1932

Abstract

The dense reconstruction of neuronal wiring diagrams from volumetric electron microscopy data has the potential to generate fundamentally new insights into mechanisms of information processing and storage in neuronal circuits. Zebrafish provide unique opportunities for dynamical connectomics approaches that combine reconstructions of wiring diagrams with measurements of neuronal population activity and behavior. Such approaches have the power to reveal higher-order structure in wiring diagrams that cannot be detected by sparse sampling of connectivity and that is essential for neuronal computations. In the brain stem, recurrently connected neuronal modules were identified that can account for slow, low-dimensional dynamics in an integrator circuit. In the spinal cord, connectivity specifies functional differences between premotor interneurons. In the olfactory bulb, tuning-dependent connectivity implements a whitening transformation that is based on the selective suppression of responses to overrepresented stimulus features. These findings illustrate the potential of dynamical connectomics in zebrafish to analyze the circuit mechanisms underlying higher-order neuronal computations.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-neuro-110220-013050
2021-07-08
2024-07-14
Loading full text...

Full text loading...

/deliver/fulltext/neuro/44/1/annurev-neuro-110220-013050.html?itemId=/content/journals/10.1146/annurev-neuro-110220-013050&mimeType=html&fmt=ahah

Literature Cited

  1. Aizenberg M, Schuman EM. 2011. Cerebellar-dependent learning in larval zebrafish. J. Neurosci. 31:8708–12
    [Google Scholar]
  2. Aksay E, Olasagasti I, Mensh BD, Baker R, Goldman MS, Tank DW. 2007. Functional dissection of circuitry in a neural integrator. Nat. Neurosci. 10:494–504
    [Google Scholar]
  3. Ampatzis K, Song J, Ausborn J, El Manira A 2014. Separate microcircuit modules of distinct V2a interneurons and motoneurons control the speed of locomotion. Neuron 83:934–43
    [Google Scholar]
  4. Andalman AS, Burns VM, Lovett-Barron M, Broxton M, Poole B et al. 2019. Neuronal dynamics regulating brain and behavioral state transitions. Cell 177:970–85.e20
    [Google Scholar]
  5. Aoki T, Kinoshita M, Aoki R, Agetsuma M, Aizawa H et al. 2013. Imaging of neural ensemble for the retrieval of a learned behavioral program. Neuron 78:881–94
    [Google Scholar]
  6. Bahl A, Engert F. 2020. Neural circuits for evidence accumulation and decision making in larval zebrafish. Nat. Neurosci. 23:94–102
    [Google Scholar]
  7. Barker AJ, Baier H. 2015. Sensorimotor decision making in the zebrafish tectum. Curr. Biol. 25:2804–14
    [Google Scholar]
  8. Bartol TM, Bromer C, Kinney J, Chirillo MA, Bourne JN et al. 2015. Nanoconnectomic upper bound on the variability of synaptic plasticity. eLife 4:e10778
    [Google Scholar]
  9. Bianco IH, Engert F. 2015. Visuomotor transformations underlying hunting behavior in zebrafish. Curr. Biol. 25:831–46
    [Google Scholar]
  10. Blumhagen F, Zhu P, Shum J, Zhang Schärer Y-P, Yaksi E et al. 2011. Neuronal filtering of multiplexed odour representations. Nature 479:493–98
    [Google Scholar]
  11. Bock DD, Lee WC, Kerlin AM, Andermann ML, Hood G et al. 2011. Network anatomy and in vivo physiology of visual cortical neurons. Nature 471:177–82
    [Google Scholar]
  12. Bollmann JH. 2019. The zebrafish visual system: from circuits to behavior. Annu. Rev. Vis. Sci. 5:269–93
    [Google Scholar]
  13. Briggman KL, Bock DD. 2012. Volume electron microscopy for neuronal circuit reconstruction. Curr. Opin. Neurobiol. 22:154–61
    [Google Scholar]
  14. Briggman KL, Helmstaedter M, Denk W. 2011. Wiring specificity in the direction-selectivity circuit of the retina. Nature 471:183–88
    [Google Scholar]
  15. Brysch C, Leyden C, Arrenberg AB. 2019. Functional architecture underlying binocular coordination of eye position and velocity in the larval zebrafish hindbrain. BMC Biol 17:110
    [Google Scholar]
  16. Burke RE, Dum RP, Fleshman JW, Glenn LL, Lev-Tov A et al. 1982. An HRP study of the relation between cell size and motor unit type in cat ankle extensor motoneurons. J. Comp. Neurol. 209:17–28
    [Google Scholar]
  17. Buske C, Gerlai R. 2011. Shoaling develops with age in Zebrafish (Danio rerio). Prog. Neuropsychopharmacol. Biol. Psychiatry 35:1409–15
    [Google Scholar]
  18. Chen X, Mu Y, Hu Y, Kuan AT, Nikitchenko M et al. 2018. Brain-wide organization of neuronal activity and convergent sensorimotor transformations in larval zebrafish. Neuron 100:876–90.e5
    [Google Scholar]
  19. Chettih SN, Harvey CD. 2019. Single-neuron perturbations reveal feature-specific competition in V1. Nature 567:334–40
    [Google Scholar]
  20. Chiu CN, Rihel J, Lee DA, Singh C, Mosser EA et al. 2016. A zebrafish genetic screen identifies neuromedin U as a regulator of sleep/wake states. Neuron 89:842–56
    [Google Scholar]
  21. Chou MY, Amo R, Kinoshita M, Cherng BW, Shimazaki H et al. 2016. Social conflict resolution regulated by two dorsal habenular subregions in zebrafish. Science 352:87–90
    [Google Scholar]
  22. Chow DM, Sinefeld D, Kolkman KE, Ouzounov DG, Akbari N et al. 2020. Deep three-photon imaging of the brain in intact adult zebrafish. Nat. Methods 17:605–8
    [Google Scholar]
  23. Cohen U, Chung S, Lee DD, Sompolinsky H. 2020. Separability and geometry of object manifolds in deep neural networks. Nat. Commun. 11:746
    [Google Scholar]
  24. Cong L, Wang Z, Chai Y, Hang W, Shang C et al. 2017. Rapid whole brain imaging of neural activity in freely behaving larval zebrafish (Danio rerio). eLife 6:e28158
    [Google Scholar]
  25. Denk W, Briggman KL, Helmstaedter M. 2012. Structural neurobiology: missing link to a mechanistic understanding of neural computation. Nat. Rev. Neurosci. 13:351–58
    [Google Scholar]
  26. Denk W, Horstmann H. 2004. Serial block-face scanning electron microscopy to reconstruct three-dimensional tissue nanostructure. PLOS Biol 2:e329
    [Google Scholar]
  27. Ding H, Smith RG, Poleg-Polsky A, Diamond JS, Briggman KL. 2016. Species-specific wiring for direction selectivity in the mammalian retina. Nature 535:105–10
    [Google Scholar]
  28. Dow E, Jacobo A, Hossain S, Siletti K, Hudspeth AJ. 2018. Connectomics of the zebrafish's lateral-line neuromast reveals wiring and miswiring in a simple microcircuit. eLife 7:e33988
    [Google Scholar]
  29. Dragomir EI, Stih V, Portugues R. 2020. Evidence accumulation during a sensorimotor decision task revealed by whole-brain imaging. Nat. Neurosci. 23:85–93
    [Google Scholar]
  30. Dreosti E, Lopes G, Kampff AR, Wilson SW. 2015. Development of social behavior in young zebrafish. Front. Neural Circuits 9:39
    [Google Scholar]
  31. Dunn TW, Gebhardt C, Naumann EA, Riegler C, Ahrens MB et al. 2016. Neural circuits underlying visually evoked escapes in larval zebrafish. Neuron 89:613–28
    [Google Scholar]
  32. Eichler K, Li F, Litwin-Kumar A, Park Y, Andrade I et al. 2017. The complete connectome of a learning and memory centre in an insect brain. Nature 548:175–82
    [Google Scholar]
  33. Favre-Bulle IA, Vanwalleghem G, Taylor MA, Rubinsztein-Dunlop H, Scott EK. 2018. Cellular-resolution imaging of vestibular processing across the larval zebrafish brain. Curr. Biol. 28:3711–22.e3
    [Google Scholar]
  34. Feinberg EH, Vanhoven MK, Bendesky A, Wang G, Fetter RD et al. 2008. GFP Reconstitution Across Synaptic Partners (GRASP) defines cell contacts and synapses in living nervous systems. Neuron 57:353–63
    [Google Scholar]
  35. Frank T, Mönig NR, Satou C, Higashijima S-I, Friedrich RW. 2019. Associative conditioning remaps odor representations and modifies inhibition in a higher olfactory brain area. Nat. Neurosci. 22:1844–56
    [Google Scholar]
  36. Friedrich RW, Genoud C, Wanner AA. 2013. Analyzing the structure and function of neuronal circuits in zebrafish. Front. Neural Circuits 7:71
    [Google Scholar]
  37. Friedrich RW, Jacobson GA, Zhu P. 2010. Circuit neuroscience in zebrafish. Curr. Biol. 20:R371–81
    [Google Scholar]
  38. Friedrich RW, Korsching SI. 1997. Combinatorial and chemotopic odorant coding in the zebrafish olfactory bulb visualized by optical imaging. Neuron 18:737–52
    [Google Scholar]
  39. Friedrich RW, Laurent G. 2001. Dynamic optimization of odor representations in the olfactory bulb by slow temporal patterning of mitral cell activity. Science 291:889–94
    [Google Scholar]
  40. Friedrich RW, Wiechert MT. 2014. Neuronal circuits and computations: pattern decorrelation in the olfactory bulb. FEBS Lett 588:2504–13
    [Google Scholar]
  41. Gallego JA, Perich MG, Miller LE, Solla SA. 2017. Neural manifolds for the control of movement. Neuron 94:978–84
    [Google Scholar]
  42. Goulding M. 2009. Circuits controlling vertebrate locomotion: moving in a new direction. Nat. Rev. Neurosci. 10:507–18
    [Google Scholar]
  43. Grillner S. 2006. Biological pattern generation: the cellular and computational logic of networks in motion. Neuron 52:751–66
    [Google Scholar]
  44. Haberly LB. 2001. Parallel-distributed processing in olfactory cortex: new insights from morphological and physiological analysis of neuronal circuitry. Chem. Senses 26:551–76
    [Google Scholar]
  45. Haesemeyer M, Robson DN, Li JM, Schier AF, Engert F. 2018. A brain-wide circuit model of heat-evoked swimming behavior in larval zebrafish. Neuron 98:817–31.e6
    [Google Scholar]
  46. Hayworth KJ, Morgan JL, Schalek R, Berger DR, Hildebrand DG, Lichtman JW. 2014. Imaging ATUM ultrathin section libraries with WaferMapper: a multi-scale approach to EM reconstruction of neural circuits. Front. Neural Circuits 8:68
    [Google Scholar]
  47. Helmbrecht TO, dal Maschio M, Donovan JC, Koutsouli S, Baier H. 2018. Topography of a visuomotor transformation. Neuron 100:1429–45.e4
    [Google Scholar]
  48. Hennequin G, Agnes EJ, Vogels TP. 2017. Inhibitory plasticity: balance, control, and codependence. Annu. Rev. Neurosci. 40:557–79
    [Google Scholar]
  49. Henriques PM, Rahman N, Jackson SE, Bianco IH. 2019. Nucleus isthmi is required to sustain target pursuit during visually guided prey-catching. Curr. Biol. 29:1771–86.e5
    [Google Scholar]
  50. Hildebrand DGC, Cicconet M, Torres RM, Choi W, Quan TM et al. 2017. Whole-brain serial-section electron microscopy in larval zebrafish. Nature 545:345–49
    [Google Scholar]
  51. Huang KH, Rupprecht P, Frank T, Kawakami K, Bouwmeester T, Friedrich RW. 2020. A virtual reality system to analyze neural activity and behavior in adult zebrafish. Nat. Methods 17:343–51
    [Google Scholar]
  52. Januszewski M, Kornfeld J, Li PH, Pope A, Blakely T et al. 2018. High-precision automated reconstruction of neurons with flood-filling networks. Nat. Methods 15:605–10
    [Google Scholar]
  53. Kawashima T, Zwart MF, Yang CT, Mensh BD, Ahrens MB. 2016. The serotonergic system tracks the outcomes of actions to mediate short-term motor learning. Cell 167:933–46.e20
    [Google Scholar]
  54. Keller GB, Mrsic-Flogel TD. 2018. Predictive processing: a canonical cortical computation. Neuron 100:424–35
    [Google Scholar]
  55. Kim DH, Kim J, Marques JC, Grama A, Hildebrand DGC et al. 2017. Pan-neuronal calcium imaging with cellular resolution in freely swimming zebrafish. Nat. Methods 14:1107–14
    [Google Scholar]
  56. Kim JS, Greene MJ, Zlateski A, Lee K, Richardson M et al. 2014. Space-time wiring specificity supports direction selectivity in the retina. Nature 509:331–36
    [Google Scholar]
  57. Kimura Y, Okamura Y, Higashijima S. 2006. alx, a zebrafish homolog of Chx10, marks ipsilateral descending excitatory interneurons that participate in the regulation of spinal locomotor circuits. J. Neurosci. 26:5684–97
    [Google Scholar]
  58. Ko H, Hofer SB, Pichler B, Buchanan KA, Sjostrom PJ, Mrsic-Flogel TD. 2011. Functional specificity of local synaptic connections in neocortical networks. Nature 473:87–91
    [Google Scholar]
  59. Kornfeld J, Benezra SE, Narayanan RT, Svara F, Egger R et al. 2017. EM connectomics reveals axonal target variation in a sequence-generating network. eLife 6:e24364
    [Google Scholar]
  60. Kornfeld J, Denk W. 2018. Progress and remaining challenges in high-throughput volume electron microscopy. Curr. Opin. Neurobiol. 50:261–67
    [Google Scholar]
  61. Kornfeld J, Januszewski M, Schubert P, Jain V, Denk W, Fee MS. 2020. An anatomical substrate of credit assignment in reinforcement learning. bioRxiv 2020.02.18.954354. https://doi.org/10.1101/2020.02.18.954354
    [Crossref]
  62. Kramer A, Wu Y, Baier H, Kubo F. 2019. Neuronal architecture of a visual center that processes optic flow. Neuron 103:118–32.e7
    [Google Scholar]
  63. Kubo F, Hablitzel B, dal Maschio M, Driever W, Baier H, Arrenberg AB. 2014. Functional architecture of an optic flow-responsive area that drives horizontal eye movements in zebrafish. Neuron 81:1344–59
    [Google Scholar]
  64. Kunst M, Laurell E, Mokayes N, Kramer A, Kubo F et al. 2019. A cellular-resolution atlas of the larval zebrafish brain. Neuron 103:21–38.e5
    [Google Scholar]
  65. Lacoste AM, Schoppik D, Robson DN, Haesemeyer M, Portugues R et al. 2015. A convergent and essential interneuron pathway for Mauthner-cell-mediated escapes. Curr. Biol. 25:1526–34
    [Google Scholar]
  66. Lee WC, Bonin V, Reed M, Graham BJ, Hood G et al. 2016. Anatomy and function of an excitatory network in the visual cortex. Nature 532:370–74
    [Google Scholar]
  67. Leung LC, Wang GX, Madelaine R, Skariah G, Kawakami K et al. 2019. Neural signatures of sleep in zebrafish. Nature 571:198–204
    [Google Scholar]
  68. Lin Q, Manley J, Helmreich M, Schlumm F, Li JM et al. 2020. Cerebellar neurodynamics predict decision timing and outcome on the single-trial level. Cell 180:536–51.e17
    [Google Scholar]
  69. Litwin-Kumar A, Turaga SC. 2019. Constraining computational models using electron microscopy wiring diagrams. Curr. Opin. Neurobiol. 58:94–100
    [Google Scholar]
  70. Lovett-Barron M, Andalman AS, Allen WE, Vesuna S, Kauvar I et al. 2017. Ancestral circuits for the coordinated modulation of brain state. Cell 171:1411–23.e17
    [Google Scholar]
  71. Lovett-Barron M, Chen R, Bradbury S, Andalman AS, Wagle M et al. 2020. Multiple convergent hypothalamus-brainstem circuits drive defensive behavior. Nat. Neurosci. 23:959–67
    [Google Scholar]
  72. Marc RE, Jones BW, Watt CB, Anderson JR, Sigulinsky C, Lauritzen S. 2013. Retinal connectomics: towards complete, accurate networks. Prog. Retin. Eye Res. 37:141–62
    [Google Scholar]
  73. Marquart GD, Tabor KM, Bergeron SA, Briggman KL, Burgess HA. 2019. Prepontine non-giant neurons drive flexible escape behavior in zebrafish. PLOS Biol 17:e3000480
    [Google Scholar]
  74. Marsden KC, Jain RA, Wolman MA, Echeverry FA, Nelson JC et al. 2018. A cyfip2-dependent excitatory interneuron pathway establishes the innate startle threshold. Cell Rep 23:878–87
    [Google Scholar]
  75. McLean DL, Masino MA, Koh IY, Lindquist WB, Fetcho JR. 2008. Continuous shifts in the active set of spinal interneurons during changes in locomotor speed. Nat. Neurosci. 11:1419–29
    [Google Scholar]
  76. Migault G, van der Plas TL, Trentesaux H, Panier T, Candelier R et al. 2018. Whole-brain calcium imaging during physiological vestibular stimulation in larval zebrafish. Curr. Biol. 28:3723–35.e6
    [Google Scholar]
  77. Milo R, Shen-Orr S, Itzkovitz S, Kashtan N, Chklovskii D, Alon U. 2002. Network motifs: simple building blocks of complex networks. Science 298:824–27
    [Google Scholar]
  78. Miri A, Daie K, Arrenberg AB, Baier H, Aksay E, Tank DW 2011. Spatial gradients and multidimensional dynamics in a neural integrator circuit. Nat. Neurosci. 14:1150–59
    [Google Scholar]
  79. Morgan JL, Berger DR, Wetzel AW, Lichtman JW. 2016. The fuzzy logic of network connectivity in mouse visual thalamus. Cell 165:192–206
    [Google Scholar]
  80. Motta A, Berning M, Boergens KM, Staffler B, Beining M et al. 2019. Dense connectomic reconstruction in layer 4 of the somatosensory cortex. Science 366:eaay3134
    [Google Scholar]
  81. Mu Y, Bennett DV, Rubinov M, Narayan S, Yang CT et al. 2019. Glia accumulate evidence that actions are futile and suppress unsuccessful behavior. Cell 178:27–43.e19
    [Google Scholar]
  82. Mu Y, Li XQ, Zhang B, Du JL. 2012. Visual input modulates audiomotor function via hypothalamic dopaminergic neurons through a cooperative mechanism. Neuron 75:688–99
    [Google Scholar]
  83. Muto A, Ohkura M, Abe G, Nakai J, Kawakami K. 2013. Real-time visualization of neuronal activity during perception. Curr. Biol. 23:307–11
    [Google Scholar]
  84. Nagiel A, Andor-Ardo D, Hudspeth AJ. 2008. Specificity of afferent synapses onto plane-polarized hair cells in the posterior lateral line of the zebrafish. J. Neurosci. 28:8442–53
    [Google Scholar]
  85. Namekawa I, Moenig NR, Friedrich RW. 2018. Rapid olfactory discrimination learning in adult zebrafish. Exp. Brain Res. 236:2959–69
    [Google Scholar]
  86. Naumann EA, Fitzgerald JE, Dunn TW, Rihel J, Sompolinsky H, Engert F. 2016. From whole-brain data to functional circuit models: the zebrafish optomotor response. Cell 167:947–60.e20
    [Google Scholar]
  87. Niessing J, Friedrich RW. 2010. Olfactory pattern classification by discrete neuronal network states. Nature 465:47–52
    [Google Scholar]
  88. Oh SW, Harris JA, Ng L, Winslow B, Cain N et al. 2014. A mesoscale connectome of the mouse brain. Nature 508:207–14
    [Google Scholar]
  89. Ohyama T, Schneider-Mizell CM, Fetter RD, Aleman JV, Franconville R et al. 2015. A multilevel multimodal circuit enhances action selection in Drosophila. Nature 520:633–39
    [Google Scholar]
  90. O'Malley DM, Kao YH, Fetcho JR. 1996. Imaging the functional organization of zebrafish hindbrain segments during escape behaviors. Neuron 17:1145–55
    [Google Scholar]
  91. Orger MB, de Polavieja GG. 2017. Zebrafish behavior: opportunities and challenges. Annu. Rev. Neurosci. 40:125–47
    [Google Scholar]
  92. Palumbo F, Serneels B, Pelgrims R, Yaksi E. 2020. The zebrafish dorsolateral habenula is required for updating learned behaviors. Cell Rep 32:108054
    [Google Scholar]
  93. Pichler P, Lagnado L. 2020. Motor behavior selectively inhibits hair cells activated by forward motion in the lateral line of zebrafish. Curr. Biol. 30:150–57.e3
    [Google Scholar]
  94. Ponce-Alvarez A, Jouary A, Privat M, Deco G, Sumbre G. 2018. Whole-brain neuronal activity displays crackling noise dynamics. Neuron 100:1446–59.e6
    [Google Scholar]
  95. Portugues R, Feierstein CE, Engert F, Orger MB. 2014. Whole-brain activity maps reveal stereotyped, distributed networks for visuomotor behavior. Neuron 81:1328–43
    [Google Scholar]
  96. Privat M, Romano SA, Pietri T, Jouary A, Boulanger-Weill J et al. 2019. Sensorimotor transformations in the zebrafish auditory system. Curr. Biol. 29:4010–23.e4
    [Google Scholar]
  97. Randel N, Shahidi R, Veraszto C, Bezares-Calderon LA, Schmidt S, Jekely G 2015. Inter-individual stereotypy of the Platynereis larval visual connectome. eLife 4:e08069
    [Google Scholar]
  98. Randlett O, Haesemeyer M, Forkin G, Shoenhard H, Schier AF et al. 2019. Distributed plasticity drives visual habituation learning in larval zebrafish. Curr. Biol. 29:1337–45.e4
    [Google Scholar]
  99. Reinig S, Driever W, Arrenberg AB. 2017. The descending diencephalic dopamine system is tuned to sensory stimuli. Curr. Biol. 27:318–33
    [Google Scholar]
  100. Robles E, Laurell E, Baier H. 2014. The retinal projectome reveals brain-area-specific visual representations generated by ganglion cell diversity. Curr. Biol. 24:2085–96
    [Google Scholar]
  101. Romano SA, Pietri T, Perez-Schuster V, Jouary A, Haudrechy M, Sumbre G. 2015. Spontaneous neuronal network dynamics reveal circuit's functional adaptations for behavior. Neuron 85:1070–85
    [Google Scholar]
  102. Rupprecht P, Friedrich RW. 2018. Precise synaptic balance in the zebrafish homolog of olfactory cortex. Neuron 100:669–83.e5
    [Google Scholar]
  103. Scheffer LK, Xu CS, Januszewski M, Lu Z, Takemura S et al. 2020. A connectome and analysis of the adult Drosophila central brain. eLife 9:e57443
    [Google Scholar]
  104. Schmidt H, Gour A, Straehle J, Boergens KM, Brecht M, Helmstaedter M. 2017. Axonal synapse sorting in medial entorhinal cortex. Nature 549:469–75
    [Google Scholar]
  105. Schwarz AC, Porter MA. 2007. Motifs for processes on networks. arXiv:2007.07447 [physics.soc-ph]
  106. Seung HS. 1996. How the brain keeps the eyes still. PNAS 93:13339–44
    [Google Scholar]
  107. Sosulski DL, Bloom ML, Cutforth T, Axel R, Datta SR 2011. Distinct representations of olfactory information in different cortical centres. Nature 472:213–16
    [Google Scholar]
  108. Spence R, Gerlach G, Lawrence C, Smith C 2008. The behaviour and ecology of the zebrafish, Danio rerio. Biol. Rev. Camb. Philos. Soc. 83:13–34
    [Google Scholar]
  109. Stednitz SJ, McDermott EM, Ncube D, Tallafuss A, Eisen JS, Washbourne P. 2018. Forebrain control of behaviorally driven social orienting in zebrafish. Curr. Biol. 28:2445–51.e3
    [Google Scholar]
  110. Sumbre G, Muto A, Baier H, Poo MM. 2008. Entrained rhythmic activities of neuronal ensembles as perceptual memory of time interval. Nature 456:102–6
    [Google Scholar]
  111. Svara FN, Kornfeld J, Denk W, Bollmann JH. 2018. Volume EM reconstruction of spinal cord reveals wiring specificity in speed-related motor circuits. Cell Rep 23:2942–54
    [Google Scholar]
  112. Swanson LW, Lichtman JW. 2016. From Cajal to connectome and beyond. Annu. Rev. Neurosci. 39:197–216
    [Google Scholar]
  113. Tabor KM, Smith TS, Brown M, Bergeron SA, Briggman KL, Burgess HA. 2018. Presynaptic inhibition selectively gates auditory transmission to the brainstem startle circuit. Curr. Biol. 28:2527–35.e8
    [Google Scholar]
  114. Takemura SY, Aso Y, Hige T, Wong A, Lu Z et al. 2017a. A connectome of a learning and memory center in the adult Drosophila brain. eLife 6:e26975
    [Google Scholar]
  115. Takemura SY, Nern A, Chklovskii DB, Scheffer LK, Rubin GM, Meinertzhagen IA. 2017b. The comprehensive connectome of a neural substrate for ‘ON’ motion detection in Drosophila. eLife 6:e24394
    [Google Scholar]
  116. Talay M, Richman EB, Snell NJ, Hartmann GG, Fisher JD et al. 2017. Transsynaptic mapping of second-order taste neurons in flies by trans-Tango. Neuron 96:783–95.e4
    [Google Scholar]
  117. Tang W, Davidson JD, Zhang G, Conen KE, Fang J et al. 2020. Genetic control of collective behavior in zebrafish. iScience 23:100942
    [Google Scholar]
  118. Titze B, Genoud C. 2016. Volume scanning electron microscopy for imaging biological ultrastructure. Biol. Cell 108:11307–23
    [Google Scholar]
  119. Torigoe M, Islam T, Kakinuma H, Fung CCA, Isomura T et al. 2019. Future state prediction errors guide active avoidance behavior by adult zebrafish. bioRxiv 546440. https://doi.org/10.1101/546440
    [Crossref]
  120. Tschopp FD, Reiser MB, Turaga SC 2018. A connectome based hexagonal lattice convolutional network model of the Drosophila visual system. arXiv:1806.04793 [q-bio.NC]
  121. Turaga SC, Murray JF, Jain V, Roth F, Helmstaedter M et al. 2010. Convolutional networks can learn to generate affinity graphs for image segmentation. Neural Comput 22:511–38
    [Google Scholar]
  122. Ulfhake B, Kellerth JO. 1982. Does α-motoneurone size correlate with motor unit type in cat triceps surae?. Brain Res 251:201–9
    [Google Scholar]
  123. Valente A, Huang KH, Portugues R, Engert F. 2012. Ontogeny of classical and operant learning behaviors in zebrafish. Learn. Mem. 19:170–77
    [Google Scholar]
  124. Vanwalleghem GC, Ahrens MB, Scott EK. 2018. Integrative whole-brain neuroscience in larval zebrafish. Curr. Opin. Neurobiol. 50:136–45
    [Google Scholar]
  125. Vergara H, Pape C, Meechan KI, Zinchenko V, Genoud C et al. 2020. Whole-body integration of gene expression and single-cell morphology. bioRxiv 2020.02.26.961037. https://doi.org/10.1101/2020.02.26.961037
    [Crossref]
  126. Vishwanathan A, Daie K, Ramirez AD, Lichtman JW, Aksay ERF, Seung HS. 2017. Electron microscopic reconstruction of functionally identified cells in a neural integrator. Curr. Biol. 27:2137–47.e3
    [Google Scholar]
  127. Vishwanathan A, Ramirez AD, Wu J, Sood A, Yang R et al. 2020. Modularity and neural coding from a brainstem synaptic wiring diagram. bioRxiv 2020.10.28.359620. https://doi.org/10.1101/2020.10.28.359620
    [Crossref]
  128. Wanner AA, Friedrich RW. 2020. Whitening of odor representations by the wiring diagram of the olfactory bulb. Nat. Neurosci. 23:433–42
    [Google Scholar]
  129. Wanner AA, Genoud C, Friedrich RW. 2016a. 3-Dimensional electron microscopic imaging of the zebrafish olfactory bulb and dense reconstruction of neurons. Sci. Data 3:160100
    [Google Scholar]
  130. Wanner AA, Genoud C, Masudi T, Siksou L, Friedrich RW. 2016b. Dense EM-based reconstruction of the interglomerular projectome in the zebrafish olfactory bulb. Nat. Neurosci. 19:816–25
    [Google Scholar]
  131. Wanner AA, Svara F, Kornfeld J 2020. Image processing for volume electron microscopy. Volume Microscopy: Multiscale Imaging with Photons, Electrons, and Ions I Wacker, E Hummel, S Burgold, R Schröder 245–62 New York: Humana
    [Google Scholar]
  132. Wee CL, Nikitchenko M, Wang WC, Luks-Morgan SJ, Song E et al. 2019a. Zebrafish oxytocin neurons drive nocifensive behavior via brainstem premotor targets. Nat. Neurosci. 22:1477–92
    [Google Scholar]
  133. Wee CL, Song EY, Johnson RE, Ailani D, Randlett O et al. 2019b. A bidirectional network for appetite control in larval zebrafish. eLife 8:e43775
    [Google Scholar]
  134. Wickersham IR, Lyon DC, Barnard RJ, Mori T, Finke S et al. 2007. Monosynaptic restriction of transsynaptic tracing from single, genetically targeted neurons. Neuron 53:639–47
    [Google Scholar]
  135. Wolf S, Dubreuil AM, Bertoni T, Bohm UL, Bormuth V et al. 2017. Sensorimotor computation underlying phototaxis in zebrafish. Nat. Commun. 8:651
    [Google Scholar]
  136. Wu Y, dal Maschio M, Kubo F, Baier H. 2020. An optical illusion pinpoints an essential circuit node for global motion processing. Neuron 108:472234.e5
    [Google Scholar]
  137. Yamins DL, DiCarlo JJ. 2016. Using goal-driven deep learning models to understand sensory cortex. Nat. Neurosci. 19:356–65
    [Google Scholar]
  138. Yao Y, Li X, Zhang B, Yin C, Liu Y et al. 2016. Visual cue-discriminative dopaminergic control of visuomotor transformation and behavior selection. Neuron 89:598–612
    [Google Scholar]
  139. Yashina K, Tejero-Cantero A, Herz A, Baier H 2019. Zebrafish exploit visual cues and geometric relationships to form a spatial memory. iScience 19:119–34
    [Google Scholar]
  140. Yildizoglu T, Riegler C, Fitzgerald JE, Portugues R. 2020. A neural representation of naturalistic motion-guided behavior in the zebrafish brain. Curr. Biol. 30:2321–33.e6
    [Google Scholar]
  141. Zhang BB, Yao YY, Zhang HF, Kawakami K, Du JL. 2017. Left habenula mediates light-preference behavior in zebrafish via an asymmetrical visual pathway. Neuron 93:914–28.e4
    [Google Scholar]
  142. Zheng Z, Lauritzen JS, Perlman E, Robinson CG, Nichols M et al. 2018. A complete electron microscopy volume of the brain of adult Drosophila melanogaster. Cell 174:730–43.e22
    [Google Scholar]
  143. Zheng Z, Li F, Fisher C, Ali IJ, Sharifi N et al. 2020. Structured sampling of olfactory input by the fly mushroom body. bioRxiv 2020.04.17.047167. https://doi.org/10.1101/2020.04.17.047167
    [Crossref]
  144. Zhu P, Frank T, Friedrich RW. 2013. Equalization of odor representations by a network of electrically coupled inhibitory interneurons. Nat. Neurosci. 16:1678–86
    [Google Scholar]
/content/journals/10.1146/annurev-neuro-110220-013050
Loading
/content/journals/10.1146/annurev-neuro-110220-013050
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error