1932

Abstract

Oxytocin regulates parturition, lactation, parental nurturing, and many other social behaviors in both sexes. The circuit mechanisms by which oxytocin modulates social behavior are receiving increasing attention. Here, we review recent studies on oxytocin modulation of neural circuit function and social behavior, largely enabled by new methods of monitoring and manipulating oxytocin or oxytocin receptor neurons in vivo. These studies indicate that oxytocin can enhance the salience of social stimuli and increase signal-to-noise ratios by modulating spiking and synaptic plasticity in the context of circuits and networks. We highlight oxytocin effects on social behavior in nontraditional organisms such as prairie voles and discuss opportunities to enhance the utility of these organisms for studying circuit-level modulation of social behaviors. We then discuss recent insights into oxytocin neuron activity during social interactions. We conclude by discussing some of the major questions and opportunities in the field ahead.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-neuro-102320-102847
2021-07-08
2024-12-04
Loading full text...

Full text loading...

/deliver/fulltext/neuro/44/1/annurev-neuro-102320-102847.html?itemId=/content/journals/10.1146/annurev-neuro-102320-102847&mimeType=html&fmt=ahah

Literature Cited

  1. Allsop SA, Wichmann R, Mills F, Burgos-Robles A, Chang CJ et al. 2018. Corticoamygdala transfer of socially derived information gates observational learning. Cell 173:1329–42
    [Google Scholar]
  2. Amadei EA, Johnson ZV, Kwon YJ, Shpiner AC, Saravanan V et al. 2017. Dynamic corticostriatal activity biases social bonding in monogamous female prairie voles. Nature 546:297–301
    [Google Scholar]
  3. Anpilov S, Shemesh Y, Eren N, Harony-Nicolas H, Benjamin A et al. 2020. Wireless optogenetic stimulation of oxytocin neurons in a semi-natural setup dynamically elevates both pro-social and agonistic behaviors. Neuron 107:644–55.e7
    [Google Scholar]
  4. Bakos J, Srancikova A, Havranek T, Bacova Z. 2018. Molecular mechanisms of oxytocin signaling at the synaptic connection. Neural Plast 2018.4864107
    [Google Scholar]
  5. Barrett CE, Arambula SE, Young LJ. 2015. The oxytocin system promotes resilience to the effects of neonatal isolation on adult social attachment in female prairie voles. Transl. Psychiatry 5:e606
    [Google Scholar]
  6. Belin V, Moos F, Richard P 1984. Synchronization of oxytocin cells in the hypothalamic paraventricular and supraoptic nuclei in suckled rats: direct proof with paired extracellular recordings. Exp. Brain Res. 57:201–3
    [Google Scholar]
  7. Bendesky A, Kwon YM, Lassance JM, Lewarch CL, Yao S et al. 2017. The genetic basis of parental care evolution in monogamous mice. Nature 544:434–39
    [Google Scholar]
  8. Boender AJ, Young LJ. 2020. Oxytocin, vasopressin and social behavior in the age of genome editing: a comparative perspective. Horm. Behav. 124:104780
    [Google Scholar]
  9. Bosch OJ. 2013. Maternal aggression in rodents: brain oxytocin and vasopressin mediate pup defense. Philos. Trans. R. Soc. Lond. B Biol. Sci. 368:20130085
    [Google Scholar]
  10. Bosch OJ, Dabrowska J, Modi ME, Johnson ZV, Keebaugh AC et al. 2016. Oxytocin in the nucleus accumbens shell reverses CRFR2-evoked passive stress-coping after partner loss in monogamous male prairie voles. Psychoneuroendocrinology 64:66–78
    [Google Scholar]
  11. Brown CH, Bains JS, Ludwig M, Stern JE 2013. Physiological regulation of magnocellular neurosecretory cell activity: integration of intrinsic, local and afferent mechanisms. J. Neuroendocrinol. 25:678–710
    [Google Scholar]
  12. Burbach JPH, Young LJ, Russell JA. 2006. Oxytocin: synthesis, secretion, and reproductive functions. Knobil and Neill's Physiology of Reproduction JD Neill 3055–127 London: Elsevier, 3rd ed..
    [Google Scholar]
  13. Burkett JP, Andari E, Johnson ZV, Curry DC, de Waal FBM, Young LJ. 2016. Oxytocin-dependent consolation behavior in rodents. Science 351:375–78
    [Google Scholar]
  14. Carcea I, Lopez Caraballo N, Marlin BJ, Ooyama R, Mendoza Navarro JM et al. 2019. Oxytocin neurons enable social transmission of maternal behavior. bioRxiv 845495. https://doi.org/10.1101/845495
    [Crossref]
  15. Carstens KE, Dudek SM. 2019. Regulation of synaptic plasticity in hippocampal area CA2. Curr. Opin. Neurobiol. 54:194–99
    [Google Scholar]
  16. Chini B, Manning M, Guillon G. 2008. Affinity and efficacy of selective agonists and antagonists for vasopressin and oxytocin receptors: an “easy guide” to receptor pharmacology. Prog. Brain Res. 170:513–17
    [Google Scholar]
  17. Cohen L, Rothschild G, Mizrahi A. 2011. Multisensory integration of natural odors and sounds in the auditory cortex. Neuron 72:357–69
    [Google Scholar]
  18. Crane JW, Holmes NM, Fam J, Westbrook RF, Delaney AJ. 2020. Oxytocin increases inhibitory synaptic transmission and blocks development of long-term potentiation in the lateral amygdala. J. Neurophysiol. 123:587–99
    [Google Scholar]
  19. Cymerblit-Sabba A, Smith AS, Avram SKW, Stackmann M, Korgan AC et al. 2020. Inducing partner preference in mice by chemogenetic stimulation of CA2 hippocampal subfield. Front. Mol. Neurosci. 13:61
    [Google Scholar]
  20. DeMayo MM, Young LJ, Hickie IB, Song YJC, Guastella AJ. 2019. Circuits for social learning: a unified model and application to Autism Spectrum Disorder. Neurosci. Biobehav. Rev 107:388–98
    [Google Scholar]
  21. Dobolyi A, Cservenak M, Young LJ. 2018. Thalamic integration of social stimuli regulating parental behavior and the oxytocin system. Front. Neuroendocrinol. 51:102–15
    [Google Scholar]
  22. Dölen G, Darvishzadeh A, Huang KW, Malenka RC. 2013. Social reward requires coordinated activity of nucleus accumbens oxytocin and serotonin. Nature 501:179–84
    [Google Scholar]
  23. Donegan ML, Stefanini F, Meira T, Gordon JA, Fusi S, Siegelbaum SA 2020. Coding of social novelty in the hippocampal CA2 region and its disruption and rescue in a 22q11.2 microdeletion mouse model. Nat. Neurosci. 23:136575
    [Google Scholar]
  24. Dulac C, O'Connell LA, Wu Z 2014. Neural control of maternal and paternal behaviors. Science 345:765–70
    [Google Scholar]
  25. Ebbesen CL, Froemke RC. 2020. Automatic tracking of mouse social posture dynamics by 3D videography, deep learning and GPU-accelerated robust optimization. bioRxiv 2020.05.21.109629. https://doi.org/10.1101/2020.05.21.109629
    [Crossref]
  26. Ehret G. 1987. Left hemisphere advantage in the mouse brain for recognizing ultrasonic communication calls. Nature 325:249–51
    [Google Scholar]
  27. Ehret G. 2005. Infant rodent ultrasounds—a gate to the understanding of sound communication. Behav. Genet. 35:19–29
    [Google Scholar]
  28. Eliava M, Melchior M, Knobloch-Bollmann HS, Wahis J, da Silva Gouveia M et al. 2016. A new population of parvocellular oxytocin neurons controlling magnocellular neuron activity and inflammatory pain processing. Neuron 89:1291–304
    [Google Scholar]
  29. Eyring KW, Liu J, König GM, Hidema S, Nishimori K et al. 2020. Oxytocin signals via Gi and Gq to drive persistent CA2 pyramidal cell firing and strengthen CA3-CA1 neurotransmission. bioRxiv 2020.05.07.082727. https://doi.org/10.1101/2020.05.07.082727
    [Crossref]
  30. Fang LY, Quan RD, Kaba H. 2008. Oxytocin facilitates the induction of long-term potentiation in the accessory olfactory bulb. Neurosci. Lett. 438:133–37
    [Google Scholar]
  31. Ferretti V, Maltese F, Contarini G, Nigro M, Bonavia A et al. 2019. Oxytocin signaling in the central amygdala modulates emotion discrimination in mice. Curr. Biol. 29:1938–53
    [Google Scholar]
  32. Field RE, D'amour JA, Tremblay R, Miehl C, Rudy B et al. 2020. Heterosynaptic plasticity determines the set point for cortical excitatory-inhibitory balance. Neuron 106:842–54
    [Google Scholar]
  33. Ford CL, Young LJ. 2021. Translational opportunities for circuit-based social neuroscience: advancing 21st century psychiatry. Curr. Opin. Neurobiol. 68:1–8
    [Google Scholar]
  34. Francesconi W, Berton F, Olivera-Pasilio V, Dabrowska J. 2020. Oxytocin selectively excites interneurons and inhibits output neurons of the bed nucleus of the stria terminalis (BNST). bioRxiv 2020.06.24.169466. https://doi.org/10.1101/2020.06.24.169466
    [Crossref]
  35. Freeman SM, Young LJ. 2016. Comparative perspectives on oxytocin and vasopressin receptor research in rodents and primates: translational implications. J. Neuroendocrinol. 28: 10.1111/jne.12382
    [Google Scholar]
  36. Freund-Mercier MJ, Richard P 1984. Electrophysiological evidence for facilitatory control of oxytocin neurones by oxytocin during suckling in the rat. J. Physiol. 352:447–66
    [Google Scholar]
  37. Froemke RC. 2015. Plasticity of excitatory-inhibitory balance. Annu. Rev. Neurosci. 38:195–219
    [Google Scholar]
  38. Froemke RC, Schreiner CE. 2015. Synaptic plasticity as a cortical coding scheme. Curr. Opin. Neurobiol. 35:185–99
    [Google Scholar]
  39. Gwee PC, Tay BH, Brenner S, Venkatesh B. 2009. Characterization of the neurohypophysial hormone gene loci in elephant shark and the Japanese lamprey: origin of the vertebrate neurohypophysial hormone genes. BMC Evol. Biol. 9:47
    [Google Scholar]
  40. Harden SW, Frazier CJ. 2016. Oxytocin depolarizes fast-spiking hilar interneurons and induces GABA release onto mossy cells of the rat dentate gyrus. Hippocampus 26:1124–39
    [Google Scholar]
  41. Harony-Nicolas H, Kay M, du Hoffmann J, Klein ME, Bozdagi-Gunal O et al. 2017. Oxytocin improves behavioral and electrophysiological deficits in a novel Shank3-deficient rat. eLife 6:e18904
    [Google Scholar]
  42. He Z, Young L, Ma XM, Guo Q, Wang L et al. 2019. Increased anxiety and decreased sociability induced by paternal deprivation involve the PVN-PrL OTergic pathway. eLife 8:e44026
    [Google Scholar]
  43. Hitti FL, Siegelbaum SA. 2014. The hippocampal CA2 region is essential for social memory. Nature 508:88–92
    [Google Scholar]
  44. Horie K, Inoue K, Nishimori K, Young LJ. 2020. Investigation of Oxtr-expressing neurons projecting to nucleus accumbens using Oxtr-ires-Cre knock-in prairie voles (Microtus ochrogaster). Neuroscience 448:312–24
    [Google Scholar]
  45. Horie K, Inoue K, Suzuki S, Adachi S, Yada S et al. 2019. Oxytocin receptor knockout prairie voles generated by CRISPR/Cas9 editing show reduced preference for social novelty and exaggerated repetitive behaviors. Horm. Behav. 111:60–69
    [Google Scholar]
  46. Hörnberg H, Pérez-Garci E, Schreiner D, Hatstatt-Burklé L, Magara F et al. 2020. Rescue of oxytocin response and social behaviour in a mouse model of autism. Nature 584:252–56
    [Google Scholar]
  47. Huber D, Veinante P, Stoop R. 2005. Vassopressin and oxytocin excite different neuronal populations in the central amygdala. Science 308:245–48
    [Google Scholar]
  48. Hung LW, Neuner S, Polepalli JS, Beier KT, Wright M et al. 2017. Gating of social reward by oxytocin in the ventral tegmental area. Science 357:1406–11
    [Google Scholar]
  49. Irani BG, Donato J Jr., Olson DP, Lowell BB, Sacktor TC et al. 2010. Distribution and neurochemical characterization of protein kinase C-theta and -delta in the rodent hypothalamus. Neuroscience 170:1065–79
    [Google Scholar]
  50. Johnson ZV, Walum H, Jamal YA, Xiao Y, Keebaugh AC et al. 2016. Central oxytocin receptors mediate mating-induced partner preferences and enhance correlated activation across forebrain nuclei in male prairie voles. Horm. Behav. 79:8–17
    [Google Scholar]
  51. Johnson ZV, Walum H, Xiao Y, Riefkohl PC, Young LJ. 2017. Oxytocin receptors modulate a social salience neural network in male prairie voles. Horm. Behav. 87:16–24
    [Google Scholar]
  52. Johnson ZV, Young LJ. 2017. Oxytocin and vasopressin neural networks: implications for social behavioral diversity and translational neuroscience. Neurosci. Biobehav. Rev. 76:87–98
    [Google Scholar]
  53. Jurek B, Neumann ID. 2018. The oxytocin receptor: from intracellular signaling to behavior. Physiol. Rev. 98:1805–908
    [Google Scholar]
  54. Keebaugh AC, Barrett CE, Laprairie JL, Jenkins JJ, Young LJ. 2015. RNAi knockdown of oxytocin receptor in the nucleus accumbens inhibits social attachment and parental care in monogamous female prairie voles. Soc. Neurosci. 10:561–70
    [Google Scholar]
  55. Keebaugh AC, Young LJ. 2011. Increasing oxytocin receptor expression in the nucleus accumbens of pre-pubertal female prairie voles enhances alloparental responsiveness and partner preference formation as adults. Horm. Behav. 60:498–504
    [Google Scholar]
  56. Kendrick KM, Keverne EB, Hinton MR, Goode JA. 1991. Cerebrospinal fluid and plasma concentrations of oxytocin and vasopressin during parturition and vaginocervical stimulation in the sheep. Brain Res. Bull. 26:803–7
    [Google Scholar]
  57. Kendrick KM, Lévy F, Keverne EB. 1992. Changes in the sensory processing of olfactory signals induced by birth in sheep. Science 256:833–36
    [Google Scholar]
  58. Keverne EB, Kendrick KM. 1994. Maternal behaviour in sheep and its neuroendocrine regulation. Acta Paediatr. Suppl. 397:47–56
    [Google Scholar]
  59. King LB, Walum H, Inoue K, Eyrich NW, Young LJ. 2016. Variation in the oxytocin receptor gene predicts brain region-specific expression and social attachment. Biol. Psychiatry 80:160–69
    [Google Scholar]
  60. Kingsbury MA, Bilbo SD. 2019. The inflammatory event of birth: how oxytocin signaling may guide the development of the brain and gastrointestinal system. Front. Neuroendocrinol. 55:100794
    [Google Scholar]
  61. Knobloch HS, Charlet A, Hoffmann LC, Eliava M, Khrulev S et al. 2012. Evoked axonal oxytocin release in the central amygdala attenuates fear response. Neuron 73:553–66
    [Google Scholar]
  62. Koch M, Ehret G. 1989. Estradiol and parental experience, but not prolactin are necessary for ultrasound recognition and pup-retrieving in the mouse. Physiol. Behav. 45:771–76
    [Google Scholar]
  63. Leng G, Caquineau C, Sabatier N. 2005. Regulation of oxytocin secretion. Vitam. Horm. 71:27–58
    [Google Scholar]
  64. Leng G, Meddle SL, Douglas AJ. 2008. Oxytocin and the maternal brain. Curr. Opin. Pharmacol. 8:731–34
    [Google Scholar]
  65. Leroy F, Park J, Asok A, Brann DH, Meira T et al. 2018. A circuit from hippocampal CA2 to lateral septum disinhibits social aggression. Nature 564:213–18
    [Google Scholar]
  66. Lewis EM, Stein-O'Brien GL, Patino AV, Nardou R, Grossman CD et al. 2020. Parallel social information processing circuits are differentially impacted in autism. Neuron 108:659–75.e6
    [Google Scholar]
  67. Li K, Nakajima M, Ibañez-Tallon I, Heintz N. 2016. A cortical circuit for sexually dimorphic oxytocin-dependent anxiety behaviors. Cell 167:60–72
    [Google Scholar]
  68. Li Y, Mathis A, Grewe BF, Osterhout JA, Ahanonu B et al. 2017. Neuronal representation of social information in the medial amygdala of awake behaving mice. Cell 171:1176–90
    [Google Scholar]
  69. Lin Y-T, Hsieh T-Y, Tsai T-C, Chen C-C, Huang C-C, Hsu K-S. 2018. Conditional deletion of hippocampal CA2/CA3a oxytocin receptors impairs the persistence of long-term social recognition memory in mice. J. Neurosci. 38:1218–31
    [Google Scholar]
  70. Lincoln DW, Wakerley JB. 1974. Electrophysiological evidence for the activation of supraoptic neurones during the release of oxytocin. J. Physiol. 242:533–54
    [Google Scholar]
  71. Liu RC, Schreiner CE. 2007. Auditory cortical detection and discrimination correlates with communicative significance. PLOS Biol 5:e173
    [Google Scholar]
  72. Lubin DA, Elliott JC, Black MC, Johns JM. 2003. An oxytocin antagonist infused into the central nucleus of the amygdala increases maternal aggressive behavior. Behav. Neurosci. 117:195–201
    [Google Scholar]
  73. Maniezzi C, Talpo F, Spaiardi P, Toselli M, Biella G. 2019. Oxytocin increases phasic and tonic GABAergic transmission in CA1 region of mouse hippocampus. Front. Cell. Neurosci. 13:178
    [Google Scholar]
  74. Marlin BJ, Mitre M, D'amour JA, Chao MV, Froemke RC 2015. Oxytocin enables maternal behaviour by balancing cortical inhibition. Nature 520:499–504
    [Google Scholar]
  75. Mathis A, Mamidanna P, Cury KM, Abe T, Murthy VN et al. 2018. DeepLabCut: markerless pose estimation of user-defined body parts with deep learning. Nat. Neurosci. 21:1281–89
    [Google Scholar]
  76. McNeilly AS, Robinson IC, Houston MJ, Howie PW. 1983. Release of oxytocin and prolactin in response to suckling. Br. Med. J. (Clin. Res. Ed.). 286:257–59
    [Google Scholar]
  77. Mignocchi N, Krüssel S, Jung K, Lee D, Kwon HB. 2020. Development of a genetically-encoded oxytocin sensor. bioRxiv 2020.07.14.202598. https://doi.org/10.1101/2020.07.14.202598
    [Crossref]
  78. Mitre M, Marlin BJ, Schiavo JK, Morina E, Norden S et al. 2016. A distributed network for social cognition enriched for oxytocin receptors. J. Neurosci. 36:2517–35
    [Google Scholar]
  79. Modi ME, Inoue K, Barrett CE, Kittelberger KA, Smith DG et al. 2015. Melanocortin receptor agonists facilitate oxytocin-dependent partner preference formation in the prairie vole. Neuropsychopharmacology 40:1856–65
    [Google Scholar]
  80. Nakajima M, Görlich A, Heintz N. 2014. Oxytocin modulates female sociosexual behavior through a specific class of prefrontal cortical interneurons. Cell 159:295–305
    [Google Scholar]
  81. Nardou R, Lewis EM, Rothhaas R, Xu R, Yang A et al. 2019. Oxytocin-dependent reopening of a social reward learning critical period with MDMA. Nature 569:116–20
    [Google Scholar]
  82. Neumann I, Douglas AJ, Pittman QJ, Russell JA, Landgraf R. 1996. Oxytocin released within the supraoptic nucleus of the rat brain by positive feedback action is involved in parturition-related events. J. Neuroendocrinol. 8:227–33
    [Google Scholar]
  83. Neumann I, Koehler E, Landgraf R, Summy-Long J. 1994. An oxytocin receptor antagonist infused into the supraoptic nucleus attenuates intranuclear and peripheral release of oxytocin during suckling in conscious rats. Endocrinology 134:141–48
    [Google Scholar]
  84. Neumann I, Landgraf R. 1989. Septal and hippocampal release of oxytocin, but not vasopressin, in the conscious lactating rat during suckling. J. Neuroendocrinol. 1:305–8
    [Google Scholar]
  85. Newmaster KT, Nolan ZT, Chon U, Vanselow DJ, Weit AR et al. 2020. Quantitative cellular-resolution map of the oxytocin receptor in postnatally developing mouse brains. Nat. Commun. 11:1885
    [Google Scholar]
  86. Noirot E. 1972. Ultrasounds and maternal behavior in small rodents. Dev. Psychobiol. 5:371–87
    [Google Scholar]
  87. Numan M, Insel TR. 2003. The Neurobiology of Parental Behavior New York: Springer-Verlag
    [Google Scholar]
  88. Numan M, Young LJ. 2016. Neural mechanisms of mother-infant bonding and pair bonding: similarities, differences, and broader implications. Horm. Behav. 77:98–112
    [Google Scholar]
  89. Oettl LL, Ravi N, Schneider M, Scheller MF, Schneider P et al. 2016. Oxytocin enhances social recognition by modulating cortical control of early olfactory processing. Neuron 90:609–21
    [Google Scholar]
  90. Olazábal DE, Young LJ. 2006. Oxytocin receptors in the nucleus accumbens facilitate “spontaneous” maternal behavior in adult female prairie voles. Neuroscience 141:559–68
    [Google Scholar]
  91. Owen SF, Tuncdemir SN, Bader PL, Tirko NN, Fishell G, Tsien RW. 2013. Oxytocin enhances hippocampal spike transmission by modulating fast-spiking interneurons. Nature 500:458–62
    [Google Scholar]
  92. Pagani JH, Zhao M, Cui Z, Williams Avram SK, Caruana DA et al. 2015. Role of the vasopressin 1b receptor in rodent aggressive behavior and synaptic plasticity in hippocampal area CA2. Mol. Psychiatry 20:490–99
    [Google Scholar]
  93. Pedersen CA, Ascher JA, Monroe YL, Prange AJ. 1982. Oxytocin induces maternal behavior in virgin female rats. Science 216:648–50
    [Google Scholar]
  94. Pekarek BT, Hunt PJ, Arenkiel BR. 2020. Oxytocin and sensory network plasticity. Front. Neurosci. 14:30
    [Google Scholar]
  95. Peñagarikano O, Lázaro MT, Lu XH, Gordon A, Dong H et al. 2015. Exogenous and evoked oxytocin restores social behavior in the Cntnap2 mouse model of autism. Sci. Transl. Med. 7:271ra8
    [Google Scholar]
  96. Pinel JP, Petrovic DM, Jones CH. 1990. Defensive burying, nest relocation, and pup transport in lactating female rats. Q. J. Exp. Psychol. B 42:401–11
    [Google Scholar]
  97. Raam T, McAvoy KM, Besnard A, Veenema AH, Sahay A. 2017. Hippocampal oxytocin receptors are necessary for discrimination of social stimuli. Nat Commun 8: 2001.
    [Google Scholar]
  98. Rajamani KT, Wagner S, Grinevich V, Harony-Nicolas H. 2018. Oxytocin as a modulator of synaptic plasticity: implications for neurodevelopmental disorders. Front. Synaptic Neurosci. 10:17
    [Google Scholar]
  99. Resendez SL, Namboodiri VMK, Otis JM, Eckman LEH, Rodriguez-Romaguera J et al. 2020. Social stimuli induce activation of oxytocin neurons within the paraventricular nucleus of the hypothalamus to promote social behavior in male mice. J. Neurosci. 40:2282–95
    [Google Scholar]
  100. Rickenbacher E, Perry RE, Sullivan RM, Moita MA. 2017. Freezing suppression by oxytocin in central amygdala allows alternate defensive behaviours and mother-pup interactions. eLife 6:e24080
    [Google Scholar]
  101. Rilling JK, Young LJ. 2014. The biology of mammalian parenting and its effect on offspring social development. Science 345:771–76
    [Google Scholar]
  102. Rogers-Carter MM, Varela JA, Gribbons KB, Pierce AF, McGoey MT et al. 2018. Insular cortex mediates approach and avoidance responses to social affective stimuli. Nat. Neurosci. 21:404–14
    [Google Scholar]
  103. Ross HE, Young LJ. 2009. Oxytocin and the neural mechanisms regulating social cognition and affiliative behavior. Front. Neuroendocrinol. 30:534–47
    [Google Scholar]
  104. Rossoni E, Feng J, Tirozzi B, Brown D, Leng G, Moos F. 2008. Emergent synchronous bursting of oxytocin neuronal network. PLOS Comput. Biol. 4:e1000123
    [Google Scholar]
  105. Sabatier N, Brown CH, Ludwig M, Leng G. 2004. Phasic spike patterning in rat supraoptic neurones in vivo and in vitro. J. Physiol. 558:161–80
    [Google Scholar]
  106. Schiavo JK, Valtcheva S, Bair-Marshall CJ, Song SC, Martin KA, Froemke RC. 2020. Innate and plastic mechanisms for maternal behaviour in auditory cortex. Nature 587:42631
    [Google Scholar]
  107. Schorscher-Petcu A, Sotocinal S, Ciura S, Dupré A, Ritchie J et al. 2010. Oxytocin-induced analgesia and scratching are mediated by the vasopressin-1A receptor in the mouse. J. Neurosci. 30:8274–84
    [Google Scholar]
  108. Scott N, Prigge M, Yizhar O, Kimchi T. 2015. A sexually dimorphic hypothalamic circuit controls maternal care and oxytocin secretion. Nature 525:519–22
    [Google Scholar]
  109. Smith SJ, Sümbül U, Graybuck LT, Collman F, Seshamani S et al. 2019. Single-cell transcriptomic evidence for dense intracortical neuropeptide networks. eLife 8:e47889
    [Google Scholar]
  110. Song Z, Albers HE. 2018. Cross-talk among oxytocin and arginine-vasopressin receptors: relevance for basic and clinical studies of the brain and periphery. Front. Neuroendocrinol. 51:14–24
    [Google Scholar]
  111. Tang Y, Benusiglio D, Lefevre A, Hilfiger L, Althammer F et al. 2020. Social touch promotes interfemale communication via activation of parvocellular oxytocin neurons. Nat. Neurosci. 23:1125–37
    [Google Scholar]
  112. Tang Y, Chen Z, Tao H, Li C, Zhang X et al. 2014. Oxytocin activation of neurons in ventral tegmental area and interfascicular nucleus of mouse midbrain. Neuropharmacology 77:277–84
    [Google Scholar]
  113. Teruyama R, Armstrong WE. 2002. Changes in the active membrane properties of rat supraoptic neurones during pregnancy and lactation. J. Neuroendocrinol. 14:933–44
    [Google Scholar]
  114. Theofanopoulou C, Gedman G, Cahill JA, Boeckx C, Jarvis ED. 2021. Universal nomenclature for oxytocin–vasotocin ligand and receptor families. Nature 592:74755
    [Google Scholar]
  115. Tirko NN, Eyring KW, Carcea I, Mitre M, Chao MV et al. 2018. Oxytocin transforms firing mode of CA2 hippocampal neurons. Neuron 100:593–608
    [Google Scholar]
  116. Vaidyanathan R, Hammock EA. 2017. Oxytocin receptor dynamics in the brain across development and species. Dev. Neurobiol. 77:143–57
    [Google Scholar]
  117. Valtcheva S, Froemke RC. 2019. Neuromodulation of maternal circuits by oxytocin. Cell Tissue Res 375:57–68
    [Google Scholar]
  118. Wagner S, Harony-Nicolas H. 2018. Oxytocin and animal models for autism spectrum disorder. Curr. Top. Behav. Neurosci. 35:213–37
    [Google Scholar]
  119. Walum H, Young LJ. 2018. The neural mechanisms and circuitry of the pair bond. Nat. Rev. Neurosci. 19:643–54
    [Google Scholar]
  120. Wu Z, Autry AE, Bergan JF, Watabe-Uchida M, Dulac CG. 2014. Galanin neurons in the medial preoptic area govern parental behaviour. Nature 509:325–30
    [Google Scholar]
  121. Wu Z, Feng J, Jing M, Li Y. 2019. G protein-assisted optimization of GPCR-activation based (GRAB) sensors. Proc. SPIE 10865:12.2514631
    [Google Scholar]
  122. Xiao L, Priest MF, Kozorovitskiy Y. 2018. Oxytocin functions as a spatiotemporal filter for excitatory synaptic inputs to VTA dopamine neurons. eLife 7:e33892
    [Google Scholar]
  123. Xiao L, Priest MF, Nasenbeny J, Lu T, Kozorovitskiy Y. 2017. Biased oxytocinergic modulation of midbrain dopamine systems. Neuron 95:368–84
    [Google Scholar]
  124. Yao S, Bergan J, Lanjuin A, Dulac C. 2017. Oxytocin signaling in the medial amygdala is required for sex discrimination of social cues. eLife 6:e31373
    [Google Scholar]
  125. Yokoi S, Ansai S, Kinoshita M, Naruse K, Kamei Y et al. 2016. Mate-guarding behavior enhances male reproductive success via familiarization with mating partners in medaka fish. Front. Zool. 13:21
    [Google Scholar]
  126. Yokoi S, Naruse K, Kamei Y, Ansai S, Kinoshita M et al. 2020. Sexually dimorphic role of oxytocin in medaka mate choice. PNAS 117:4802–8
    [Google Scholar]
  127. Yokoi S, Okuyama T, Kamei Y, Naruse K, Taniguchi Y et al. 2015. An essential role of the arginine vasotocin system in mate-guarding behaviors in triadic relationships of medaka fish (Oryzias latipes). PLOS Genet 11:e1005009
    [Google Scholar]
  128. Yoshida M, Takayanagi Y, Inoue K, Kimura T, Young LJ et al. 2009. Evidence that oxytocin exerts anxiolytic effects via oxytocin receptor expressed in serotonergic neurons in mice. J. Neurosci. 29:2259–71
    [Google Scholar]
  129. Young LJ, Barrett CE. 2015. Can oxytocin treat autism?. Science 347:825–26
    [Google Scholar]
  130. Young LJ, Flanagan-Cato LM. 2012. Oxytocin, vasopressin, and social behavior. Horm. Behav. 61:227–29
    [Google Scholar]
  131. Zhang B, Qiu L, Xiao W, Ni H, Chen L et al. 2021. Reconstruction of the hypothalamo-neurohypophysial system and functional dissection of magnocellular oxytocin neurons in the brain. Neuron 109:331–46.e7
    [Google Scholar]
  132. Zheng JJ, Li SJ, Zhang XD, Miao WY, Zhang D et al. 2014. Oxytocin mediates early experience-dependent cross-modal plasticity in the sensory cortices. Nat. Neurosci. 17:391–99
    [Google Scholar]
/content/journals/10.1146/annurev-neuro-102320-102847
Loading
/content/journals/10.1146/annurev-neuro-102320-102847
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error