1932

Abstract

Interval timing, which operates on timescales of seconds to minutes, is distributed across multiple brain regions and may use distinct circuit mechanisms as compared to millisecond timing and circadian rhythms. However, its study has proven difficult, as timing on this scale is deeply entangled with other behaviors. Several circuit and cellular mechanisms could generate sequential or ramping activity patterns that carry timing information. Here we propose that a productive approach is to draw parallels between interval timing and spatial navigation, where direct analogies can be made between the variables of interest and the mathematical operations necessitated. Along with designing experiments that isolate or disambiguate timing behavior from other variables, new techniques will facilitate studies that directly address the neural mechanisms that are responsible for interval timing.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-neuro-101419-011117
2020-07-08
2024-04-17
Loading full text...

Full text loading...

/deliver/fulltext/neuro/43/1/annurev-neuro-101419-011117.html?itemId=/content/journals/10.1146/annurev-neuro-101419-011117&mimeType=html&fmt=ahah

Literature Cited

  1. Akhlaghpour H, Wiskerke J, Choi JY, Taliaferro JP, Au J, Witten IB 2016. Dissociated sequential activity and stimulus encoding in the dorsomedial striatum during spatial working memory. eLife 5:e19507
    [Google Scholar]
  2. Anderson MI, Jeffery KJ. 2003. Heterogeneous modulation of place cell firing by changes in context. J. Neurosci. 23:268827–35
    [Google Scholar]
  3. Armbruster BN, Li X, Pausch MH, Herlitze S, Roth BL 2007. Evolving the lock to fit the key to create a family of G protein–coupled receptors potently activated by an inert ligand. PNAS 104:125163–68
    [Google Scholar]
  4. Arriaga M, Han EB. 2017. Dedicated hippocampal inhibitory networks for locomotion and immobility. J. Neurosci. 37:389222–38
    [Google Scholar]
  5. Bakhurin KI, Goudar V, Shobe JL, Claar LD, Buonomano DV, Masmanidis SC 2017. Differential encoding of time by prefrontal and striatal network dynamics. J. Neurosci. 37:4854–70
    [Google Scholar]
  6. Balcı F, Simen P. 2016. A decision model of timing. Curr. Opin. Behav. Sci. 8:94–101
    [Google Scholar]
  7. Bangasser DA, Waxler DE, Santollo J, Shors TJ 2006. Trace conditioning and the hippocampus: the importance of contiguity. J. Neurosci. 26:348702–6
    [Google Scholar]
  8. Barlow HB. 1972. Single units and sensation: a neuron doctrine for perceptual psychology?. Perception 1:4371–94
    [Google Scholar]
  9. Barry C, Hayman R, Burgess N, Jeffery KJ 2007. Experience-dependent rescaling of entorhinal grids. Nat. Neurosci. 10:6682–84
    [Google Scholar]
  10. Berthier NE, Moore JW. 1986. Cerebellar Purkinje cell activity related to the classically conditioned nictitating membrane response. Exp. Brain Res. 63:2341–50
    [Google Scholar]
  11. Bittner KC, Milstein AD, Grienberger C, Romani S, Magee JC 2017. Behavioral time scale synaptic plasticity underlies CA1 place fields. Science 357:63551033–36
    [Google Scholar]
  12. Blair HT, Wu A, Cong J 2014. Oscillatory neurocomputing with ring attractors: a network architecture for mapping locations in space onto patterns of neural synchrony. Philos. Trans. R. Soc. Lond. B Biol. Sci. 369:163520120526
    [Google Scholar]
  13. Boyden ES, Zhang F, Bamberg E, Nagel G, Deisseroth K 2005. Millisecond-timescale, genetically targeted optical control of neural activity. Nat. Neurosci 8:91263–68
    [Google Scholar]
  14. Bright IM, Meister MLR, Cruzado NA, Tiganj Z, Howard MW, Buffalo EA 2019. A temporal record of the past with a spectrum of time constants in the monkey entorhinal cortex. bioRxiv 688341. https://doi.org/10.1101/688341
    [Crossref]
  15. Brown GD, Preece T, Hulme C 2000. Oscillator-based memory for serial order. Psychol. Rev. 107:1127–81
    [Google Scholar]
  16. Burak Y, Brookings T, Fiete I 2006. Triangular lattice neurons may implement an advanced numeral system to precisely encode rat position over large ranges. arXiv:q-bio/0606005 [q-bio.NC]
  17. Burak Y, Fiete IR. 2009. Accurate path integration in continuous attractor network models of grid cells. PLOS Comput. Biol. 5:2e1000291
    [Google Scholar]
  18. Burgess N, Barry C, O'Keefe J 2007. An oscillatory interference model of grid cell firing. Hippocampus 17:9801–12
    [Google Scholar]
  19. Bush D, Burgess N. 2014. A hybrid oscillatory interference/continuous attractor network model of grid cell firing. J. Neurosci. 34:145065–79
    [Google Scholar]
  20. Buzsáki G, Llinás R. 2017. Space and time in the brain. Science 358:6362482–85
    [Google Scholar]
  21. Cameron CM, Murugan M, Choi JY, Engel EA, Witten IB 2019. Increased cocaine motivation is associated with degraded spatial and temporal representations in IL-NAc neurons. Neuron 103:180–91.e7
    [Google Scholar]
  22. Campbell MG, Ocko SA, Mallory CS, Low IIC, Ganguli S, Giocomo LM 2018. Principles governing the integration of landmark and self-motion cues in entorhinal cortical codes for navigation. Nat. Neurosci. 21:81096–106
    [Google Scholar]
  23. Carr CE, Konishi M. 1990. A circuit for detection of interaural time differences in the brain stem of the barn owl. J. Neurosci. 10:103227–46
    [Google Scholar]
  24. Chettih SN, Harvey CD. 2019. Single-neuron perturbations reveal feature-specific competition in V1. Nature 567:7748334–40
    [Google Scholar]
  25. Cooper WE, Frederick WG. 2007. Optimal time to emerge from refuge. Biol. J. Linn. Soc. 91:3375–82
    [Google Scholar]
  26. Couey JJ, Witoelar A, Zhang S-J, Zheng K, Ye J et al. 2013. Recurrent inhibitory circuitry as a mechanism for grid formation. Nat. Neurosci. 16:3318–24
    [Google Scholar]
  27. Craig ADB. 2009. Emotional moments across time: a possible neural basis for time perception in the anterior insula. Philos. Trans. R. Soc. Lond. B Biol. Sci. 364:15251933–42
    [Google Scholar]
  28. Dana H, Sun Y, Mohar B, Hulse BK, Kerlin AM et al. 2019. High-performance calcium sensors for imaging activity in neuronal populations and microcompartments. Nat. Methods 16:7649–57
    [Google Scholar]
  29. Densen ME. 1977. Time perception and schizophrenia. Percept. Mot. Skills 44:2436–38
    [Google Scholar]
  30. Dill LM, Fraser AHG. 1997. The worm re-turns: hiding behavior of a tube-dwelling marine polychaete. Serpula vermicularis. Behav. Ecol. 8:2186–93
    [Google Scholar]
  31. Domnisoru C, Kinkhabwala AA, Tank DW 2013. Membrane potential dynamics of grid cells. Nature 495:199–204
    [Google Scholar]
  32. Durstewitz D. 2003. Self-organizing neural integrator predicts interval times through climbing activity. J. Neurosci. 23:125342–53
    [Google Scholar]
  33. Eichenbaum H. 2017. On the integration of space, time, and memory. Neuron 95:51007–18
    [Google Scholar]
  34. Fenton AA, Kao H-Y, Neymotin SA, Olypher A, Vayntrub Y et al. 2008. Unmasking the CA1 ensemble place code by exposures to small and large environments: more place cells and multiple, irregularly arranged, and expanded place fields in the larger space. J. Neurosci. 28:4411250–62
    [Google Scholar]
  35. Fuhs MC, Touretzky DS. 2006. A spin glass model of path integration in rat medial entorhinal cortex. J. Neurosci. 26:164266–76
    [Google Scholar]
  36. Fyhn M, Molden S, Witter MP, Moser EI, Moser M-B 2004. Spatial representation in the entorhinal cortex. Science 305:56881258–64
    [Google Scholar]
  37. Gibbon J. 1977. Scalar expectancy theory and Weber's law in animal timing. Psychol. Rev. 84:3279–325
    [Google Scholar]
  38. Giocomo LM, Zilli EA, Fransén E, Hasselmo ME 2007. Temporal frequency of subthreshold oscillations scales with entorhinal grid cell field spacing. Science 315:58191719–22
    [Google Scholar]
  39. Grossberg S, Merrill JW. 1992. A neural network model of adaptively timed reinforcement learning and hippocampal dynamics. Brain Res. Cogn. Brain Res. 1:13–38
    [Google Scholar]
  40. Grossberg S, Schmajuk NA. 1991. Neural dynamics of adaptive timing and temporal discrimination during associative learning. Pattern Recognition by Self-Organizing Neural Networks GA Carpenter, S Grossberg 637–74 Cambridge, MA: MIT Press
    [Google Scholar]
  41. Guanella A, Kiper D, Verschure P 2007. A model of grid cells based on a twisted torus topology. Int. J. Neural Syst. 17:4231–40
    [Google Scholar]
  42. Hafting T, Fyhn M, Molden S, Moser M-B, Moser EI 2005. Microstructure of a spatial map in the entorhinal cortex. Nature 436:7052801–6
    [Google Scholar]
  43. Hampson RE, Heyser CJ, Deadwyler SA 1993. Hippocampal cell firing correlates of delayed-match-to-sample performance in the rat. Behav. Neurosci. 107:5715–39
    [Google Scholar]
  44. Hardcastle K, Ganguli S, Giocomo LM 2015. Environmental boundaries as an error correction mechanism for grid cells. Neuron 86:3827–39
    [Google Scholar]
  45. Harvey CD, Coen P, Tank DW 2012. Choice-specific sequences in parietal cortex during a virtual-navigation decision task. Nature 484:62–68
    [Google Scholar]
  46. Hasselmo ME. 2008. Grid cell mechanisms and function: contributions of entorhinal persistent spiking and phase resetting. Hippocampus 18:121213–29
    [Google Scholar]
  47. Hasselmo ME. 2012. How We Remember: Brain Mechanisms of Episodic Memory Cambridge, MA: MIT Press
  48. Hasselmo ME. 2014. Neuronal rebound spiking, resonance frequency and theta cycle skipping may contribute to grid cell firing in medial entorhinal cortex. Philos. Trans. R. Soc. Lond. B Biol. Sci. 369:163520120523
    [Google Scholar]
  49. Hasselmo ME, Giocomo LM, Brandon MP, Yoshida M 2010. Cellular dynamical mechanisms for encoding the time and place of events along spatiotemporal trajectories in episodic memory. Behav. Brain Res. 215:2261–74
    [Google Scholar]
  50. Heys JG, Dombeck DA. 2018. Evidence for a subcircuit in medial entorhinal cortex representing elapsed time during immobility. Nat. Neurosci. 21:111574–82
    [Google Scholar]
  51. Howard MW, MacDonald CJ, Tiganj Z, Shankar KH, Du Q et al. 2014. A unified mathematical framework for coding time, space, and sequences in the hippocampal region. J. Neurosci. 34:134692–707
    [Google Scholar]
  52. Hugie DM. 2003. The waiting game: a “battle of waits” between predator and prey. Behav. Ecol. 14:6807–17
    [Google Scholar]
  53. Itskov V, Curto C, Pastalkova E, Buzsáki G 2011. Cell assembly sequences arising from spike threshold adaptation keep track of time in the hippocampus. J. Neurosci. 31:82828–34
    [Google Scholar]
  54. Ivry R. 1997. Cerebellar timing systems. Int. Rev. Neurobiol. 41:555–73
    [Google Scholar]
  55. Ivry RB, Schlerf JE. 2008. Dedicated and intrinsic models of time perception. Trends Cogn. Sci. 12:7273–80
    [Google Scholar]
  56. Jayakumar RP, Madhav MS, Savelli F, Blair HT, Cowan NJ, Knierim JJ 2019. Recalibration of path integration in hippocampal place cells. Nature 566:7745533–37
    [Google Scholar]
  57. Jennions MD, Backwell PRY, Murai M, Christy JH 2003. Hiding behaviour in fiddler crabs: How long should prey hide in response to a potential predator. ? Animal Behav 66:2251–57
    [Google Scholar]
  58. Jin DZ, Fujii N, Graybiel AM 2009. Neural representation of time in cortico-basal ganglia circuits. PNAS 106:4519156–61
    [Google Scholar]
  59. Jun JJ, Steinmetz NA, Siegle JH, Denman DJ, Bauza M et al. 2017. Fully integrated silicon probes for high-density recording of neural activity. Nature 551:232–36
    [Google Scholar]
  60. Karmarkar UR, Buonomano DV. 2007. Timing in the absence of clocks: encoding time in neural network states. Neuron 53:3427–38
    [Google Scholar]
  61. Kay K, Sosa M, Chung JE, Karlsson MP, Larkin MC, Frank LM 2016. A hippocampal network for spatial coding during immobility and sleep. Nature 531:7593185–90
    [Google Scholar]
  62. Kjelstrup KB, Solstad T, Brun VH, Hafting T, Leutgeb S et al. 2008. Finite scale of spatial representation in the hippocampus. Science 321:5885140–43
    [Google Scholar]
  63. Koivula K, Rytkonen S, Orell M 1995. Hunger-dependency of hiding behaviour after a predator attack in dominant and subordinate willow tits. Ardea 83:2397–404
    [Google Scholar]
  64. Kotani S, Kawahara S, Kirino Y 2003. Purkinje cell activity during learning a new timing in classical eyeblink conditioning. Brain Res 994:2193–202
    [Google Scholar]
  65. Kraus BJ, Brandon MP, Robinson RJ, Connerney MA, Hasselmo ME, Eichenbaum H 2015. During running in place, grid cells integrate elapsed time and distance run. Neuron 88:3578–89
    [Google Scholar]
  66. Kraus BJ, Robinson RJ, White JA, Eichenbaum H, Hasselmo ME 2013. Hippocampal “time cells”: time versus path integration. Neuron 78:61090–101
    [Google Scholar]
  67. Kropff E, Carmichael JE, Moser M-B, Moser EI 2015. Speed cells in the medial entorhinal cortex. Nature 523:7561419–24
    [Google Scholar]
  68. Laje R, Buonomano DV. 2013. Robust timing and motor patterns by taming chaos in recurrent neural networks. Nat. Neurosci. 16:7925–33
    [Google Scholar]
  69. Leon MI, Shadlen MN. 2003. Representation of time by neurons in the posterior parietal cortex of the macaque. Neuron 38:2317–27
    [Google Scholar]
  70. Lim S, Goldman MS. 2013. Balanced cortical microcircuitry for maintaining information in working memory. Nat. Neurosci. 16:91306–14
    [Google Scholar]
  71. Liu Y, Tiganj Z, Hasselmo ME, Howard MW 2019. A neural microcircuit model for a scalable scale-invariant representation of time. Hippocampus 29:3260–74
    [Google Scholar]
  72. Lorentz HA. 1903. Electromagnetic phenomena in a system moving with any velocity smaller than that of light. Proceedings of the Royal Netherlands Academy of Arts and Sciences, Vol. 6809–31 Amsterdam: KNAW
    [Google Scholar]
  73. Lusk NA, Petter EA, MacDonald CJ, Meck WH 2016. Cerebellar, hippocampal, and striatal time cells. Curr. Opin. Behav. Sci. 8:186–92
    [Google Scholar]
  74. MacDonald CJ, Carrow S, Place R, Eichenbaum H 2013. Distinct hippocampal time cell sequences represent odor memories in immobilized rats. J. Neurosci. 33:3614607–16
    [Google Scholar]
  75. MacDonald CJ, Lepage KQ, Eden UT, Eichenbaum H 2011. Hippocampal “time cells” bridge the gap in memory for discontiguous events. Neuron 71:4737–49
    [Google Scholar]
  76. Maguire EA, Nannery R, Spiers HJ 2006. Navigation around London by a taxi driver with bilateral hippocampal lesions. Brain 129:Pt. 112894–907
    [Google Scholar]
  77. Martín J, López P. 1999. When to come out from a refuge: risk-sensitive and state-dependent decisions in an alpine lizard. Behav. Ecol. 10:5487–92
    [Google Scholar]
  78. Marvin JS, Borghuis BG, Tian L, Cichon J, Harnett MT et al. 2013. An optimized fluorescent probe for visualizing glutamate neurotransmission. Nat. Methods 10:162–70
    [Google Scholar]
  79. Marvin JS, Scholl B, Wilson DE, Podgorski K, Kazemipour A et al. 2018. Stability, affinity, and chromatic variants of the glutamate sensor iGluSnFR. Nat. Methods 15:11936–39
    [Google Scholar]
  80. Matell MS, Meck WH. 2004. Cortico-striatal circuits and interval timing: coincidence detection of oscillatory processes. Brain Res. Cogn. Brain Res. 21:2139–70
    [Google Scholar]
  81. Matell MS, Meck WH, Nicolelis MAL 2003. Interval timing and the encoding of signal duration by ensembles of cortical and striatal neurons. Behav. Neurosci. 117:4760–73
    [Google Scholar]
  82. Mathis A, Herz AVM, Stemmler MB 2012. Resolution of nested neuronal representations can be exponential in the number of neurons. Phys. Rev. Lett. 109:1018103
    [Google Scholar]
  83. Mau W, Sullivan DW, Kinsky NR, Hasselmo ME, Howard MW, Eichenbaum H 2018. The same hippocampal CA1 population simultaneously codes temporal information over multiple timescales. Curr. Biol. 28:101499–508.e4
    [Google Scholar]
  84. Mauk MD, Buonomano DV. 2004. The neural basis of temporal processing. Annu. Rev. Neurosci. 27:307–40
    [Google Scholar]
  85. McEchron MD, Tseng W, Disterhoft JF 2003. Single neurons in CA1 hippocampus encode trace interval duration during trace heart rate (fear) conditioning in rabbit. J. Neurosci. 23:41535–47
    [Google Scholar]
  86. McNaughton BL, Battaglia FP, Jensen O, Moser EI, Moser M-B 2006. Path integration and the neural basis of the “cognitive map.”. Nat. Rev. Neurosci. 7:8663–78
    [Google Scholar]
  87. Meck WH. 1996. Neuropharmacology of timing and time perception. Brain Res. Cogn. Brain Res. 3:3–4227–42
    [Google Scholar]
  88. Meck WH, Church RM, Matell MS 2013. Hippocampus, time, and memory—a retrospective analysis. Behav. Neurosci. 127:5642–54
    [Google Scholar]
  89. Meck WH, Church RM, Olton DS 1984. Hippocampus, time, and memory. Behav. Neurosci. 98:13–22
    [Google Scholar]
  90. Mello GBM, Soares S, Paton JJ 2015. A scalable population code for time in the striatum. Curr. Biol. 25:91113–22
    [Google Scholar]
  91. Merchant H, Harrington DL, Meck WH 2013. Neural basis of the perception and estimation of time. Annu. Rev. Neurosci. 36:313–36
    [Google Scholar]
  92. Miall C. 1989. The storage of time intervals using oscillating neurons. Neural Comput 1:3359–71
    [Google Scholar]
  93. Mita A, Mushiake H, Shima K, Matsuzaka Y, Tanji J 2009. Interval time coding by neurons in the presupplementary and supplementary motor areas. Nat. Neurosci. 12:4502–7
    [Google Scholar]
  94. Morris RG, Garrud P, Rawlins JN, O'Keefe J 1982. Place navigation impaired in rats with hippocampal lesions. Nature 297:5868681–83
    [Google Scholar]
  95. Moser EI, Moser M-B. 2008. A metric for space. Hippocampus 18:121142–56
    [Google Scholar]
  96. Mosheiff N, Agmon H, Moriel A, Burak Y 2017. An efficient coding theory for a dynamic trajectory predicts non-uniform allocation of entorhinal grid cells to modules. PLOS Comput. Biol. 13:6e1005597
    [Google Scholar]
  97. O'Keefe J, Dostrovsky J. 1971. The hippocampus as a spatial map. Preliminary evidence from unit activity in the freely-moving rat. Brain Res 34:1171–75
    [Google Scholar]
  98. O'Keefe J, Nadel L. 1978. The Hippocampus as a Cognitive Map Oxford, UK: Clarendon Press
  99. O'Keefe J, Recce ML. 1993. Phase relationship between hippocampal place units and the EEG theta rhythm. Hippocampus 3:3317–30
    [Google Scholar]
  100. Pastalkova E, Itskov V, Amarasingham A, Buzsáki G 2008. Internally generated cell assembly sequences in the rat hippocampus. Science 321:58941322–27
    [Google Scholar]
  101. Paton JJ, Buonomano DV. 2018. The neural basis of timing: distributed mechanisms for diverse functions. Neuron 98:4687–705
    [Google Scholar]
  102. Quintana J, Fuster JM. 1999. From perception to action: temporal integrative functions of prefrontal and parietal neurons. Cereb. Cortex 9:3213–21
    [Google Scholar]
  103. Rajan K, Harvey CD, Tank DW 2016. Recurrent network models of sequence generation and memory. Neuron 90:1128–42
    [Google Scholar]
  104. Reutimann J, Yakovlev V, Fusi S, Senn W 2004. Climbing neuronal activity as an event-based cortical representation of time. J. Neurosci. 24:133295–303
    [Google Scholar]
  105. Robinson NTM, Priestley JB, Rueckemann JW, Garcia AD, Smeglin VA et al. 2017. Medial entorhinal cortex selectively supports temporal coding by hippocampal neurons. Neuron 94:3677–88.e6
    [Google Scholar]
  106. Rolls ET, Mills P. 2019. The generation of time in the hippocampal memory system. Cell Rep 28:71649–58.e6
    [Google Scholar]
  107. Rovelli C. 2018. The Order of Time London: Allen Lane
  108. Sabariego M, Schönwald A, Boublil BL, Zimmerman DT, Ahmadi S et al. 2019. Time cells in the hippocampus are neither dependent on medial entorhinal cortex inputs nor necessary for spatial working memory. Neuron 102:61235–48.e5
    [Google Scholar]
  109. Sadagopan S, Wang X. 2009. Nonlinear spectrotemporal interactions underlying selectivity for complex sounds in auditory cortex. J. Neurosci. 29:3611192–202
    [Google Scholar]
  110. Salz DM, Tiganj Z, Khasnabish S, Kohley A, Sheehan D et al. 2016. Time cells in hippocampal area CA3. J. Neurosci. 36:287476–84
    [Google Scholar]
  111. Samsonovich A, McNaughton BL. 1997. Path integration and cognitive mapping in a continuous attractor neural network model. J. Neurosci. 17:155900–20
    [Google Scholar]
  112. Save E, Nerad L, Poucet B 2000. Contribution of multiple sensory information to place field stability in hippocampal place cells. Hippocampus 10:164–76
    [Google Scholar]
  113. Savelli F, Knierim JJ. 2019. Origin and role of path integration in the cognitive representations of the hippocampus: computational insights into open questions. J. Exp. Biol. 222:jeb188912
    [Google Scholar]
  114. Schirmer A. 2011. How emotions change time. Front. Integr. Neurosci. 5:58
    [Google Scholar]
  115. Seung HS, Lee DD, Reis BY, Tank DW 2000. Stability of the memory of eye position in a recurrent network of conductance-based model neurons. Neuron 26:1259–71
    [Google Scholar]
  116. Shankar KH, Howard MW. 2012. A scale-invariant internal representation of time. Neural Comput 24:1134–93
    [Google Scholar]
  117. Sharp PE, Blair HT, Cho J 2001. The anatomical and computational basis of the rat head-direction cell signal. Trends Neurosci 24:5289–94
    [Google Scholar]
  118. Simen P, Balci F, de Souza L, Cohen JD, Holmes P 2011. A model of interval timing by neural integration. J. Neurosci. 31:259238–53
    [Google Scholar]
  119. Skaggs WE, Knierim JJ, Kudrimoti HS, McNaughton BL 1995. A model of the neural basis of the rat's sense of direction. Adv. Neural Inf. Process. Syst. 7:173–80
    [Google Scholar]
  120. Soares S, Atallah BV, Paton JJ 2016. Midbrain dopamine neurons control judgment of time. Science 354:63171273–77
    [Google Scholar]
  121. Sober SJ, Sponberg S, Nemenman I, Ting LH 2018. Millisecond spike timing codes for motor control. Trends Neurosci 41:10644–48
    [Google Scholar]
  122. Solstad T, Boccara CN, Kropff E, Moser M-B, Moser EI 2008. Representation of geometric borders in the entorhinal cortex. Science 322:59091865–68
    [Google Scholar]
  123. Spencer RMC, Karmarkar U, Ivry RB 2009. Evaluating dedicated and intrinsic models of temporal encoding by varying context. Philos. Trans. R. Soc. Lond. B Biol. Sci. 364:15251853–63
    [Google Scholar]
  124. Squire LR. 1992. Memory and the hippocampus: a synthesis from findings with rats, monkeys, and humans. Psychol. Rev. 99:2195–231
    [Google Scholar]
  125. Sreenivasan S, Fiete I. 2011. Grid cells generate an analog error-correcting code for singularly precise neural computation. Nat. Neurosci. 14:101330–37
    [Google Scholar]
  126. Stensola H, Stensola T, Solstad T, Frøland K, Moser M-B, Moser EI 2012. The entorhinal grid map is discretized. Nature 492:742772–78
    [Google Scholar]
  127. Sussillo D, Abbott LF. 2009. Generating coherent patterns of activity from chaotic neural networks. Neuron 63:4544–57
    [Google Scholar]
  128. Tahvildari B, Fransén E, Alonso AA, Hasselmo ME 2007. Switching between “On” and “Off” states of persistent activity in lateral entorhinal layer III neurons. Hippocampus 17:4257–63
    [Google Scholar]
  129. Takahashi JS. 2017. Transcriptional architecture of the mammalian circadian clock. Nat. Rev. Genet. 18:3164–79
    [Google Scholar]
  130. Taube JS, Muller RU, Ranck JB 1990. Head-direction cells recorded from the postsubiculum in freely moving rats. I. Description and quantitative analysis. J. Neurosci. 10:2420–35
    [Google Scholar]
  131. Tervo DGR, Hwang B-Y, Viswanathan S, Gaj T, Lavzin M et al. 2016. A designer AAV variant permits efficient retrograde access to projection neurons. Neuron 92:2372–82
    [Google Scholar]
  132. Tiganj Z, Cromer JA, Roy JE, Miller EK, Howard MW 2018. Compressed timeline of recent experience in monkey lateral prefrontal cortex. J. Cogn. Neurosci. 30:7935–50
    [Google Scholar]
  133. Tiganj Z, Hasselmo ME, Howard MW 2015. A simple biophysically plausible model for long time constants in single neurons. Hippocampus 25:127–37
    [Google Scholar]
  134. Tsao A, Sugar J, Lu L, Wang C, Knierim JJ et al. 2018. Integrating time from experience in the lateral entorhinal cortex. Nature 561:772157–62
    [Google Scholar]
  135. Tulving E. 2002. Episodic memory: from mind to brain. Annu. Rev. Psychol. 53:1–25
    [Google Scholar]
  136. Welsh DK, Logothetis DE, Meister M, Reppert SM 1995. Individual neurons dissociated from rat suprachiasmatic nucleus express independently phased circadian firing rhythms. Neuron 14:4697–706
    [Google Scholar]
  137. Wilson DE, Scholl B, Fitzpatrick D 2018. Differential tuning of excitation and inhibition shapes direction selectivity in ferret visual cortex. Nature 560:771697–101
    [Google Scholar]
  138. Wittmann M. 2009. The inner experience of time. Philos. Trans. R. Soc. B Biol. Sci. 364:15251955–67
    [Google Scholar]
  139. Yoshida M, Fransén E, Hasselmo ME 2008. mGluR-dependent persistent firing in entorhinal cortex layer III neurons. Eur. J. Neurosci. 28:61116–26
    [Google Scholar]
  140. Zhang K. 1996. Representation of spatial orientation by the intrinsic dynamics of the head-direction cell ensemble: a theory. J. Neurosci. 16:62112–26
    [Google Scholar]
  141. Zhang S, Schönfeld F, Wiskott L, Manahan-Vaughan D 2014. Spatial representations of place cells in darkness are supported by path integration and border information. Front. Behav. Neurosci. 8:222
    [Google Scholar]
/content/journals/10.1146/annurev-neuro-101419-011117
Loading
/content/journals/10.1146/annurev-neuro-101419-011117
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error