides. J. Biol. Chem. 240:3766–71
    [Google Scholar]
  16. Brahmachari S, Ge P, Lee SH, Kim D, Karuppagounder SS et al. 2016. Activation of tyrosine kinase c-Abl contributes to α-synuclein-induced neurodegeneration. J. Clin. Investig. 126:82970–88
    [Google Scholar]
  17. Bras J, Guerreiro R, Darwent L, Parkkinen L, Ansorge O et al. 2014. Genetic analysis implicates APOE, SNCA and suggests lysosomal dysfunction in the etiology of dementia with Lewy bodies. Hum. Mol. Genet. 23:6139–46
    [Google Scholar]
  18. Brockmann K, Srulijes K, Hauser A-K, Schulte C, Csoti I et al. 2011. GBA-associated PD presents with nonmotor characteristics. Neurology 77:3276–80
    [Google Scholar]
  19. Burré J, Sharma M, Südhof TC. 2018. Cell biology and pathophysiology of α-synuclein. Cold Spring Harb. . Perspect. Med. 8:310160–63
    [Google Scholar]
  20. Caggiu E, Arru G, Hosseini S, Niegowska M, Sechi GP et al. 2019. Inflammation, infectious triggers, and Parkinson's disease. Front. Neurol. 10:122
    [Google Scholar]
  21. Chang D, Nalls MA, Hallgrímsdóttir IB, Hunkapiller J, van der Brug M et al. 2017. A meta-analysis of genome-wide association studies identifies 17 new Parkinson's disease risk loci. Nat. Genet. 49:101511–16
    [Google Scholar]
  22. Chiasserini D, Paciotti S, Eusebi P, Persichetti E, Tasegian A et al. 2015. Selective loss of glucocerebrosidase activity in sporadic Parkinson's disease and dementia with Lewy bodies. Mol. Neurodegener. 10:14–9
    [Google Scholar]
  23. Christensen KV, Hentzer M, Oppermann FS, Elschenbroich S, Dossang P et al. 2018. LRRK2 exonic variants associated with Parkinson's disease augment phosphorylation levels for LRRK2-Ser1292 and Rab10-Thr73. bioRxiv 447946. https://doi.org/10.1101/447946
    [Crossref]
  24. Cheng HC, Ulane CM, Burke RE. 2010. Clinical progression in Parkinson disease and the neurobiology of axons. Ann. Neurol. 67:6715–25
    [Google Scholar]
  25. Chung CY, Khurana V, Auluck PK, Tardiff DF, Mazzulli JR et al. 2013. Identification and rescue of α-synuclein toxicity in Parkinson patient–derived neurons. Science 342:6161983–87
    [Google Scholar]
  26. Clark IE, Dodson MW, Jiang C, Cao JH, Huh JR et al. 2006. Drosophila pink1 is required for mitochondrial function and interacts genetically with parkin. Nature 441:70971162–66
    [Google Scholar]
  27. Clark LN, Chan R, Cheng R, Liu X, Park N et al. 2015. Gene-wise association of variants in four lysosomal storage disorder genes in neuropathologically confirmed Lewy body disease. PLOS ONE 10:5e0125204
    [Google Scholar]
  28. Cole TA, Zhao H, Collier TJ, Sandoval I, Sortwell CE et al. 2019. Alpha-synuclein antisense oligonucleotides as a disease-modifying therapy for Parkinson's disease. bioRxiv 830554. https://doi.org/10.1101/830554
    [Crossref]
  29. Cookson MR. 2008. Neuropathology of Parkinson's disease. Int. J. Clin. Exp. Pathol. 2:35–48
    [Google Scholar]
  30. Cookson MR. 2015. LRRK2 pathways leading to neurodegeneration. Curr. Neurol. Neurosci. Rep. 15:742
    [Google Scholar]
  31. Cooper AA, Gitler AD, Cashikar A, Haynes CM, Hill KJ et al. 2006. α-Synuclein blocks ER-Golgi traffic and Rab1 rescues neuron loss in Parkinson's models. Science 313:5785324–28
    [Google Scholar]
  32. Cuervo AM, Stefanis L, Fredenburg R, Lansbury PT, Sulzer D. 2004. Impaired degradation of mutant α-synuclein by chaperone-mediated autophagy. Science 305:56881292–95
    [Google Scholar]
  33. Dawson VL, Dawson TM. 2019. Promising disease-modifying therapies for Parkinson's disease. Sci. Transl. Med. 11:520eaba1659
    [Google Scholar]
  34. DeMaagd G. 2015. Parkinson's disease and its management. Pharm. Ther. 40:8504–32
    [Google Scholar]
  35. Devi L, Raghavendran V, Prabhu BM, Avadhani NG, Anandatheerthavarada HK. 2008. Mitochondrial import and accumulation of α-synuclein impair complex I in human dopaminergic neuronal cultures and Parkinson disease brain. J. Biol. Chem. 283:149089–100
    [Google Scholar]
  36. Di Fonzo A, Chien HF, Socal M, Giraudo S, Tassorelli C et al. 2007. ATP13A2 missense mutations in juvenile parkinsonism and young onset Parkinson disease. Neurology 68:191557–62
    [Google Scholar]
  37. Di Fonzo A, Dekker MCJ, Montagna P, Baruzzi A, Yonova EH et al. 2009. FBXO7 mutations cause autosomal recessive, early-onset parkinsonian-pyramidal syndrome. Neurology 72:3240–45
    [Google Scholar]
  38. Di Maio R, Barrett PJ, Hoffman EK, Barrett CW, Zharikov A et al. 2016. α-Synuclein binds TOM20 and inhibits mitochondrial protein import in Parkinson's disease. Sci. Transl. Med. 8:342342–78
    [Google Scholar]
  39. Di Maio R, Hoffman EK, Rocha EM, Keeney MT, Sanders LH et al. 2018. LRRK2 activation in idiopathic Parkinson's disease. Sci. Transl. Med. 10:451eaar5429
    [Google Scholar]
  40. Do CB, Tung JY, Dorfman E, Kiefer AK, Drabant EM et al. 2011. Web-based genome-wide association study identifies two novel loci and a substantial genetic component for Parkinson's disease. PLOS Genet 7:6e1002141
    [Google Scholar]
  41. Doherty KM, Hardy J. 2013. Parkin disease and the Lewy body conundrum. Mov. Disord. 28:6702–4
    [Google Scholar]
  42. Dolgacheva LP, Berezhnov AV, Fedotova EI, Zinchenko VP, Abramov AY. 2019. Role of DJ-1 in the mechanism of pathogenesis of Parkinson's disease. J. Bioenerg. Biomembr. 51:3175–88
    [Google Scholar]
  43. Dorsey RE, Elbaz A, Nichols E, Abd-Allah F, Abdelalim A et al. 2018. Global, regional, and national burden of Parkinson's disease, 1990–2016: a systematic analysis for the Global Burden of Disease Study 2016. Lancet Neurol 17:11939–53
    [Google Scholar]
  44. Duran R, Mencacci NE, Angeli AV, Shoai M, Deas E et al. 2013. The glucocerobrosidase E326K variant predisposes to Parkinson's disease, but does not cause Gaucher's disease. Mov. Disord. 28:2232–36
    [Google Scholar]
  45. Edvardson S, Cinnamon Y, Ta-Shma A, Shaag A, Yim YI et al. 2012. A deleterious mutation in DNAJC6 encoding the neuronal-specific clathrin-uncoating co-chaperone auxilin, is associated with juvenile parkinsonism. PLOS ONE 7:e36458
    [Google Scholar]
  46. Eguchi T, Kuwahara T, Sakurai M, Komori T, Fujimoto T et al. 2018. LRRK2 and its substrate Rab GTPases are sequentially targeted onto stressed lysosomes and maintain their homeostasis. PNAS 115:39E9115–24
    [Google Scholar]
  47. Fares MB, Ait-Bouziad N, Dikiy I, Mbefo MK, Jovičić A et al. 2014. The novel Parkinson's disease linked mutation G51D attenuates in vitro aggregation and membrane binding of α-synuclein, and enhances its secretion and nuclear localization in cells. Hum. Mol. Genet. 23:174491–509
    [Google Scholar]
  48. Farrer M, Chan P, Chen R, Tan L, Lincoln S et al. 2001. Lewy bodies and parkinsonism in families with parkin mutations. Ann. Neurol. 50:3293–300
    [Google Scholar]
  49. Funayama M, Hasegawa K, Kowa H, Saito M, Tsuji S, Obata F. 2002. A new locus for Parkinson's disease (PARK8) maps to chromosome 12p11.2–q13.1. Ann. Neurol. 51:3296–301
    [Google Scholar]
  50. Gardner RC, Burke JF, Nettiksimmons J, Goldman S, Tanner CM, Yaffe K. 2015. Traumatic brain injury in later life increases risk for Parkinson disease. Ann. Neurol. 77:6987–95
    [Google Scholar]
  51. George JM. 2002. The synucleins. Genome Biol 3:1REVIEWS3002
    [Google Scholar]
  52. Giaime E, Tong Y, Wagner LK, Yuan Y, Huang G, Shen J. 2017. Age-dependent dopaminergic neurodegeneration and impairment of the autophagy-lysosomal pathway in LRRK-deficient mice. Neuron 96:4796–807.e6
    [Google Scholar]
  53. Giasson BI, Covy JP, Bonini NM, Hurtig HI, Farrer MJ et al. 2006. Biochemical and pathological characterization of Lrrk2. Ann. Neurol. 59:2315–22
    [Google Scholar]
  54. Gitler AD, Bevis BJ, Shorter J, Strathearn KE, Hamamichi S et al. 2008. The Parkinson's disease protein α-synuclein disrupts cellular Rab homeostasis. PNAS 105:1145–50
    [Google Scholar]
  55. Guardia-Laguarta C, Area-Gomez E, Rub C, Liu Y, Magrane J et al. 2013. α-Synuclein is localized to mitochondria-associated ER membranes. J. Neurosci. 34:1249–59
    [Google Scholar]
  56. Haelterman NA, Yoon WH, Sandoval H, Jaiswal M, Shulman JM, Bellen HJ. 2014. A mitocentric view of Parkinson's disease. Annu. Rev. Neurosci. 37:137–59
    [Google Scholar]
  57. Hasegawa K, Stoessl AJ, Yokoyama T, Kowa H, Wszolek ZK, Yagishita S. 2009. Familial parkinsonism: study of original Sagamihara PARK8 (I2020T) kindred with variable clinicopathologic outcomes. Parkinsonism Relat. Disord. 15:4300–6
    [Google Scholar]
  58. Hayashi S, Nagai H, Takahashi H. 2000. An autopsy case of autosomal-recessive juvenile parkinsonism with a homozygous exon 4 deletion in the parkin gene. Mov. Disord. 15:5884–88
    [Google Scholar]
  59. Healy DG, Falchi M, O'Sullivan SS, Bonifati V, Durr A et al. 2008. Phenotype, genotype, and worldwide genetic penetrance of LRRK2-associated Parkinson's disease: a case-control study. Lancet Neurol 7:7583–90
    [Google Scholar]
  60. Heckman MG, Soto-Ortolaza AI, Aasly JO, Abahuni N, Annesi G et al. 2013. Population-specific frequencies for LRRK2 susceptibility variants in the Genetic Epidemiology of Parkinson's Disease (GEO-PD) Consortium. Mov. Disord. 28:121740–44
    [Google Scholar]
  61. Heman-Ackah SM, Manzano R, Hoozemans JJM, Scheper W, Flynn R et al. 2017. Alpha-synuclein induces the unfolded protein response in Parkinson's disease SNCA triplication iPSC-derived neurons. Hum. Mol. Genet. 26:224441–50
    [Google Scholar]
  62. Henderson MX, Sedor S, McGeary I, Cornblath EJ, Peng C et al. 2020. Glucocerebrosidase activity modulates neuronal susceptibility to pathological α-synuclein insult. Neuron 105:5822–836.e7
    [Google Scholar]
  63. Herzig MC, Kolly C, Persohn E, Theil D, Schweizer T et al. 2011. LRRK2 protein levels are determined by kinase function and are crucial for kidney and lung homeostasis in mice. Hum. Mol. Genet. 20:214209–23
    [Google Scholar]
  64. Higashi S, Moore DJ, Colebrooke RE, Biskup S, Dawson VL et al. 2007. Expression and localization of Parkinson's disease-associated leucine-rich repeat kinase 2 in the mouse brain. J. Neurochem. 100:2368–81
    [Google Scholar]
  65. Hopfner F, Schulte EC, Mollenhauer B, Bereznai B, Knauf F et al. 2013. The role of SCARB2 as susceptibility factor in Parkinson's disease. Mov. Disord. 28:4538–40
    [Google Scholar]
  66. Ito G, Okai T, Fujino G, Takeda K, Ichijo H et al. 2007. GTP binding is essential to the protein kinase activity of LRRK2, a causative gene product for familial Parkinson's disease. Biochemistry 46:51380–88
    [Google Scholar]
  67. Iwai A, Masliah E, Yoshimoto M, Ge N, Flanagan L et al. 1995. The precursor protein of non-Aβ component of Alzheimer's disease amyloid is a presynaptic protein of the central nervous system. Neuron 14:2467–75
    [Google Scholar]
  68. Jankovic J. 2008. Parkinson's disease clinical features and diagnosis. J. Neurol. Neurosurg. Psychiatry 79:368–76
    [Google Scholar]
  69. Joseph S, Schulz JB, Stegmüller J. 2018. Mechanistic contributions of FBXO7 to Parkinson disease. J. Neurochem. 144:2118–27
    [Google Scholar]
  70. Kane LA, Lazarou M, Fogel AI, Li Y, Yamano K et al. 2014. PINK1 phosphorylates ubiquitin to activate parkin E3 ubiquitin ligase activity. J. Cell Biol. 205:2143–53
    [Google Scholar]
  71. Ki CS, Stavrou EF, Davanos N, Lee WY, Chung EJ et al. 2007. The Ala53Thr mutation in the α-synuclein gene in a Korean family with Parkinson disease. Clin. Genet. 71:5471–73
    [Google Scholar]
  72. Kiely AP, Ling H, Asi YT, Kara E, Proukakis C et al. 2015. Distinct clinical and neuropathological features of G51D SNCA mutation cases compared with SNCA duplication and H50Q mutation. Mol. Neurodegener. 10:41
    [Google Scholar]
  73. Kim S, Kwon SH, Kam TI, Panicker N, Karuppagounder SS et al. 2019. Transneuronal propagation of pathologic α-synuclein from the gut to the brain models Parkinson's disease. Neuron 103:4627–41.e7
    [Google Scholar]
  74. Kitada T, Asakawa S, Hattori N, Matsumine H, Yamamura Y et al. 1998. Mutations in the parkin gene cause autosomal recessive juvenile parkinsonism. Nature 392:6676605–8
    [Google Scholar]
  75. Konno T, Ross OA, Puschmann A, Dickson DW, Wszolek ZK. 2016. Autosomal dominant Parkinson's disease caused by SNCA duplications. Parkinsonism Relat. Disord. 22:S1–6
    [Google Scholar]
  76. Krebs CE, Karkheiran S, Powell JC, Cao M, Makarov V et al. 2013. The sac1 domain of SYNJ1 identified mutated in a family with early-onset progressive Parkinsonism with generalized seizures. Hum. Mutat. 34:1200–7
    [Google Scholar]
  77. Krohn L, Grenn FP, Makarious MB, Kim JJ, Bandres-Ciga S et al. 2020a. Comprehensive assessment of PINK1 variants in Parkinson's disease. Neurobiol. Aging 91:168e1–5
    [Google Scholar]
  78. Krohn L, Öztürk TN, Vanderperre B, Ouled Amar Bencheikh B, Ruskey JA et al. 2020b. Genetic, structural, and functional evidence link TMEM175 to synucleinopathies. Ann. Neurol. 87:1139–53
    [Google Scholar]
  79. Krüger R, Kuhn W, Müller T, Woitalla D, Graeber M et al. 1998. Ala30Pro mutation in the gene encoding α-synuclein in Parkinson's disease. Nat. Genet. 19:74–78
    [Google Scholar]
  80. Langston JW. 2017. The MPTP story. J. Parkinson's Dis. 7:S11–19
    [Google Scholar]
  81. Lesage S, Anheim M, Letournel F, Bousset L, Honoré A et al. 2013. G51D α-synuclein mutation causes a novel Parkinsonian-pyramidal syndrome. Ann. Neurol. 73:4459–71
    [Google Scholar]
  82. Lesage S, Drouet V, Majounie E, Deramecourt V, Jacoupy M et al. 2016. Loss of VPS13C function in autosomal-recessive Parkinsonism causes mitochondrial dysfunction and increases PINK1/parkin-dependent mitophagy. Am. J. Hum. Genet. 98:3500–13
    [Google Scholar]
  83. Li JY, Englund E, Holton JL, Soulet D, Hagell P et al. 2008. Lewy bodies in grafted neurons in subjects with Parkinson's disease suggest host-to-graft disease propagation. Nat. Med. 14:5501–3
    [Google Scholar]
  84. Li K, Tang BS, Liu ZH, Kang JF, Zhang Y et al. 2015. LRRK2 A419V variant is a risk factor for Parkinson's disease in Asian population. Neurobiol. Aging 36:2908e11–15
    [Google Scholar]
  85. Limousin P, Foltynie T. 2019. Long-term outcomes of deep brain stimulation in Parkinson disease. Nat. Rev. Neurol. 15:234–42
    [Google Scholar]
  86. Lin G, Lee PT, Chen K, Mao D, Tan KL et al. 2018. Phospholipase PLA2G6, a Parkinsonism-associated gene, affects Vps26 and Vps35, retromer function, and ceramide levels, similar to α-synuclein gain. Cell Metab 28:4605–18.e6
    [Google Scholar]
  87. Liu G, Boot B, Locascio JJ, Jansen IE, Winder-Rhodes S et al. 2016. Specifically neuropathic Gaucher's mutations accelerate cognitive decline in Parkinson's. Ann. Neurol. 80:5674–85
    [Google Scholar]
  88. Luk KC, Kehm V, Carroll J, Zhang B, Brien PO et al. 2012. Pathological α-synuclein transmission in nontransgenic mice. Science 949:6109949–53
    [Google Scholar]
  89. Mabrouk OS, Chen S, Edwards AL, Yang M, Hirst WD, Graham DL. 2020. Quantitative measurements of LRRK2 in human cerebrospinal fluid demonstrates increased levels in G2019S patients. Front. Neurosci. 14:526
    [Google Scholar]
  90. Mahul-Mellier A-L, Burtscher J, Maharjan N, Weerens L, Croisier M et al. 2020. The process of Lewy body formation, rather than simply α-synuclein fibrillization, is the major driver of neurodegeneration in synucleinopathies. PNAS 117:94971–82
    [Google Scholar]
  91. Mallett V, Ross JP, Alcalay RN, Ambalavanan A, Sidransky E et al. 2016. GBA p.T369M substitution in Parkinson disease: polymorphism or association? A meta-analysis. Neurol. Genet. 2:5e104
    [Google Scholar]
  92. Markopoulou K, Dickson DW, McComb RD, Wszolek ZK, Katechalidou L et al. 2008. Clinical, neuropathological and genotypic variability in SNCA A53T familial Parkinson's disease. Acta Neuropathol 116:125–35
    [Google Scholar]
  93. Martí-Massó JF, Ruiz-Martínez J, Bolaño MJ, Ruiz I, Gorostidi A et al. 2009. Neuropathology of Parkinson's disease with the R1441G mutation in LRRK2. Mov. Disord. 24:131998–2001
    [Google Scholar]
  94. Mazzulli JR, Xu YH, Sun Y, Knight AL, McLean PJ et al. 2011. Gaucher disease glucocerebrosidase and α-synuclein form a bidirectional pathogenic loop in synucleinopathies. Cell 146:137–52
    [Google Scholar]
  95. Mazzulli JR, Zunke F, Isacson O, Studer L, Krainc D 2016. α-Synuclein-induced lysosomal dysfunction occurs through disruptions in protein trafficking in human midbrain synucleinopathy models. PNAS 113:71931–36
    [Google Scholar]
  96. McFarland NR. 2016. Diagnostic approach to atypical parkinsonian syndromes. Continuum 22: 4 Movement Disorders 1117–42
    [Google Scholar]
  97. McNeill A, Duran R, Hughes DA, Mehta A, Schapira AHV. 2012. A clinical and family history study of Parkinson's disease in heterozygous glucocerebrosidase mutation carriers. J. Neurol. Neurosurg. Psychiatry 83:8853–54
    [Google Scholar]
  98. Michelakakis H, Xiromerisiou G, Dardiotis E, Bozi M, Vassilatis D et al. 2012. Evidence of an association between the scavenger receptor class B member 2 gene and Parkinson's disease. Mov. Disord. 27:400–5
    [Google Scholar]
  99. Miklavc P, Ehinger K, Thompson KE, Hobi N, Shimshek DR, Frick M. 2014. Surfactant secretion in LRRK2 knock-out rats: changes in lamellar body morphology and rate of exocytosis. PLOS ONE 9:1e84926
    [Google Scholar]
  100. Moors TE, Maat CA, Niedieker D, Mona D, Petersen D et al. 2019. Subcellular orchestration of alpha-synuclein variants in Parkinson's disease brains revealed by 3D multicolor STED microscopy. bioRxiv 470476. https://doi.org/10.1101/470476
    [Crossref]
  101. Muenter MD, Forno LS, Hornykiewicz O, Kish SJ, Maraganore DM et al. 1998. Hereditary form of parkinsonism-dementia. Ann. Neurol. 43:6768–81
    [Google Scholar]
  102. Nakamura K, Nemani VM, Azarbal F, Skibinski G, Levy JM et al. 2011. Direct membrane association drives mitochondrial fission by the Parkinson disease-associated protein α-synuclein. J. Biol. Chem. 286:2320710–26
    [Google Scholar]
  103. Nalls MA, Blauwendraat C, Vallerga CL, Heilbron K, Bandres-Ciga S et al. 2019. Identification of novel risk loci, causal insights, and heritable risk for Parkinson's disease: a meta-analysis of genome-wide association studies. Lancet Neurol 18:121091–102
    [Google Scholar]
  104. Narendra D, Tanaka A, Suen DF, Youle RJ. 2008. Parkin is recruited selectively to impaired mitochondria and promotes their autophagy. J. Cell Biol. 183:5795–803
    [Google Scholar]
  105. Neumann J, Bras J, Deas E, O'Sullivan SS, Parkkinen L et al. 2009. Glucocerebrosidase mutations in clinical and pathologically proven Parkinson's disease. Brain 132:71783–94
    [Google Scholar]
  106. Okun MS. 2017. Management of Parkinson disease in 2017. JAMA 318:979192
    [Google Scholar]
  107. Paisán-Ruíz C, Bhatia KP, Li A, Hernandez D, Davis M et al. 2009. Characterization of PLA2G6 as a locus for dystonia-parkinsonism. Ann. Neurol. 65:119–23
    [Google Scholar]
  108. Paisán-Ruıíz C, Jain S, Evans EW, Gilks WP, Simón J et al. 2004. Cloning of the gene containing mutations that cause PARK8-linked Parkinson's disease. Neuron 44:4595–600
    [Google Scholar]
  109. Papagiannakis N, Xilouri M, Koros C, Stamelou M, Antonelou R et al. 2015. Lysosomal alterations in peripheral blood mononuclear cells of Parkinson's disease patients. Mov. Disord. 30:131830–34
    [Google Scholar]
  110. Park J, Lee SB, Lee S, Kim Y, Song S et al. 2006. Mitochondrial dysfunction in Drosophila PINK1 mutants is complemented by parkin. Nature 441:1157–61
    [Google Scholar]
  111. Peng C, Gathagan RJ, Covell DJ, Medellin C, Stieber A et al. 2018. Cellular milieu imparts distinct pathological α-synuclein strains in α-synucleinopathies. Nature 557:558–63
    [Google Scholar]
  112. Pezzoli G, Cereda E. 2013. Exposure to pesticides or solvents and risk of Parkinson disease. Neurology 80:2035–41
    [Google Scholar]
  113. Pickrell AM, Youle RJ. 2015. The roles of PINK1, Parkin, and mitochondrial fidelity in Parkinson's disease. Neuron 85:2257–73
    [Google Scholar]
  114. Polymeropoulos MH, Lavedan C, Leroy E, Ide SE, Dehejia A et al. 1997. Mutation in the α-synuclein gene identified in families with Parkinson's disease. Science 276:53212045–47
    [Google Scholar]
  115. Purlyte E, Dhekne HS, Sarhan AR, Gomez R, Lis P et al. 2019. Rab29 activation of the Parkinson's disease-associated LRRK2 kinase. EMBO J 38:2e101237
    [Google Scholar]
  116. Puschmann A, Ross OA, Vilariño-Güell C, Lincoln SJ, Kachergus JM et al. 2009. A Swedish family with de novo α-synuclein A53T mutation: evidence for early cortical dysfunction. Parkinsonism Relat. Disord. 15:9627–32
    [Google Scholar]
  117. Rajput A, Dickson DW, Robinson CA, Ross OA, Dächsel JC et al. 2006. Parkinsonism, Lrrk2 G2019S, and tau neuropathology. Neurology 67:81506–8
    [Google Scholar]
  118. Ramirez A, Heimbach A, Gründemann J, Stiller B, Hampshire D et al. 2006. Hereditary parkinsonism with dementia is caused by mutations in ATP13A2, encoding a lysosomal type 5 P-type ATPase. Nat. Genet. 38:101184–91
    [Google Scholar]
  119. Reeve A, Simcox E, Turnbull D. 2014. Ageing and Parkinson's disease: Why is advancing age the biggest risk factor?. Ageing Res. Rev. 14:119–30
    [Google Scholar]
  120. Robak LA, Jansen IE, van Rooij J, Uitterlinden AG, Kraaij R et al. 2017. Excessive burden of lysosomal storage disorder gene variants in Parkinson's disease. Brain 140:123191–203
    [Google Scholar]
  121. Rocha EM, De Miranda BR, Castro S, Drolet R, Hatcher NG et al. 2020. LRRK2 inhibition prevents endolysosomal deficits seen in human Parkinson's disease. Neurobiol. Dis. 134:104626
    [Google Scholar]
  122. Roosen DA, Cookson MR. 2016. LRRK2 at the interface of autophagosomes, endosomes and lysosomes. Mol. Neurodegener. 11:173
    [Google Scholar]
  123. Ross OA, Soto-Ortolaza AI, Heckman MG, Aasly JO, Abahuni N et al. 2011. Association of LRRK2 exonic variants with susceptibility to Parkinson's disease: a case-control study. Lancet Neurol 10:10898–908
    [Google Scholar]
  124. Rothaug M, Zunke F, Mazzulli JR, Schweizer M, Altmeppen H et al. 2014. LIMP-2 expression is critical for β-glucocerebrosidase activity and α-synuclein clearance. PNAS 111:4315573–78
    [Google Scholar]
  125. Rousseaux MWC, de Haro M, Lasagna-Reeves CA, De Maio A, Park J et al. 2016. TRIM28 regulates the nuclear accumulation and toxicity of both alpha-synuclein and tau. eLife 5:e19809
    [Google Scholar]
  126. Rousseaux MWC, Vázquez-Vélez GE, Al-Ramahi I, Jeong H-H, Bajić A et al. 2018. A druggable genome screen identifies modifiers of α-synuclein levels via a tiered cross-species validation approach. J. Neurosci. 38:439286–301
    [Google Scholar]
  127. Sato C, Morgan A, Lang AE, Salehi-Rad S, Kawarai T et al. 2005. Analysis of the glucocerebrosidase gene in Parkinson's disease. Mov. Disord. 20:3367–70
    [Google Scholar]
  128. Schaser AJ, Osterberg VR, Dent SE, Stackhouse TL, Wakeham CM et al. 2019. Alpha-synuclein is a DNA binding protein that modulates DNA repair with implications for Lewy body disorders. Sci. Rep. 9:110919
    [Google Scholar]
  129. Schultheis PJ, Fleming SM, Clippinger AK, Lewis J, Tsunemi T et al. 2013. Atp13a2-deficient mice exhibit neuronal ceroid lipofuscinosis, limited α-synuclein accumulation and age-dependent sensorimotor deficits. Hum. Mol. Genet. 22:102067–82
    [Google Scholar]
  130. Seidel K, Schöls L, Nuber S, Petrasch-Parwez E, Gierga K et al. 2010. First appraisal of brain pathology owing to A30P mutant alpha-synuclein. Ann. Neurol. 67:5684–89
    [Google Scholar]
  131. Shahmoradian SH, Lewis AJ, Genoud C, Hench J, Moors TE et al. 2019. Lewy pathology in Parkinson's disease consists of crowded organelles and lipid membranes. Nat. Neurosci. 22:71099–109
    [Google Scholar]
  132. Shulman JM, De Jager PL, Feany MB. 2011. Parkinson's disease: genetics and pathogenesis. Annu. Rev. Pathol. Mech. Dis. 6:193–222
    [Google Scholar]
  133. Shults CW. 2006. Lewy bodies. PNAS 103:61661–68
    [Google Scholar]
  134. Sidransky E, Lopez G. 2012. The link between the GBA gene and parkinsonism. Lancet Neurol 11:11986–98
    [Google Scholar]
  135. Sidransky E, Nalls MA, Aasly JO, Aharon-Peretz J, Annesi G et al. 2009. Multicenter analysis of glucocerebrosidase mutations in Parkinson's disease. N. Engl. J. Med. 361:171651–61
    [Google Scholar]
  136. Simón-Sánchez J, Schulte C, Bras JM, Sharma M, Gibbs JR et al. 2009. Genome-wide association study reveals genetic risk underlying Parkinson's disease. Nat. Genet. 41:121308–12
    [Google Scholar]
  137. Singleton A, Farrer MJ, Johnson J, Hague S, Kachergus J et al. 2003. α-Synuclein locus triplication causes Parkinson's disease. Science 302:5641841
    [Google Scholar]
  138. Soldner F, Stelzer Y, Shivalila CS, Abraham BJ, Latourelle JC et al. 2016. Parkinson-associated risk variant in distal enhancer of α-synuclein modulates target gene expression. Nature 533:760195–99
    [Google Scholar]
  139. Spellman GG. 1962. Report of familial cases of Parkinsonism. JAMA 179:372–75
    [Google Scholar]
  140. Spillantini MG, Crowther RA, Jakes R, Hasegawa M, Goedert M 1998. Synuclein in filamentous inclusions of Lewy bodies from Parkinson's disease and dementia with Lewy bodies. PNAS 95:116469–73
    [Google Scholar]
  141. Spira PJ, Sharpe DM, Halliday G, Cavanagh J, Nicholson GA. 2001. Clinical and pathological features of a Parkinsonian syndrome in a family with an Ala53Thr α-synuclein mutation. Ann. Neurol. 49:3313–19
    [Google Scholar]
  142. Steger M, Tonelli F, Ito G, Davies P, Trost M et al. 2016. Phosphoproteomics reveals that Parkinson's disease kinase LRRK2 regulates a subset of Rab GTPases. eLife 5:e12813
    [Google Scholar]
  143. Stirnemann , Belmatoug N, Camou F, Serratrice C, Froissart R et al. 2017. A review of Gaucher disease pathophysiology, clinical presentation and treatments. Int. J. Mol. Sci. 18:2441
    [Google Scholar]
  144. Stojkovska I, Krainc D, Mazzulli JR. 2018. Molecular mechanisms of α-synuclein and GBA1 in Parkinson's disease. Cell Tissue Res 373:151–60
    [Google Scholar]
  145. Tan EK, Peng R, Teo YY, Tan LC, Angeles D et al. 2010. Multiple LRRK2 variants modulate risk of Parkinson disease: a Chinese multicenter study. Hum. Mutat. 31:5561–68
    [Google Scholar]
  146. Tardiff DF, Jui NT, Khurana V, Tambe MA, Thompson ML et al. 2013. Yeast reveal a “druggable” Rsp5/Nedd4 network that ameliorates α-synuclein toxicity in neurons. Science 342:6161979–83
    [Google Scholar]
  147. Thaler A, Ash E, Gan-Or Z, Orr-Urtreger A, Giladi N. 2009. The LRRK2 G2019S mutation as the cause of Parkinson's disease in Ashkenazi Jews. J. Neural Transm. 116:111473–82
    [Google Scholar]
  148. Thenganatt MA, Jankovic J. 2014. Parkinson disease subtypes. JAMA Neurol 71:4499–504
    [Google Scholar]
  149. Tofaris GK, Kim HT, Hourez R, Jung J-W, Kim KP, Goldberg AL 2011. Ubiquitin ligase Nedd4 promotes α-synuclein degradation by the endosomal-lysosomal pathway. PNAS 108:4117004–9
    [Google Scholar]
  150. Trinh J, Guella I, Farrer MJ. 2014. Disease penetrance of late-onset parkinsonism: a meta-analysis. JAMA Neurol 71:121535–39
    [Google Scholar]
  151. Tsunemi T, Krainc D. 2014. Zn2+ dyshomeostasis caused by loss of ATP13A2/PARK9 leads to lysosomal dysfunction and alpha-synuclein accumulation. Hum. Mol. Genet. 23:112791–801
    [Google Scholar]
  152. Tucci A, Nalls MA, Houlden H, Revesz T, Singleton AB et al. 2010. Genetic variability at the PARK16 locus. Eur. J. Hum. Genet. 18:121356–59
    [Google Scholar]
  153. Valente EM, Bentivoglio AR, Dixon PH, Ferraris A, Ialongo T et al. 2002. Localization of a novel locus for autosomal recessive early-onset Parkinsonism, PARK6, on human chromosome 1p35-p36. Am. J. Hum. Genet. 68:4895–900
    [Google Scholar]
  154. Valente EM, Caputo V, Muqit MMK, Harvey K, Gispert S et al. 2004. Hereditary early-onset Parkinson's disease caused by mutations in PINK1. Science 304:56741158–60
    [Google Scholar]
  155. Vázquez-Vélez GE, Gonzales K, Revelli J-P, Adamski C, Naini FA et al. 2020. Doublecortin like kinase 1 regulates α-synuclein levels and toxicity. J. Neurosci. 40:2459–77
    [Google Scholar]
  156. Vilariño-Güell C, Rajput A, Milnerwood AJ, Shah B, Szu-Tu C et al. 2014. DNAJC13 mutations in Parkinson disease. Hum. Mol. Genet. 23:71794–801
    [Google Scholar]
  157. Vilariño-Güell C, Wider C, Ross OA, Dachsel JC, Kachergus JM et al. 2011. VPS35 mutations in Parkinson disease. Am. J. Hum. Genet. 89:1162–67
    [Google Scholar]
  158. Vilas D, Gelpi E, Aldecoa I, Grau O, Rodriguez-Diehl R et al. 2019. Lack of central and peripheral nervous system synuclein pathology in R1441G LRRK2-associated Parkinson's disease. J. Neurol. Neurosurg. Psychiatry 90:7832–33
    [Google Scholar]
  159. Villumsen M, Aznar S, Pakkenberg B, Jess T, Brudek T 2019. Inflammatory bowel disease increases the risk of Parkinson's disease: a Danish nationwide cohort study 1977–2014. Gut 68:118–24
    [Google Scholar]
  160. Vogiatzi T, Xilouri M, Vekrellis K, Stefanis L. 2008. Wild type α-synuclein is degraded by chaperone-mediated autophagy and macroautophagy in neuronal cells. J. Biol. Chem. 283:3523542–56
    [Google Scholar]
  161. Whiffin N, Armean IM, Kleinman A, Marshall JL, Minikel EV et al. 2020. The effect of LRRK2 loss-of-function variants in humans. Nat. Med. 26:869–77
    [Google Scholar]
  162. Wider C, Skipper L, Solida A, Brown L, Farrer M et al. 2008. Autosomal dominant dopa-responsive parkinsonism in a multigenerational Swiss family. Parkinsonism Relat. Disord. 14:6465–70
    [Google Scholar]
  163. Williams ET, Chen X, Moore DJ. 2017. VPS35, the retromer complex and Parkinson's disease. J. Parkinson's Dis. 7:2219–33
    [Google Scholar]
  164. Wong YC, Krainc D. 2017. α-Synuclein toxicity in neurodegeneration: mechanism and therapeutic strategies. Nat. Med. 23:21–13
    [Google Scholar]
  165. Xiong WX, Sun YM, Guan RY, Luo SS, Chen C et al. 2016. The heterozygous A53T mutation in the alpha-synuclein gene in a Chinese Han patient with Parkinson disease: case report and literature review. J. Neurol. 263:101984–92
    [Google Scholar]
  166. Yamamura Y. 2010. The long journey to the discovery of PARK2: the 50th anniversary of Japanese Society of Neuropathology. Neuropathology 30:5495–500
    [Google Scholar]
  167. Yamamura Y, Sobue I, Ando K, Iida M, Yanagi T. 1973. Paralysis agitans of early onset with marked diurnal fluctuation of symptoms. Neurology 23:3239–44
    [Google Scholar]
  168. Yu E, Rudakou U, Krohn L, Mufti K, Ruskey JA et al. 2020. Analysis of heterozygous PRKN variants and copy number variations in Parkinson's disease. medRxiv 20072728. https://doi.org/10.1101/2020.05.07.20072728
    [Crossref]
  169. Zarranz JJ, Alegre J, Go JC, Lezcano E, Ros R et al. 2003. The new mutation, E46K, of α-synuclein causes Parkinson and Lewy body dementia. Neurology164–73
    [Google Scholar]
  170. Zhang Y, Sun Q, Yi M, Zhou X, Guo J et al. 2017. Genetic analysis of LRRK2 R1628P in Parkinson's disease in Asian populations. Parkinson's Dis. 2017.8093124
    [Google Scholar]
  171. Zimprich A, Benet-Pagès A, Struhal W, Graf E, Eck SH et al. 2011. A mutation in VPS35, encoding a subunit of the retromer complex, causes late-onset Parkinson disease. Am. J. Hum. Genet. 89:1168–75
    [Google Scholar]
  172. Zimprich A, Biskup S, Leitner P, Lichtner P, Farrer M et al. 2004a. Mutations in LRRK2 cause autosomal-dominant Parkinsonism with pleomorphic pathology. Neuron 44:601–7
    [Google Scholar]
  173. Zimprich A, Müller-Myhsok B, Farrer M, Leitner P, Sharma M et al. 2004b. The PARK8 locus in autosomal dominant Parkinsonism: confirmation of linkage and further delineation of the disease-containing interval. Am. J. Hum. Genet. 74:111–19
    [Google Scholar]
/content/journals/10.1146/annurev-neuro-100720-034518
Loading
/content/journals/10.1146/annurev-neuro-100720-034518
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error