1932

Abstract

Treatment outcomes are strongly influenced by expectations, as evidenced by the placebo effect. Meta-analyses of clinical trials reveal that placebo effects are strongest in pain, indicating that psychosocial factors directly influence pain. In this review, I focus on the neural and psychological mechanisms by which instructions, learning, and expectations shape subjective pain. I address new experimental designs that help researchers tease apart the impact of these distinct processes and evaluate the evidence regarding the neural mechanisms by which these cognitive factors shape subjective pain. Studies reveal that expectations modulate pain through parallel circuits that include both pain-specific and domain-general circuits such as those involved in affect and learning. I then review how expectations, learning, and verbal instructions impact clinical outcomes, including placebo analgesia and responses to pharmacological treatments, and discuss implications for future work.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-neuro-101822-122427
2023-07-10
2024-06-17
Loading full text...

Full text loading...

/deliver/fulltext/neuro/46/1/annurev-neuro-101822-122427.html?itemId=/content/journals/10.1146/annurev-neuro-101822-122427&mimeType=html&fmt=ahah

Literature Cited

  1. Anderson AK, Phelps E. 2001. Lesions of the human amygdala impair enhanced perception of emotionally salient events. Nature 411:6835305–9
    [Google Scholar]
  2. Anderson SR, Gianola M, Perry JM, Reynolds Losin EA. 2020. Clinician-patient racial/ethnic concordance influences racial/ethnic minority pain: evidence from simulated clinical interactions. Pain Med. 21:113109–25
    [Google Scholar]
  3. Andrzejewski JA, Greenberg T, Carlson JM. 2019. Neural correlates of aversive anticipation: an activation likelihood estimate meta-analysis across multiple sensory modalities. Cogn. Affect. Behav. Neurosci. 19:61379–90
    [Google Scholar]
  4. Ashar YK, Chang LJ, Wager TD. 2017. Brain mechanisms of the placebo effect: an affective appraisal account. Annu. Rev. Clin. Psychol. 13:73–98
    [Google Scholar]
  5. Atlas LY. 2019. How instructions shape aversive learning: higher order knowledge, reversal learning, and the role of the amygdala. Curr. Opin. Behav. Sci. 26:121–29
    [Google Scholar]
  6. Atlas LY. 2021. A social affective neuroscience lens on placebo analgesia. Trends Cogn. Sci. 25:11992–1005
    [Google Scholar]
  7. Atlas LY, Bolger N, Lindquist MA, Wager TD. 2010. Brain mediators of predictive cue effects on perceived pain. J. Neurosci. 30:3912964–77
    [Google Scholar]
  8. Atlas LY, Dildine TC, Palacios-Barrios EE, Yu Q, Reynolds RC et al. 2021. Instructions and experiential learning have similar impacts on pain and pain-related brain responses but produce dissociations in value-based reversal learning. eLife 11:e73353
    [Google Scholar]
  9. Atlas LY, Doll BB, Li J, Daw ND, Phelps EA. 2016. Instructed knowledge shapes feedback-driven aversive learning in striatum and orbitofrontal cortex, but not the amygdala. eLife 5:e15192
    [Google Scholar]
  10. Atlas LY, Doll BB, Li J, Daw ND, Phelps EA. 2019. How instructed knowledge shapes adaptive learning. PsyArXiv. https://psyarxiv.com/f4sh9/
  11. Atlas LY, Phelps EA. 2018. Prepared stimuli enhance aversive learning without weakening the impact of verbal instructions. Learn. Mem. 25:2100–4
    [Google Scholar]
  12. Atlas LY, Sandman CF, Phelps EA. 2022. Rating expectations can slow aversive reversal learning. Psychophysiology 59:3e13979
    [Google Scholar]
  13. Atlas LY, Wager TD 2014. A meta-analysis of brain mechanisms of placebo analgesia: consistent findings and unanswered questions. Placebo: Handbook of Experimental Pharmacology, Vol. 225 F Benedetti, P Enck, E Frisaldi, M Schedlowski 37–69. Berlin/Heidelberg: Springer
    [Google Scholar]
  14. Atlas LY, Whittington RA, Lindquist MA, Wielgosz J, Sonty N, Wager TD. 2012. Dissociable influences of opiates and expectations on pain. J. Neurosci. 32:238053–64
    [Google Scholar]
  15. Atlas LY, Wielgosz J, Whittington RA, Wager TD. 2013. Specifying the non-specific factors underlying opioid analgesia: expectancy, attention, and affect. Psychopharmacology 231:5813–23
    [Google Scholar]
  16. Ayton P, Fischer I. 2004. The hot hand fallacy and the gambler's fallacy: two faces of subjective randomness?. Mem. Cognit. 32:1369–78
    [Google Scholar]
  17. Bechara A, Tranel D, Damasio H, Adolphs R, Rockland C, Damasio AR. 1995. Double dissociation of conditioning and declarative knowledge relative to the amygdala and hippocampus in humans. Science 269:52271115–18
    [Google Scholar]
  18. Becker S, Gandhi W, Pomares F, Wager TD, Schweinhardt P. 2017. Orbitofrontal cortex mediates pain inhibition by monetary reward. Soc. Cogn. Affect. Neurosci. 12:4651–61
    [Google Scholar]
  19. Benedetti F. 1996. The opposite effects of the opiate antagonist naloxone and the cholecystokinin antagonist proglumide on placebo analgesia. Pain 64:3535–43
    [Google Scholar]
  20. Benedetti F, Pollo A, Lopiano L, Lanotte M, Vighetti S, Rainero I. 2003. Conscious expectation and unconscious conditioning in analgesic, motor, and hormonal placebo/nocebo responses. J. Neurosci. 23:104315–23
    [Google Scholar]
  21. Bingel U, Lorenz J, Schoell E, Weiller C, Büchel C. 2006. Mechanisms of placebo analgesia: rACC recruitment of a subcortical antinociceptive network. Pain 120:1–28–15
    [Google Scholar]
  22. Bingel U, Wanigasekera V, Wiech K, Ni Mhuircheartaigh R, Lee MC et al. 2011. The effect of treatment expectation on drug efficacy: imaging the analgesic benefit of the opioid remifentanil. Sci. Transl. Med. 3:7070ra14
    [Google Scholar]
  23. Borsook D, Linnman C, Faria V, Strassman AM, Becerra L, Elman I. 2016. Reward deficiency and anti-reward in pain chronification. Neurosci. Biobehav. Rev. 68:282–97
    [Google Scholar]
  24. Braem S, De Houwer J, Demanet J, Yuen KSL, Kalisch R, Brass M. 2017. Pattern analyses reveal separate experience-based fear memories in the human right amygdala. J. Neurosci. 37:348116–30
    [Google Scholar]
  25. Bromberg-Martin ES, Matsumoto M, Hikosaka O. 2010. Dopamine in motivational control: rewarding, aversive, and alerting. Neuron 68:5815–34
    [Google Scholar]
  26. Brown CA, Seymour B, Boyle Y, El-Deredy W, Jones AKP. 2008a. Modulation of pain ratings by expectation and uncertainty: behavioral characteristics and anticipatory neural correlates. Pain 135:3240–50
    [Google Scholar]
  27. Brown CA, Seymour B, El-Deredy W, Jones AKP. 2008b. Confidence in beliefs about pain predicts expectancy effects on pain perception and anticipatory processing in right anterior insula. Pain 139:2324–32
    [Google Scholar]
  28. Büchel C, Geuter S, Sprenger C, Eippert F. 2014. Placebo analgesia: a predictive coding perspective. Neuron 81:61223–39
    [Google Scholar]
  29. Butcher BE, Carmody JJ. 2012. Sex differences in analgesic response to ibuprofen are influenced by expectancy: a randomized, crossover, balanced placebo-designed study. Eur. J. Pain 16:71005–13
    [Google Scholar]
  30. Clark RE, Manns JR, Squire LR. 2001. Trace and delay eyeblink conditioning: contrasting phenomena of declarative and nondeclarative memory. Psychol. Sci. 12:4304–8
    [Google Scholar]
  31. Clark RE, Manns JR, Squire LR. 2002. Classical conditioning, awareness, and brain systems. Trends Cogn. Sci. 6:12524–31
    [Google Scholar]
  32. Colloca L, Benedetti F. 2005. Placebos and painkillers: Is mind as real as matter?. Nat. Rev. Neurosci. 6:7545–52
    [Google Scholar]
  33. Colloca L, Lopiano L, Lanotte M, Benedetti F. 2004. Overt versus covert treatment for pain, anxiety, and Parkinson's disease. Lancet Neurol. 3:11679–84
    [Google Scholar]
  34. Colloca L, Sigaudo M, Benedetti F. 2008a. The role of learning in nocebo and placebo effects. Pain 136:1–2211–18
    [Google Scholar]
  35. Colloca L, Tinazzi M, Recchia S, Le Pera D, Fiaschi A et al. 2008b. Learning potentiates neurophysiological and behavioral placebo analgesic responses. Pain 139:2306–14
    [Google Scholar]
  36. Coppens E, Spruyt A, Vandenbulcke M, Van Paesschen W, Vansteenwegen D. 2009. Classically conditioned fear responses are preserved following unilateral temporal lobectomy in humans when concurrent US-expectancy ratings are used. Neuropsychologia 47:122496–503
    [Google Scholar]
  37. Corder G, Ahanonu B, Grewe BF, Wang D, Schnitzer MJ, Scherrer G. 2019. An amygdalar neural ensemble that encodes the unpleasantness of pain. Science 363:6424276–81
    [Google Scholar]
  38. Costa VD, Bradley MM, Lang PJ. 2015. From threat to safety: instructed reversal of defensive reactions. Psychophysiology 52:325–32
    [Google Scholar]
  39. Craig ADB. 2009. How do you feel—now? The anterior insula and human awareness. Nat. Rev. Neurosci. 10:159–70
    [Google Scholar]
  40. Dahlhamer J, Lucas J, Zelaya C, Nahin R, Mackey S et al. 2018. Prevalence of chronic pain and high-impact chronic pain among adults—United States, 2016. Morb. Mortal. Wkly. Rep. 67:361001–6
    [Google Scholar]
  41. de Lange FP, Heilbron M, Kok P. 2018. How do expectations shape perception?. Trends Cogn. Sci. 22:9764–79
    [Google Scholar]
  42. De Vita MJ, Maisto SA, Gilmour CE, McGuire L, Tarvin E, Moskal D. 2022. The effects of cannabidiol and analgesic expectancies on experimental pain reactivity in healthy adults: a balanced placebo design trial. Exp. Clin. Psychopharmacol. 30:5536–46
    [Google Scholar]
  43. Derbyshire SW. 2000. Exploring the pain “neuromatrix. .” Curr. Rev. Pain 4:6467–77
    [Google Scholar]
  44. Desch S, Schweinhardt P, Seymour B, Flor H, Becker S 2022. Endogenous modulation of pain relief: evidence for dopaminergic but not opioidergic involvement. bioRxiv 2022.07.10.499477. https://doi.org/10.1101/2022.07.10.499477
  45. Dickinson A, Dearing MF. 1980. Appetitive-aversive interactions and inhibitory processes. Mechanisms of Learning and Motivation: A Memorial Volume to Jerzy Konorski A Dickinson, RA Boakes 203–31. New York: Psychol. Press
    [Google Scholar]
  46. Doll BB, Jacobs WJ, Sanfey AG, Frank MJ. 2009. Instructional control of reinforcement learning: a behavioral and neurocomputational investigation. Brain Res. 1299:74–94
    [Google Scholar]
  47. Dosenbach NUF, Visscher KM, Palmer ED, Miezin FM, Wenger KK et al. 2006. A core system for the implementation of task sets. Neuron 50:5799–812
    [Google Scholar]
  48. Eippert F, Bingel U, Schoell ED, Yacubian J, Klinger R et al. 2009a. Activation of the opioidergic descending pain control system underlies placebo analgesia. Neuron 63:4533–43
    [Google Scholar]
  49. Eippert F, Büchel C 2013. Spinal and supraspinal mechanisms of placebo analgesia. Placebo and Pain: From Bench to Bedside L Colloca, MA Flaten, K Meissner 53–71. London: Elsevier
    [Google Scholar]
  50. Eippert F, Finsterbusch J, Bingel U, Büchel C. 2009b. Direct evidence for spinal cord involvement in placebo analgesia. Science 326:5951404
    [Google Scholar]
  51. Eisenberger NI. 2015. Social pain and the brain: controversies, questions, and where to go from here. Annu. Rev. Psychol. 66:601–29
    [Google Scholar]
  52. Eldar E, Hauser TU, Dayan P, Dolan RJ. 2016. Striatal structure and function predict individual biases in learning to avoid pain. PNAS 113:174812–17
    [Google Scholar]
  53. Evers AW, Colloca L, Blease C, Annoni M, Atlas LY et al. 2018. Implications of placebo and nocebo effects for clinical practice: expert consensus. Psychother. Psychosom. 87:4204–10
    [Google Scholar]
  54. Evers AW, Colloca L, Blease C, Gaab J, Jensen KB et al. 2021. What should clinicians tell patients about placebo and nocebo effects? Practical considerations based on expert consensus. Psychother. Psychosom. 90:149–56
    [Google Scholar]
  55. Fazeli S, Büchel C. 2018. Pain related expectation and prediction error signals in the anterior insula are not related to aversiveness. J. Neurosci. 38:296461–74
    [Google Scholar]
  56. Fields H. 2004. State-dependent opioid control of pain. Nat. Rev. Neurosci. 5:7565–75
    [Google Scholar]
  57. Fields HL 2006. A motivation-decision model of pain: the role of opioids. Proceedings of the 11th World Congress on Pain H Flor, E Kalso, JO Dostrovsky 11 Seattle: IASP Press
    [Google Scholar]
  58. Fields HL. 2018. How expectations influence pain. Pain 159:Suppl. 1S3–10
    [Google Scholar]
  59. Frisaldi E, Shaibani A, Benedetti F. 2017. Why we should assess patients’ expectations in clinical trials. Pain Ther. 6:1107–10
    [Google Scholar]
  60. Friston K, Kiebel S. 2009. Predictive coding under the free-energy principle. Philos. Trans. R. Soc. B 364:15211211–21
    [Google Scholar]
  61. Friston KJ, Stephan KE, Montague R, Dolan RJ 2014. Computational psychiatry: the brain as a phantastic organ. Lancet Psychiatry 1:2148–58
    [Google Scholar]
  62. Geuter S, Koban L, Wager TD. 2017. The cognitive neuroscience of placebo effects: concepts, predictions, and physiology. Annu. Rev. Neurosci. 40:167–88
    [Google Scholar]
  63. Goffaux P, Redmond WJ, Rainville P, Marchand S. 2007. Descending analgesia—when the spine echoes what the brain expects. Pain 130:1–2137–43
    [Google Scholar]
  64. Gottfried JA, Dolan RJ. 2004. Human orbitofrontal cortex mediates extinction learning while accessing conditioned representations of value. Nat. Neurosci. 7:101144–52
    [Google Scholar]
  65. Grahl A, Onat S, Büchel C. 2018. The periaqueductal gray and Bayesian integration in placebo analgesia. eLife 7:e32930
    [Google Scholar]
  66. Grings WW, Schell AM, Carey CA. 1973. Verbal control of an autonomic response in a cue reversal situation. J. Exp. Psychol. 99:2215–21
    [Google Scholar]
  67. Gu X, Lohrenz T, Salas R, Baldwin PR, Soltani A et al. 2015. Belief about nicotine selectively modulates value and reward prediction error signals in smokers. PNAS 112:82539–44
    [Google Scholar]
  68. Harvie DS, Moseley GL, Hillier SL, Meulders A. 2017. Classical conditioning differences associated with chronic pain: a systematic review. J. Pain 18:8889–98
    [Google Scholar]
  69. Horing B, Büchel C. 2022. The human insula processes both modality-independent and pain-selective learning signals. PLOS Biol. 20:5e3001540
    [Google Scholar]
  70. Howe LC, Goyer JP, Crum AJ. 2017. Harnessing the placebo effect: exploring the influence of physician characteristics on placebo response. Health Psychol. 36:111074–82
    [Google Scholar]
  71. Hróbjartsson A, Gøtzsche PC. 2001. Is the placebo powerless?. N. Engl. J. Med. 344:211594–602
    [Google Scholar]
  72. Hróbjartsson A, Gøtzsche PC. 2004. Is the placebo powerless? Update of a systematic review with 52 new randomized trials comparing placebo with no treatment. J. Intern. Med. 256:291–100
    [Google Scholar]
  73. Hróbjartsson A, Kaptchuk TJ, Miller FG. 2011. Placebo effect studies are susceptible to response bias and to other types of biases. J. Clin. Epidemiol. 64:111223–29
    [Google Scholar]
  74. Iannetti GD, Salomons TV, Moayedi M, Mouraux A, Davis KD. 2013. Beyond metaphor: contrasting mechanisms of social and physical pain. Trends Cogn. Sci. 17:8371–78
    [Google Scholar]
  75. Jensen K, Kaptchuk TJ, Chen X, Kirsch I, Ingvar M et al. 2015a. A neural mechanism for nonconscious activation of conditioned placebo and nocebo responses. Cereb. Cortex 5:103903–10
    [Google Scholar]
  76. Jensen K, Kaptchuk TJ, Kirsch I, Raicek J, Lindstrom KM et al. 2012. Nonconscious activation of placebo and nocebo pain responses. PNAS 109:3915959–64
    [Google Scholar]
  77. Jensen K, Kirsch I, Odmalm S, Kaptchuk TJ, Ingvar M. 2015b. Classical conditioning of analgesic and hyperalgesic pain responses without conscious awareness. PNAS 112:257863–67
    [Google Scholar]
  78. Jepma M, Koban L, van Doorn J, Jones M, Wager TD. 2018. Behavioural and neural evidence for self-reinforcing expectancy effects on pain. Nat. Hum. Behav. 2:11838–55
    [Google Scholar]
  79. Jepma M, Roy M, Ramlakhan K, van Velzen M, Dahan A. 2022. Different brain systems support learning from received and avoided pain during human pain-avoidance learning. eLife 11:e74149
    [Google Scholar]
  80. Johansen JP, Fields HL. 2004. Glutamatergic activation of anterior cingulate cortex produces an aversive teaching signal. Nat. Neurosci. 7:4398–403
    [Google Scholar]
  81. Juliano LM, Fucito LM, Harrell PT. 2011. The influence of nicotine dose and nicotine dose expectancy on the cognitive and subjective effects of cigarette smoking. Exp. Clin. Psychopharmacol. 19:2105–15
    [Google Scholar]
  82. Juliano LM, Kardel PG, Harrell PT, Muench C, Edwards KC. 2019. Investigating the role of expectancy in caffeine withdrawal using the balanced placebo design. Hum. Psychopharmacol. Clin. Exp. 34:2e2692
    [Google Scholar]
  83. Kaptchuk TJ, Kelley JM, Conboy LA, Davis RB, Kerr CE et al. 2008. Components of placebo effect: randomised controlled trial in patients with irritable bowel syndrome. BMJ 336:7651999–1003
    [Google Scholar]
  84. Keltner JR. 2006. Isolating the modulatory effect of expectation on pain transmission: a functional magnetic resonance imaging study. J. Neurosci. 26:164437–43
    [Google Scholar]
  85. Kirsch I. 1985. Response expectancy as a determinant of experience and behavior. Am. Psychol. 40:111189–202
    [Google Scholar]
  86. Koban L, Jepma M, Geuter S, Wager TD. 2017. What's in a word? How instructions, suggestions, and social information change pain and emotion. Neurosci. Biobehav. Rev. 81:29–42
    [Google Scholar]
  87. Koyama T, McHaffie JG, Laurienti PJ, Coghill RC. 2005. The subjective experience of pain: where expectations become reality. PNAS 102:3612950–55
    [Google Scholar]
  88. Lee I-S, Lee B, Park H-J, Olausson H, Enck P, Chae Y 2015. A new animal model of placebo analgesia: involvement of the dopaminergic system in reward learning. Sci. Rep. 5:17140
    [Google Scholar]
  89. Lee I-S, Necka EA, Atlas LY. 2020. Distinguishing pain from nociception, salience, and arousal: how autonomic nervous system activity can improve neuroimaging tests of specificity. NeuroImage 204:116254
    [Google Scholar]
  90. Lefler Y, Campagner D, Branco T. 2020. The role of the periaqueductal gray in escape behavior. Curr. Opin. Neurobiol. 60:115–21
    [Google Scholar]
  91. Leknes S, Tracey I. 2008. A common neurobiology for pain and pleasure. Nat. Rev. Neurosci. 9:4314–20
    [Google Scholar]
  92. Levine JD, Gordon NC, Fields HL. 1978. The mechanism of placebo analgesia. Lancet 2:8091654–57
    [Google Scholar]
  93. Levy DJ, Glimcher PW. 2012. The root of all value: a neural common currency for choice. Curr. Opin. Neurobiol. 22:61027–38
    [Google Scholar]
  94. Li J, Delgado MR, Phelps E. 2011. How instructed knowledge modulates the neural systems of reward learning. PNAS 108:155–60
    [Google Scholar]
  95. Liu C, Pu M, Lian W, Hu L, Mobbs D, Yu R 2020. Conscious awareness differentially shapes analgesic and hyperalgesic pain responses. J. Exp. Psychol. Gen. 149:112007–19
    [Google Scholar]
  96. Lovibond PF, Shanks DR. 2002. The role of awareness in Pavlovian conditioning: empirical evidence and theoretical implications. J. Exp. Psychol. Anim. Behav. Process. 28:13–26
    [Google Scholar]
  97. Machado CJ, Kazama AM, Bachevalier J. 2009. Impact of amygdala, orbital frontal, or hippocampal lesions on threat avoidance and emotional reactivity in nonhuman primates. Emotion 9:2147–63
    [Google Scholar]
  98. MacKinnon DP, Fairchild AJ, Fritz MS. 2007. Mediation analysis. Annu. Rev. Psychol. 58:593–614
    [Google Scholar]
  99. Margolis EB, Hjelmstad GO, Fujita W, Fields HL. 2014. Direct bidirectional μ-opioid control of midbrain dopamine neurons. J. Neurosci. 34:4414707–16
    [Google Scholar]
  100. Mertens G, Engelhard IM. 2020. A systematic review and meta-analysis of the evidence for unaware fear conditioning. Neurosci. Biobehav. Rev. 108:254–68
    [Google Scholar]
  101. Mineka S, Ohman A. 2002. Phobias and preparedness: the selective, automatic, and encapsulated nature of fear. Biol. Psychiatry 52:927–37
    [Google Scholar]
  102. Mitchell CJ, De Houwer J, Lovibond PF. 2009. The propositional nature of human associative learning. Behav. Brain Sci. 32:2183–98
    [Google Scholar]
  103. Mogil JS. 2015. Social modulation of and by pain in humans and rodents. Pain 156:S35–41
    [Google Scholar]
  104. Motzkin JC, Hiser J, Carroll I, Wolf R, Baskaya MK et al. 2021. Human ventromedial prefrontal cortex lesions enhance expectation-related pain modulation. bioRxiv 2021.11.30.470579. https://doi.org/10.1101/2021.11.30.470579
  105. Müller M, Kamping S, Benrath J, Skowronek H, Schmitz J et al. 2016. Treatment history and placebo responses to experimental and clinical pain in chronic pain patients. Eur. J. Pain 20:91530–41
    [Google Scholar]
  106. Murray EA. 2007. The amygdala, reward and emotion. Trends Cogn. Sci. 11:11489–97
    [Google Scholar]
  107. Murray EA, O'Doherty JP, Schoenbaum G 2007. What we know and do not know about the functions of the orbitofrontal cortex after 20 years of cross-species studies. J. Neurosci. 27:318166–69
    [Google Scholar]
  108. Navratilova E, Atcherley CW, Porreca F. 2015. Brain circuits encoding reward from pain relief. Trends Neurosci. 38:11741–50
    [Google Scholar]
  109. Navratilova E, Xie JY, Okun A, Qu C, Eyde N et al. 2012. Pain relief produces negative reinforcement through activation of mesolimbic reward-valuation circuitry. PNAS 109:5020709–13
    [Google Scholar]
  110. Necka EA, Amir C, Dildine TC, Atlas LY. 2021. Expectations about pain and analgesic treatment are shaped by medical providers’ facial appearances: evidence from five online clinical simulation experiments. Soc. Sci. Med. 281:114091
    [Google Scholar]
  111. Nummenmaa L, Tuominen L. 2018. Opioid system and human emotions. Br. J. Pharmacol. 175:142737–49
    [Google Scholar]
  112. Ohnesorge N, Heinl C, Lewejohann L. 2021. Current methods to investigate nociception and pain in zebrafish. Front. Neurosci. 15:632634
    [Google Scholar]
  113. Ongaro G, Kaptchuk TJ. 2019. Symptom perception, placebo effects, and the Bayesian brain. Pain 160:1–4
    [Google Scholar]
  114. Palermo S, Benedetti F, Costa T, Amanzio M. 2015. Pain anticipation: an activation likelihood estimation meta-analysis of brain imaging studies. Hum. Brain Mapp. 36:51648–61
    [Google Scholar]
  115. Park SQ, Kahnt T, Rieskamp J, Heekeren HR. 2011. Neurobiology of value integration: when value impacts valuation. J. Neurosci. 31:259307–14
    [Google Scholar]
  116. Pearce JM, Hall G. 1980. A model for Pavlovian learning: variations in the effectiveness of conditioned but not of unconditioned stimuli. Psychol. Rev. 87:6532–52
    [Google Scholar]
  117. Peerdeman KJ, van Laarhoven AIM, Keij SM, Vase L, Rovers MM et al. 2016. Relieving patients’ pain with expectation interventions: a meta-analysis. Pain 157:61179–91
    [Google Scholar]
  118. Petrovic P. 2002. Placebo and opioid analgesia—imaging a shared neuronal network. Science 295:55601737–40
    [Google Scholar]
  119. Phelps E, Delgado MR, Nearing KI, LeDoux JE. 2004. Extinction learning in humans. Neuron 43:6897–905
    [Google Scholar]
  120. Ploghaus A, Narain C, Beckmann CF, Clare S, Bantick S et al. 2001. Exacerbation of pain by anxiety is associated with activity in a hippocampal network. J. Neurosci. 21:249896–903
    [Google Scholar]
  121. Power A, Brown CA, Sivan M, Lenton A, Rainey T et al. 2020. Individuals with chronic pain have the same response to placebo analgesia as healthy controls in terms of magnitude and reproducibility. Pain 161:122720–30
    [Google Scholar]
  122. Quirk GJ, Russo GK, Barron JL, Lebron K. 2000. The role of ventromedial prefrontal cortex in the recovery of extinguished fear. J. Neurosci. 20:166225–31
    [Google Scholar]
  123. Reis FM, Lee JY, Maesta-Pereira S, Schuette PJ, Chakerian M et al. 2021. Dorsal periaqueductal gray ensembles represent approach and avoidance states. eLife 10e64934
    [Google Scholar]
  124. Reynolds Losin EA, Anderson SR, Wager TD. 2017. Feelings of clinician-patient similarity and trust influence pain: evidence from simulated clinical interactions. J. Pain 18:7787–99
    [Google Scholar]
  125. Roelofs J, Ter Riet G, Peters ML, Kessels AGH, Reulen JPH, Menheere PPCA 2000. Expectations of analgesia do not affect spinal nociceptive R-III reflex activity: an experimental study into the mechanism of placebo-induced analgesia. Pain 89:75–80
    [Google Scholar]
  126. Rohsenow DJ, Marlatt GA. 1981. The balanced placebo design: methodological considerations. Addict. Behav. 6:2107–22
    [Google Scholar]
  127. Roy M, Shohamy D, Daw N, Jepma M, Wimmer GE, Wager TD. 2014. Representation of aversive prediction errors in the human periaqueductal gray. Nat. Neurosci. 17:111607–12
    [Google Scholar]
  128. Roy M, Shohamy D, Wager TD. 2012. Ventromedial prefrontal-subcortical systems and the generation of affective meaning. Trends Cogn. Sci. 16:3147–56
    [Google Scholar]
  129. Schafer SM, Colloca L, Wager TD. 2015. Conditioned placebo analgesia persists when subjects know they are receiving a placebo. J. Pain 16:5412–20
    [Google Scholar]
  130. Schappert SM, Burt CW. 2006. Ambulatory care visits to physician offices, hospital outpatient departments, and emergency departments: United States, 2001–02. Vital Health Stat. 13:1591–66
    [Google Scholar]
  131. Schenk LA, Sprenger C, Geuter S, Büchel C. 2014. Expectation requires treatment to boost pain relief: an fMRI study. Pain 155:1150–57
    [Google Scholar]
  132. Schmid J, Bingel U, Ritter C, Benson S, Schedlowski M et al. 2015. Neural underpinnings of nocebo hyperalgesia in visceral pain: a fMRI study in healthy volunteers. NeuroImage 120:114–22
    [Google Scholar]
  133. Schmid J, Theysohn N, Ga F, Benson S, Gramsch C et al. 2013. Neural mechanisms mediating positive and negative treatment expectations in visceral pain: A functional magnetic resonance imaging study on placebo and nocebo effects in healthy volunteers. Pain 154:112372–80
    [Google Scholar]
  134. Schneider B, Koenigs M. 2017. Human lesion studies of ventromedial prefrontal cortex. Neuropsychologia 107:84–93
    [Google Scholar]
  135. Schoenbaum G, Saddoris MP, Stalnaker TA. 2007. Reconciling the roles of orbitofrontal cortex in reversal learning and the encoding of outcome expectancies. Ann. N.Y. Acad. Sci. 1121:1320–35
    [Google Scholar]
  136. Scott DJ, Stohler CS, Egnatuk CM, Wang H, Koeppe RA, Zubieta J-K. 2008. Placebo and nocebo effects are defined by opposite opioid and dopaminergic responses. Arch. Gen. Psychiatry 65:2220–31
    [Google Scholar]
  137. Segerdahl AR, Mezue M, Okell TW, Farrar JT, Tracey I 2015. The dorsal posterior insula subserves a fundamental role in human pain. Nat. Neurosci. 18:4499–500
    [Google Scholar]
  138. Seymour B. 2019. Pain: a precision signal for reinforcement learning and control. Neuron 101:61029–41
    [Google Scholar]
  139. Seymour B, O'Doherty JP, Dayan P, Koltzenburg M, Jones AK et al. 2004. Temporal difference models describe higher-order learning in humans. Nature 429:664–67
    [Google Scholar]
  140. Seymour B, O'Doherty JP, Koltzenburg M, Wiech K, Frackowiak R et al. 2005. Opponent appetitive-aversive neural processes underlie predictive learning of pain relief. Nat. Neurosci. 8:91234–40
    [Google Scholar]
  141. Sharvit G, Corradi-Dell'Acqua C, Vuilleumier P. 2018. Modality-specific effects of aversive expectancy in the anterior insula and medial prefrontal cortex. Pain 159:81529–42
    [Google Scholar]
  142. Sharvit G, Vuilleumier P, Delplanque S, Corradi-Dell'Acqua C. 2015. Cross-modal and modality-specific expectancy effects between pain and disgust. Sci. Rep. 5:117487
    [Google Scholar]
  143. Takahashi YK, Chang CY, Lucantonio F, Haney RZ, Berg BA et al. 2013. Neural estimates of imagined outcomes in the orbitofrontal cortex drive behavior and learning. Neuron 80:2507–18
    [Google Scholar]
  144. Talmi D, Dayan P, Kiebel SJ, Frith CD, Dolan RJ. 2009. How humans integrate the prospects of pain and reward during choice. J. Neurosci. 29:4614617–26
    [Google Scholar]
  145. Uddin LQ. 2014. Salience processing and insular cortical function and dysfunction. Nat. Rev. Neurosci. 16:155–61
    [Google Scholar]
  146. Vase L, Robinson ME, Verne GN, Price DD. 2005. Increased placebo analgesia over time in irritable bowel syndrome (IBS) patients is associated with desire and expectation but not endogenous opioid mechanisms. Pain 115:3338–47
    [Google Scholar]
  147. Vlaeyen JWS, Crombez G, Linton SJ. 2016. The fear-avoidance model of pain. Pain 157:81588–89
    [Google Scholar]
  148. Volkow ND, McLellan AT. 2016. Opioid abuse in chronic pain—misconceptions and mitigation strategies. N. Engl. J. Med. 374:131253–63
    [Google Scholar]
  149. Wager TD, Atlas LY. 2015. The neuroscience of placebo effects: connecting context, learning and health. Nat. Rev. Neurosci. 16:7403–18
    [Google Scholar]
  150. Wager TD, Atlas LY, Leotti LA, Rilling JK. 2011. Predicting individual differences in placebo analgesia: contributions of brain activity during anticipation and pain experience. J. Neurosci. 31:2439–52
    [Google Scholar]
  151. Wager TD, Atlas LY, Lindquist MA, Roy M, Woo C-W, Kross E. 2013. An fMRI-based neurologic signature of physical pain. N. Engl. J. Med. 368:151388–97
    [Google Scholar]
  152. Wager TD, Rilling JK, Smith EE, Sokolik A, Casey KL et al. 2004. Placebo-induced changes in fMRI in the anticipation and experience of pain. Science 303:56611162–67
    [Google Scholar]
  153. Wager TD, Scott DJ, Zubieta J-K. 2007. Placebo effects on human μ-opioid activity during pain. PNAS 104:2611056–61
    [Google Scholar]
  154. Wiech K. 2016. Deconstructing the sensation of pain: the influence of cognitive processes on pain perception. Science 354:6312584–87
    [Google Scholar]
  155. Wiech K, Lin C-s, Brodersen KH, Bingel U, Ploner M, Tracey I 2010. Anterior insula integrates information about salience into perceptual decisions about pain. J. Neurosci. 30:4816324–31
    [Google Scholar]
  156. Wiech K, Vandekerckhove J, Zaman J, Tuerlinckx F, Vlaeyen JWS, Tracey I 2014. Influence of prior information on pain involves biased perceptual decision-making. Curr. Biol. 24:15R679–81
    [Google Scholar]
  157. Wilson RC, Takahashi YK, Schoenbaum G, Niv Y. 2014. Orbitofrontal cortex as a cognitive map of task space. Neuron 81:2267–79
    [Google Scholar]
  158. Wise R. 2002. Combining fMRI with a pharmacokinetic model to determine which brain areas activated by painful stimulation are specifically modulated by remifentanil. NeuroImage 16:4999–1014
    [Google Scholar]
  159. Woo C-W, Schmidt L, Krishnan A, Jepma M, Roy M et al. 2017. Quantifying cerebral contributions to pain beyond nociception. Nat. Commun. 8:14211
    [Google Scholar]
  160. Yarkoni T, Poldrack RA, Nichols TE, Van Essen DC, Wager TD. 2011. Large-scale automated synthesis of human functional neuroimaging data. Nat. Methods 8:8665–70
    [Google Scholar]
  161. Yoshida W, Seymour B, Koltzenburg M, Dolan RJ. 2013. Uncertainty increases pain: evidence for a novel mechanism of pain modulation involving the periaqueductal gray. J. Neurosci. 33:135638–46
    [Google Scholar]
  162. Zaman J, Vlaeyen JWS, Van Oudenhove L, Wiech K, Van Diest I. 2015. Associative fear learning and perceptual discrimination: a perceptual pathway in the development of chronic pain. Neurosci. Biobehav. Rev. 51:118–25
    [Google Scholar]
  163. Zhang S, Mano H, Ganesh G, Robbins T, Seymour B. 2016. Dissociable learning processes underlie human pain conditioning. Curr. Biol. 26:152–58
    [Google Scholar]
  164. Zhang S, Mano H, Lee M, Yoshida W, Kawato M et al. 2018. The control of tonic pain by active relief learning. eLife 7:e31949
    [Google Scholar]
  165. Zubieta J-K. 2005. Placebo effects mediated by endogenous opioid activity on μ-opioid receptors. J. Neurosci. 25:347754–62
    [Google Scholar]
  166. Zunhammer M, Bingel U, Wager TD. 2018. Placebo effects on the neurologic pain signature. JAMA Neurol. 75:111321–30
    [Google Scholar]
  167. Zunhammer M, Spisák T, Wager TD, Bingel U, Placebo Imaging Consortium 2021. Meta-analysis of neural systems underlying placebo analgesia from individual participant fMRI data. Nat Commun. 12:11391
    [Google Scholar]
/content/journals/10.1146/annurev-neuro-101822-122427
Loading
/content/journals/10.1146/annurev-neuro-101822-122427
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error