1932

Abstract

During the approximately 5 days of neurogenesis (late embryogenesis to the beginning of pupation), a limited number of neural stem cells produce approximately 200,000 neurons comprising hundreds of cell types. To build a functional nervous system, neuronal types need to be produced in the proper places, appropriate numbers, and correct times. We discuss how neural stem cells (neuroblasts) obtain so-called area codes for their positions in the nervous system (spatial patterning) and how they keep time to sequentially produce neurons with unique fates (temporal patterning). We focus on specific examples that demonstrate how a relatively simple patterning system (Notch) can be used reiteratively to generate different neuronal types. We also speculate on how different modes of temporal patterning that operate over short versus long time periods might be linked. We end by discussing how specification programs are integrated and lead to the terminal features of different neuronal types.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-neuro-102120-014813
2021-07-08
2024-05-12
Loading full text...

Full text loading...

/deliver/fulltext/neuro/44/1/annurev-neuro-102120-014813.html?itemId=/content/journals/10.1146/annurev-neuro-102120-014813&mimeType=html&fmt=ahah

Literature Cited

  1. Allen AM, Neville MC, Birtles S, Croset V, Treiber CD et al. 2020. A single-cell transcriptomic atlas of the adult Drosophila ventral nerve cord. eLife 9:e54074
    [Google Scholar]
  2. Apitz H, Salecker I. 2015. A region-specific neurogenesis mode requires migratory progenitors in the Drosophila visual system. Nat. Neurosci. 18:146–55
    [Google Scholar]
  3. Apitz H, Salecker I. 2018. Spatio-temporal relays control layer identity of direction-selective neuron subtypes in Drosophila. Nat. Commun. 9:12295
    [Google Scholar]
  4. Averbukh I, Lai S-L, Doe CQ, Barkai N. 2018. A repressor-decay timer for robust temporal patterning in embryonic Drosophila neuroblast lineages. eLife 7:e354969
    [Google Scholar]
  5. Baumgardt M, Karlsson D, Salmani BY, Bivik C, MacDonald RB et al. 2014. Global programmed switch in neural daughter cell proliferation mode triggered by a temporal gene cascade. Dev. Cell 30:2192–208
    [Google Scholar]
  6. Baumgardt M, Karlsson D, Terriente J, Díaz-Benjumea FJ, Thor S 2009. Neuronal subtype specification within a lineage by opposing temporal feed-forward loops. Cell 139:5969–82
    [Google Scholar]
  7. Bayraktar OA, Doe CQ. 2013. Combinatorial temporal patterning in progenitors expands neural diversity. Nature 498:7455449–55
    [Google Scholar]
  8. Bello BC, Hirth F, Gould AP. 2003. A pulse of the Drosophila Hox protein abdominal-A schedules the end of neural proliferation via neuroblast apoptosis. Neuron 37:2209–19
    [Google Scholar]
  9. Bello BC, Izergina N, Caussinus E, Reichert H. 2008. Amplification of neural stem cell proliferation by intermediate progenitor cells in Drosophila brain development. Neural Dev 3:5
    [Google Scholar]
  10. Berger C, Pallavi SK, Prasad M, Shashidhara LS, Technau GM. 2005. A critical role for cyclin E in cell fate determination in the central nervous system of Drosophila melanogaster. Nat. Cell Biol. 7:156–62
    [Google Scholar]
  11. Bertet C, Li X, Erclik T, Cavey M, Wells B, Desplan C. 2014. Temporal patterning of neuroblasts controls Notch-mediated cell survival through regulation of Hid or Reaper. Cell 158:51173–86
    [Google Scholar]
  12. Bhat KM. 1999. Segment polarity genes in neuroblast formation and identity specification during Drosophila neurogenesis. BioEssays 21:6472–85
    [Google Scholar]
  13. Birkholz O, Rickert C, Nowak J, Coban IC, Technau GM. 2015. Bridging the gap between postembryonic cell lineages and identified embryonic neuroblasts in the ventral nerve cord of Drosophila melanogaster. Biol. Open 4:4420–34
    [Google Scholar]
  14. Boone JQ, Doe CQ. 2008. Identification of Drosophila type II neuroblast lineages containing transit amplifying ganglion mother cells. Dev. Neurobiol. 68:91185–95
    [Google Scholar]
  15. Bowman SK, Rolland V, Betschinger J, Kinsey KA, Emery G, Knoblich JA. 2008. The tumor suppressors Brat and Numb regulate transit-amplifying neuroblast lineages in Drosophila. Dev. Cell 14:4535–46
    [Google Scholar]
  16. Bray SJ. 2016. Notch signalling in context. Nat. Rev. Mol. Cell Biol. 17:722–35
    [Google Scholar]
  17. Brody T, Odenwald WF. 2000. Programmed transformations in neuroblast gene expression during Drosophila CNS lineage development. Dev. Biol. 226:134–44
    [Google Scholar]
  18. Chai PC, Cruchet S, Wigger L, Benton R. 2019. Sensory neuron lineage mapping and manipulation in the Drosophila olfactory system. Nat. Commun. 10:643
    [Google Scholar]
  19. Chang T, Mazotta J, Dumstrei K, Dumitrescu A, Hartenstein V. 2001. Dpp and Hh signaling in the Drosophila embryonic eye field. Development 128:234691–704
    [Google Scholar]
  20. Chen Z, Del Valle Rodriguez A, Li X, Erclik T, Fernandes VM, Desplan C. 2016. A unique class of neural progenitors in the Drosophila optic lobe generates both migrating neurons and glia. Cell Rep 15:774–86
    [Google Scholar]
  21. Chu-LaGraff Q, Doe CQ. 1993. Neuroblast specification and formation regulated by wingless in the Drosophila CNS. Science 261:51281594–97
    [Google Scholar]
  22. Courgeon M, Desplan C. 2019a. Coordination of neural patterning in the Drosophila visual system. Curr. Opin. Neurobiol. 56:153–59
    [Google Scholar]
  23. Courgeon M, Desplan C. 2019b. Coordination between stochastic and deterministic specification in the Drosophila visual system. Science 6727:eaay6727
    [Google Scholar]
  24. Couto A, Alenius M, Dickson BJ. 2005. Molecular, anatomical, and functional organization of the Drosophila olfactory system. Curr. Biol. 15:171535–47
    [Google Scholar]
  25. Croset V, Treiber CD, Waddell S. 2018. Cellular diversity in the Drosophila midbrain revealed by single-cell transcriptomics. eLife 7:e34550
    [Google Scholar]
  26. Davie K, Janssens J, Koldere D, De Waegeneer M, Pech U et al. 2018. A single-cell transcriptome atlas of the aging Drosophila brain. Cell 174:4982–98.e20
    [Google Scholar]
  27. Dearborn R, Kunes S. 2004. An axon scaffold induced by retinal axons directs glia to destinations in the Drosophila optic lobe. Development 131:102291–303
    [Google Scholar]
  28. Deshpande N, Dittrich R, Technau GM, Urban J. 2001. Successive specification of Drosophila neuroblasts NB 6-4 and NB 7-3 depends on interaction of the segment polarity genes wingless, gooseberry and naked cuticle. Development 128:173253–61
    [Google Scholar]
  29. Doe CQ. 1992. Molecular markers for identified neuroblasts and ganglion mother cells in the Drosophila central nervous system. Development 116:4855–63
    [Google Scholar]
  30. Doe CQ. 2017. Temporal patterning in the Drosophila CNS. Annu. Rev. Cell Dev. Biol. 33:219–40
    [Google Scholar]
  31. Endo K, Aoki T, Yoda Y, Kimura KI, Hama C. 2007. Notch signal organizes the Drosophila olfactory circuitry by diversifying the sensory neuronal lineages. Nat. Neurosci. 10:2153–60
    [Google Scholar]
  32. Endo K, Karim MR, Taniguchi H, Krejci A, Kinameri E et al. 2011. Chromatin modification of Notch targets in olfactory receptor neuron diversification. Nat. Neurosci. 15:2224–33
    [Google Scholar]
  33. Enriquez J, Venkatasubramanian L, Baek M, Peterson M, Aghayeva U, Mann RS. 2015. Specification of individual adult motor neuron morphologies by combinatorial transcription factor codes. Neuron 86:4955–70
    [Google Scholar]
  34. Erclik T, Hartenstein V, Lipshitz HD, McInnes RR. 2008. Conserved role of the Vsx genes supports a monophyletic origin for bilaterian visual systems. Curr. Biol. 18:171278–87
    [Google Scholar]
  35. Erclik T, Li X, Courgeon M, Bertet C, Chen Z et al. 2017. Integration of temporal and spatial patterning generates neural diversity. Nature 541:7637365–70
    [Google Scholar]
  36. Espinosa-Medina I, Garcia-Marques J, Cepko C, Lee T. 2019. High-throughput dense reconstruction of cell lineages. Open Biol 9:190229
    [Google Scholar]
  37. Fernandes VM, Chen Z, Rossi AM, Zipfel J, Desplan C. 2017. Glia relay differentiation cues to coordinate neuronal development in Drosophila. Science 357:6354886–91
    [Google Scholar]
  38. Fischbach KF, Dittrich APM. 1989. The optic lobe of Drosophila melanogaster. I. A Golgi analysis of wild-type structure. Cell Tissue Res 258:3441–75
    [Google Scholar]
  39. Gabilondo H, Stratmann J, Rubio-Ferrera I, Millán-Crespo I, Contero-García P et al. 2016. Neuronal cell fate specification by the convergence of different spatiotemporal cues on a common terminal selector cascade. PLOS Biol 14:5e1002450
    [Google Scholar]
  40. Genovese S, Clément R, Gaultier C, Besse F, Narbonne-Reveau K et al. 2019. Coopted temporal patterning governs cellular hierarchy, heterogeneity and metabolism in Drosophila neuroblast tumors. eLife 8:e50375
    [Google Scholar]
  41. Gold KS, Brand AH. 2014. Optix defines a neuroepithelial compartment in the optic lobe of the Drosophila brain. Neural Dev 9:18
    [Google Scholar]
  42. Grosskortenhaus R, Pearson BJ, Marusich A, Doe CQ. 2005. Regulation of temporal identity transitions in Drosophila neuroblasts. Dev. Cell 8:2193–202
    [Google Scholar]
  43. Guo M, Jan LY, Jan YN. 1996. Control of daughter cell fates during asymmetric division: interaction of Numb and Notch. Neuron 17:127–41
    [Google Scholar]
  44. Hadjieconomou D, Timofeev K, Salecker I. 2011. A step-by-step guide to visual circuit assembly in Drosophila. Curr. Opin. Neurobiol. 21:176–84
    [Google Scholar]
  45. Hakes AE, Otsuki L, Brand AH. 2018. A newly discovered neural stem cell population is generated by the optic lobe neuroepithelium during embryogenesis in Drosophila melanogaster. Development 145:dev166207
    [Google Scholar]
  46. Hartenstein V, Campos-Ortega JA. 1984. Early neurogenesis in wild-type Drosophila melanogaster. Wilhelm Roux's Arch. . Dev. Biol. 193:5308–25
    [Google Scholar]
  47. Hasegawa E, Kaido M, Takayama R, Sato M. 2013. Brain-specific-homeobox is required for the specification of neuronal types in the Drosophila optic lobe. Dev. Biol. 377:190–99
    [Google Scholar]
  48. Hofbauer A, Campos-Ortega JA. 1990. Proliferation pattern and early differentiation of the optic lobes in Drosophila melanogaster. Roux's Arch. . Dev. Biol. 198:5264–74
    [Google Scholar]
  49. Holguera I, Desplan C. 2018. Neuronal specification in space and time. Science 362:6411176–80
    [Google Scholar]
  50. Homem CCF, Repic M, Knoblich JA. 2015. Proliferation control in neural stem and progenitor cells. Nat. Rev. Neurosci. 16:11647–59
    [Google Scholar]
  51. Homem CCF, Steinmann V, Burkard TR, Jais A, Esterbauer H, Knoblich JA. 2014. Ecdysone and mediator change energy metabolism to terminate proliferation in Drosophila neural stem cells. Cell 158:4874–88
    [Google Scholar]
  52. Huang Z, Kunes S. 1996. Hedgehog, transmitted along retinal axons, triggers neurogenesis in the developing visual centers of the Drosophila brain. Cell 86:3411–22
    [Google Scholar]
  53. Huang Z, Shilo BZ, Kunes S. 1998. A retinal axon fascicle uses Spitz, an EGF receptor ligand, to construct a synaptic cartridge in the brain of Drosophila. Cell 95:5693–703
    [Google Scholar]
  54. Isshiki T, Pearson B, Holbrook S, Doe CQ. 2001. Drosophila neuroblasts sequentially express transcription factors which specify the temporal identity of their neuronal progeny. Cell 106:4511–21
    [Google Scholar]
  55. Isshiki T, Takeichi M, Nose A. 1997. The role of the Msh homeobox gene during Drosophila neurogenesis: implication for the dorsoventral specification of the neuroectoderm. Development 124:163099–109
    [Google Scholar]
  56. Ito M, Masuda N, Shinomiya K, Endo K, Ito K. 2013. Systematic analysis of neural projections reveals clonal composition of the Drosophila brain. Curr. Biol. 23:8644–55
    [Google Scholar]
  57. Kambadur R, Koizumi K, Stivers C, Nagle J, Poole SJ, Odenwald WF. 1998. Regulation of POU genes by castor and hunchback establishes layered compartments in the Drosophila CNS. Genes Dev 12:2246–60
    [Google Scholar]
  58. Kanai MI, Okabe M, Hiromi Y. 2005. seven-up controls switching of transcription factors that specify temporal identities of Drosophila neuroblasts. Dev. Cell 8:2203–13
    [Google Scholar]
  59. Kao C-F, Yu H-H, He Y, Kao J-C, Lee T. 2012. Hierarchical deployment of factors regulating temporal fate in a diverse neuronal lineage of the Drosophila central brain. Neuron 73:4677–84
    [Google Scholar]
  60. Kaphingst K, Kunes S. 1994. Pattern formation in the visual centers of the Drosophila brain: wingless acts via decapentaplegic to specify the dorsoventral axis. Cell 78:3437–48
    [Google Scholar]
  61. Karlsson D, Baumgardt M, Thor S 2010. Segment-specific neuronal subtype specification by the integration of anteroposterior and temporal cues. PLOS Biol 8:5e1000368
    [Google Scholar]
  62. Kohwi M, Lupton JR, Lai S-L, Miller MR, Doe CQ. 2013. Developmentally regulated subnuclear genome reorganization restricts neural progenitor competence in Drosophila. Cell 152:1–297–108
    [Google Scholar]
  63. Konstantinides N, Kapuralin K, Fadil C, Barboza L, Satija R, Desplan C. 2018. Phenotypic convergence: distinct transcription factors regulate common terminal features. Cell 174:3622–35.e13
    [Google Scholar]
  64. Kucherenko MM, Barth J, Fiala A, Shcherbata HR. 2012. Steroid-induced microRNA let-7 acts as a spatio-temporal code for neuronal cell fate in the developing Drosophila brain. EMBO J 31:244511–23
    [Google Scholar]
  65. Lacin H, Chen H-M, Long X, Singer RH, Lee T, Truman JW. 2019. Neurotransmitter identity is acquired in a lineage-restricted manner in the Drosophila CNS. eLife 8:e43701
    [Google Scholar]
  66. Lee T, Lee A, Luo L. 1999. Development of the Drosophila mushroom bodies: sequential generation of three distinct types of neurons from a neuroblast. Development 126:184065–76
    [Google Scholar]
  67. Lee Y-J, Yang C-P, Miyares RL, Huang Y-F, He Y et al. 2020. Conservation and divergence of related neuronal lineages in the Drosophila central brain. eLife 9:e53518
    [Google Scholar]
  68. Li H, Horns F, Wu B, Xie Q, Li J, Li T et al. 2017. Classifying Drosophila olfactory projection neuron subtypes by single-cell RNA sequencing. Cell 171:51206–20.e22
    [Google Scholar]
  69. Li X, Erclik T, Bertet C, Chen Z, Voutev R et al. 2013. Temporal patterning of Drosophila medulla neuroblasts controls neural fates. Nature 498:7455456–62
    [Google Scholar]
  70. Lin S, Lai S-L, Yu H-H, Chihara T, Luo L, Lee T. 2010. Lineage-specific effects of Notch/Numb signaling in post-embryonic development of the Drosophila brain. Development 137:143–51
    [Google Scholar]
  71. Liu L-Y, Long X, Yang C-P, Miyares RL, Sugino K et al. 2019. Mamo decodes hierarchical temporal gradients into terminal neuronal fate. eLife 8:e48056
    [Google Scholar]
  72. Liu Z, Yang C-P, Sugino K, Fu C-C, Liu L-Y et al. 2015. Opposing intrinsic temporal gradients guide neural stem cell production of varied neuronal fates. Science 350:6258317–20
    [Google Scholar]
  73. Marchetti G, Tavosanis G. 2019. Modulators of hormonal response regulate temporal fate specification in the Drosophila brain. PLOS Genet 15:12e1008491
    [Google Scholar]
  74. Matsuzaki M, Saigo K. 1996. Hedgehog signaling independent of engrailed and wingless required for post-S1 neuroblast formation in Drosophila CNS. Development 122:113567–75
    [Google Scholar]
  75. Maurange C. 2020. Temporal patterning in neural progenitors: from Drosophila development to childhood cancers. Dis. Models Mech. 13:7dmm044883
    [Google Scholar]
  76. Maurange C, Cheng L, Gould AP. 2008. Temporal transcription factors and their targets schedule the end of neural proliferation in Drosophila. Cell 133:5891–902
    [Google Scholar]
  77. Maurange C, Gould AP. 2005. Brainy but not too brainy: starting and stopping neuroblast divisions in Drosophila. Trends Neurosci 28:130–36
    [Google Scholar]
  78. McDonald JA, Doe CQ. 1997. Establishing neuroblast-specific gene expression in the Drosophila CNS: huckebein is activated by Wingless and Hedgehog and repressed by Engrailed and Gooseberry. Development 124:51079–87
    [Google Scholar]
  79. McDonald JA, Holbrook S, Isshiki T, Weiss J, Doe CQ, Mellerick DM. 1998. Dorsoventral patterning in the Drosophila central nervous system: The vnd homeobox gene specifies ventral column identity. Genes Dev 12:223603–12
    [Google Scholar]
  80. Meng JL, Marshall ZD, Lobb-Rabe M, Heckscher ES. 2019. How prolonged expression of Hunchback, a temporal transcription factor, re-wires locomotor circuits. eLife 8:e46089
    [Google Scholar]
  81. Monedero Cobeta I, Salmani BY, Thor S 2017. Anterior-posterior gradient in neural stem and daughter cell proliferation governed by spatial and temporal Hox control. Curr. Biol. 27:81161–72
    [Google Scholar]
  82. Naidu VG, Zhang Y, Lowe S, Ray A, Zhu H, Li X. 2020. Temporal progression of Drosophila medulla neuroblasts generates the transcription factor combination to control T1 neuron morphogenesis. Dev. Biol. 464:135–44
    [Google Scholar]
  83. Ngo KT, Andrade I, Hartenstein V. 2017. Spatio-temporal pattern of neuronal differentiation in the Drosophila visual system: a user's guide to the dynamic morphology of the developing optic lobe. Dev. Biol. 428:11–24
    [Google Scholar]
  84. Ozel MN, Simon F, Jafari S, Holguera I, Chen Y et al. 2020. Neuronal diversity and convergence in a visual system developmental atlas. Nature 589:88–95
    [Google Scholar]
  85. Pahl MC, Doyle SE, Siegrist SE. 2019. E93 integrates neuroblast intrinsic state with developmental time to terminate MB neurogenesis via autophagy. Curr. Biol. 29:5750–62.e3
    [Google Scholar]
  86. Perez SE, Steller H. 1996. Migration of glial cells into retinal axon target field in Drosophila melanogaster. J. Neurobiol. 30:3359–73
    [Google Scholar]
  87. Pinto-Teixeira F, Koo C, Rossi AM, Neriec N, Bertet C, Li X et al. 2018. Development of concurrent retinotopic maps in the fly motion detection circuit. Cell 173:2485–98.e11
    [Google Scholar]
  88. Rebeiz M, Miller SW, Posakony JW. 2011. Notch regulates numb: integration of conditional and autonomous cell fate specification. Development 138:2215–25
    [Google Scholar]
  89. Reddy GV, Rodrigues V. 1999. A glial cell arises from an additional division within the mechanosensory lineage during development of the microchaete on the Drosophila notum. Development 126:204617–22
    [Google Scholar]
  90. Ren Q, Yang C-P, Liu Z, Sugino K, Mok K et al. 2017. Stem cell-intrinsic, Seven-up-triggered temporal factor gradients diversify intermediate neural progenitors. Curr. Biol. 27:1303–13
    [Google Scholar]
  91. Rossi AM, Desplan C. 2020. Extrinsic activin signaling cooperates with an intrinsic temporal program to increase mushroom body neuronal diversity. eLife 9:e58880
    [Google Scholar]
  92. Rossi AM, Fernandes VM, Desplan C. 2017. Timing temporal transitions during brain development. Curr. Opin. Neurobiol. 42:84–92
    [Google Scholar]
  93. Ruiz-Losada M, Blom-Dahl D, Córdoba S, Estella C. 2018. Specification and patterning of Drosophila appendages. J. Dev. Biol. 6:317
    [Google Scholar]
  94. Samuels TJ, Järvelin AI, Ish-Horowicz D, Davis I. 2020. Imp/IGF2BP levels modulate individual neural stem cell growth and division through myc mRNA stability. eLife 9:e51529
    [Google Scholar]
  95. Sato M, Suzuki T, Nakai Y. 2013. Waves of differentiation in the fly visual system. Dev. Biol. 380:11–11
    [Google Scholar]
  96. Seibert J, Urbach R. 2010. Role of en and novel interactions between msh, ind, and vnd in dorsoventral patterning of the Drosophila brain and ventral nerve cord. Dev. Biol. 346:2332–45
    [Google Scholar]
  97. Seibert J, Volland D, Urbach R. 2009. Ems and Nkx6 are central regulators in dorsoventral patterning of the Drosophila brain. Development 136:233937–47
    [Google Scholar]
  98. Sen A, Reddy GV, Rodrigues V. 2003. Combinatorial expression of Prospero, Seven-up, and Elav identifies progenitor cell types during sense-organ differentiation in the Drosophila antenna. Dev. Biol. 254:179–92
    [Google Scholar]
  99. Sen SQ, Chanchani S, Southall TD, Doe CQ. 2019. Neuroblast-specific open chromatin allows the temporal transcription factor, Hunchback, to bind neuroblast-specific loci. eLife 8:e44036
    [Google Scholar]
  100. Seroka A, Doe CQ. 2019. The Hunchback temporal transcription factor determines motor neuron axon and dendrite targeting in Drosophila. Development 146:dev175570
    [Google Scholar]
  101. Seroka A, Yazejian RM, Lai S-L, Doe CQ. 2020. A novel temporal identity window generates alternating Eve+/Nkx6+ motor neuron subtypes in a single progenitor lineage. Neural Dev 15:19
    [Google Scholar]
  102. Shanbhag SR, Müller B, Steinbrecht RA. 1999. Atlas of olfactory organs of Drosophila melanogaster. . Int. J. Insect Morphol. Embryol. 28:4377–97
    [Google Scholar]
  103. Singhania A, Grueber WB. 2014. Development of the embryonic and larval peripheral nervous system of Drosophila. Wiley Interdiscip. Rev. Dev. Biol. 3:3193–210
    [Google Scholar]
  104. Skeath JB, Doe CQ. 1998. Sanpodo and Notch act in opposition to Numb to distinguish sibling neuron fates in the Drosophila CNS. Development 125:101857–65
    [Google Scholar]
  105. Skeath JB, Thor S. 2003. Genetic control of Drosophila nerve cord development. Curr. Opin. Neurobiol. 13:18–15
    [Google Scholar]
  106. Skeath JB, Zhang Y, Holmgren R, Carroll SB, Doe CQ. 1995. Specification of neuroblast identity in the Drosophila embryonic central nervous system by gooseberry-distal. Nature 376:6539427–30
    [Google Scholar]
  107. Spana EP, Doe CQ. 1996. Numb antagonizes Notch signaling to specify sibling neuron cell fates. Neuron 17:121–26
    [Google Scholar]
  108. Spana EP, Kopczynski C, Goodman CS, Doe CQ. 1995. Asymmetric localization of Numb autonomously determines sibling neuron identity in the Drosophila CNS. Development 121:113489–94
    [Google Scholar]
  109. Stratmann J, Gabilondo H, Benito-Sipos J, Thor S 2016. Neuronal cell fate diversification controlled by sub-temporal action of Kruppel. eLife 5:e19311
    [Google Scholar]
  110. Suzuki T, Kaido M, Takayama R, Sato M. 2013. A temporal mechanism that produces neuronal diversity in the Drosophila visual center. Dev. Biol. 380:112–24
    [Google Scholar]
  111. Syed MH, Mark B, Doe CQ. 2017. Steroid hormone induction of temporal gene expression in Drosophila brain neuroblasts generates neuronal and glial diversity. eLife 6:e26287
    [Google Scholar]
  112. Technau GM, Berger C, Urbach R. 2006. Generation of cell diversity and segmental pattern in the embryonic central nervous system of Drosophila. Dev. Dyn. 235:4861–69
    [Google Scholar]
  113. Truman JW, Moats W, Altman J, Marin EC, Williams DW. 2010. Role of Notch signaling in establishing the hemilineages of secondary neurons in Drosophila melanogaster. Development 137:153–61
    [Google Scholar]
  114. Udolph G. 2012. Notch signaling and the generation of cell diversity in Drosophila neuroblast lineages. Adv. Exp. Med. Biol. 727:47–60
    [Google Scholar]
  115. Udolph G, Prokop A, Bossing T, Technau GM. 1993. A common precursor for glia and neurons in the embryonic CNS of Drosophila gives rise to segment-specific lineage variants. Development 118:3765–75
    [Google Scholar]
  116. Urbach R, Technau GM. 2003. Segment polarity and DV patterning gene expression reveals segmental organization of the Drosophila brain. Development 130:163607–20
    [Google Scholar]
  117. Urbach R, Technau GM. 2004. Neuroblast formation and patterning during early brain development in Drosophila. BioEssays 26:7739–51
    [Google Scholar]
  118. Von Ohlen T, Doe CQ. 2000. Convergence of dorsal, dpp, and egfr signaling pathways subdivides the Drosophila neuroectoderm into three dorsal-ventral columns. Dev. Biol. 224:2362–72
    [Google Scholar]
  119. Walsh KT, Doe CQ. 2017. Drosophila embryonic type II neuroblasts: origin, temporal patterning, and contribution to the adult central complex. Development 144:4552–62
    [Google Scholar]
  120. Yan H, Jafari S, Pask G, Zhou X, Reinberg D, Desplan C. 2020. Evolution, developmental expression and function of odorant receptors in insects. J. Exp. Biol. 223:jeb208215
    [Google Scholar]
  121. Yang C-P, Fu C-C, Sugino K, Liu Z, Ren Q et al. 2016. Transcriptomes of lineage-specific Drosophila neuroblasts profiled by genetic targeting and robotic sorting. Development 143:3411–21
    [Google Scholar]
  122. Yang C-PP, Samuels TJ, Huang Y, Yang L, Ish-Horowicz D et al. 2017. Imp and Syp RNA-binding proteins govern decommissioning of Drosophila neural stem cells. Development 144:193454–64
    [Google Scholar]
  123. Yang JS, Awasaki T, Yu H-H, He Y, Ding P et al. 2013. Diverse neuronal lineages make stereotyped contributions to the Drosophila locomotor control center, the central complex. J. Comp. Neurol. 521:122645–62
    [Google Scholar]
  124. Younossi-Hartenstein A, Nassif C, Green P, Hartenstein V. 1996. Early neurogenesis of the Drosophila brain. J. Comp. Neurol. 370:3313–29
    [Google Scholar]
  125. Yu HH, Awasaki T, Schroeder MD, Long F, Yang JS et al. 2013. Clonal development and organization of the adult Drosophila central brain. Curr. Biol. 23:8633–43
    [Google Scholar]
  126. Yu HH, Kao C-F, He Y, Ding P, Kao J-C, Lee T 2010. A complete developmental sequence of a Drosophila neuronal lineage as revealed by twin-spot MARCM. PLOS Biol 8:8e1000461
    [Google Scholar]
  127. Zhu S, Lin S, Kao C-F, Awasaki T, Chiang A-S, Lee T 2006. Gradients of the Drosophila Chinmo BTB-zinc finger protein govern neuronal temporal identity. Cell 127:240922
    [Google Scholar]
/content/journals/10.1146/annurev-neuro-102120-014813
Loading
/content/journals/10.1146/annurev-neuro-102120-014813
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error