1932

Abstract

Recent advances in fluorescence imaging permit large-scale recording of neural activity and dynamics of neurochemical release with unprecedented resolution in behaving animals. Calcium imaging with highly optimized genetically encoded indicators provides a mesoscopic view of neural activity from genetically defined populations at cellular and subcellular resolutions. Rigorously improved voltage sensors and microscopy allow for robust spike imaging of populational neurons in various brain regions. In addition, recent protein engineering efforts in the past few years have led to the development of sensors for neurotransmitters and neuromodulators. Here, we discuss the development and applications of these genetically encoded fluorescent indicators in reporting neural activity in response to various behaviors in different biological systems as well as in drug discovery. We also report a simple model to guide sensor selection and optimization.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-neuro-110520-031137
2022-07-08
2024-04-23
Loading full text...

Full text loading...

/deliver/fulltext/neuro/45/1/annurev-neuro-110520-031137.html?itemId=/content/journals/10.1146/annurev-neuro-110520-031137&mimeType=html&fmt=ahah

Literature Cited

  1. Abdelfattah AS, Kawashima T, Singh A, Novak O, Liu H et al. 2019. Bright and photostable chemigenetic indicators for extended in vivo voltage imaging. Science 365:699–704
    [Google Scholar]
  2. Akerboom J, Carreras Calderon N, Tian L, Wabnig S, Prigge M et al. 2013. Genetically encoded calcium indicators for multi-color neural activity imaging and combination with optogenetics. Front. Mol. Neurosci. 6:2
    [Google Scholar]
  3. Andreoni A, Davis CMO, Tian L. 2019. Measuring brain chemistry using genetically encoded fluorescent sensors. Curr. Opin. Biomed. Eng. 12:59–67
    [Google Scholar]
  4. Baird GS, Zacharias DA, Tsien RY. 1999. Circular permutation and receptor insertion within green fluorescent proteins. PNAS 96:11241–46
    [Google Scholar]
  5. Borden PM, Zhang P, Shivange AV, Marvin JS, Cichon J et al. 2020. A fast genetically encoded fluorescent sensor for faithful in vivo acetylcholine detection in mice, fish, worms and flies. bioRxiv 2020.02.07.939504. https://doi.org/10.1101/2020.02.07.939504
    [Crossref]
  6. Bouabe H, Okkenhaug K. 2013. Gene targeting in mice: a review. Methods Mol. Biol. 1064:315–36
    [Google Scholar]
  7. Broussard GJ, Liang Y, Fridman M, Unger EK, Meng G et al. 2018. In vivo measurement of afferent activity with axon-specific calcium imaging. Nat. Neurosci. 21:1272–80
    [Google Scholar]
  8. Cameron LP, Tombari RJ, Lu J, Pell AJ, Hurley ZQ et al. 2021. A non-hallucinogenic psychedelic analogue with therapeutic potential. Nature 589:474–79
    [Google Scholar]
  9. Chen T-W, Wardill TJ, Sun Y, Pulver SR, Renninger SL et al. 2013. Ultrasensitive fluorescent proteins for imaging neuronal activity. Nature 499:295–300
    [Google Scholar]
  10. Chen Y, Jang H, Spratt P, Kosar S, Taylor DE et al. 2020. Soma-targeted imaging of neural circuits by ribosome tethering. Neuron 107:3454–69.e6
    [Google Scholar]
  11. Chi T, Gold JA 2020. A review of emerging therapeutic potential of psychedelic drugs in the treatment of psychiatric illnesses. J. Neurol. Sci. 411:116715
    [Google Scholar]
  12. Condon AF, Robinson BG, Asad N, Dore TM, Tian L, Williams JT. 2021. The residence of synaptically released dopamine on D2 autoreceptors. Cell Rep 36:109465
    [Google Scholar]
  13. Dalangin R, Drobizhev M, Molina RS, Aggarwal A, Patel R et al. 2020. Far-red fluorescent genetically encoded calcium ion indicators. bioRxiv 2020.11.12.380089. https://doi.org/10.1101/2020.11.12.380089
    [Crossref]
  14. Dana H, Mohar B, Sun Y, Narayan S, Gordus A et al. 2016. Sensitive red protein calcium indicators for imaging neural activity. eLife 5:e12727
    [Google Scholar]
  15. Dana H, Sun Y, Mohar B, Hulse BK, Kerlin AM et al. 2019. High-performance calcium sensors for imaging activity in neuronal populations and microcompartments. Nat. Methods 16:649–57
    [Google Scholar]
  16. Dong A, He K, Dudok B, Farrell JS, Guan W et al. 2021. A fluorescent sensor for spatiotemporally resolved imaging of endocannabinoid dynamics in vivo. Nat. Biotechnol In press
  17. Dong C, Ly C, Dunlap LE, Vargas MV, Sun J et al. 2021. Psychedelic-inspired drug discovery using an engineered biosensor. Cell 184:2779–92.e18
    [Google Scholar]
  18. El-Husseini AE-D, Craven SE, Brock SC, Bredt DS. 2001. Polarized targeting of peripheral membrane proteins in neurons. J. Biol. Chem. 276:44984–92
    [Google Scholar]
  19. Erdogan M, Fabritius A, Basquin J, Griesbeck O. 2020. Targeted in situ protein diversification and intra-organelle validation in mammalian cells. Cell Chem. Biol. 27:610–21.e5
    [Google Scholar]
  20. Farrell JS, Colangeli R, Dong A, George AG, Addo-Osafo K et al. 2021. In vivo endocannabinoid dynamics at the timescale of physiological and pathological neural activity. Neuron 109:2398–403.e4
    [Google Scholar]
  21. Feng J, Zhang C, Lischinsky JE, Jing M, Zhou J et al. 2019. A genetically encoded fluorescent sensor for rapid and specific in vivo detection of norepinephrine. Neuron 102:745–61.e8
    [Google Scholar]
  22. Gong Y, Huang C, Li JZ, Grewe BF, Zhang Y et al. 2015. High-speed recording of neural spikes in awake mice and flies with a fluorescent voltage sensor. Science 350:1361–66
    [Google Scholar]
  23. Grienberger C, Konnerth A. 2012. Imaging calcium in neurons. Neuron 73:862–85
    [Google Scholar]
  24. Guillaumin MCC, Burdakov D. 2021. Neuropeptides as primary mediators of brain circuit connectivity. Front. Neurosci. 15:644313
    [Google Scholar]
  25. Gunaydin LA, Grosenick L, Finkelstein JC, Kauvar IV, Fenno LE et al. 2014. Natural neural projection dynamics underlying social behavior. Cell 157:1535–51
    [Google Scholar]
  26. Hauser AS, Attwood MM, Rask-Andersen M, Schioth HB, Gloriam DE. 2017. Trends in GPCR drug discovery: new agents, targets and indications. Nat. Rev. Drug Discov. 16:829–42
    [Google Scholar]
  27. He Z, Zhang L, Hou W, Zhang X, Young LJ et al. 2021. Paraventricular nucleus oxytocin subsystems promote active paternal behaviors in mandarin voles. J. Neurosci. 41:6699–713
    [Google Scholar]
  28. Helassa N, Durst CD, Coates C, Kerruth S, Arif U et al. 2018. Ultrafast glutamate sensors resolve high-frequency release at Schaffer collateral synapses. PNAS 115:5594–99
    [Google Scholar]
  29. Hu H, Wei Y, Wang D, Su N, Chen X et al. 2018. Glucose monitoring in living cells with single fluorescent protein-based sensors. RSC Adv 8:2485–89
    [Google Scholar]
  30. Hung LW, Neuner S, Polepalli JS, Beier KT, Wright M et al. 2017. Gating of social reward by oxytocin in the ventral tegmental area. Science 357:1406–11
    [Google Scholar]
  31. Inoue M, Takeuchi A, Manita S, Horigane SI, Sakamoto M et al. 2019. Rational engineering of XCaMPs, a multicolor GECI suite for in vivo imaging of complex brain circuit dynamics. Cell 177:1346–60.e24
    [Google Scholar]
  32. Jin L, Han Z, Platisa J, Wooltorton JRA, Cohen LB, Pieribone VA. 2012. Single action potentials and subthreshold electrical events imaged in neurons with a fluorescent protein voltage probe. Neuron 75:779–85
    [Google Scholar]
  33. Jing M, Li Y, Zeng J, Huang P, Skirzewski M et al. 2020. An optimized acetylcholine sensor for monitoring in vivo cholinergic activity. Nat. Methods 17:1139–46
    [Google Scholar]
  34. Jing M, Zhang P, Wang G, Feng J, Mesik L et al. 2018. A genetically encoded fluorescent acetylcholine indicator for in vitro and in vivo studies. Nat. Biotechnol. 36:726–37
    [Google Scholar]
  35. Jumper J, Evans R, Pritzel A, Green T, Figurnov M et al. 2021. Highly accurate protein structure prediction with AlphaFold. Nature 596:583–89
    [Google Scholar]
  36. Keller JP, Marvin JS, Lacin H, Lemon WC, Shea J et al. 2021. In vivo glucose imaging in multiple model organisms with an engineered single-wavelength sensor. Cell Rep. 35:109284
    [Google Scholar]
  37. Kelly CR, Sharif NA. 2006. Pharmacological evidence for a functional serotonin-2B receptor in a human uterine smooth muscle cell line. J. Pharmacol. Exp. Ther. 317:1254–61
    [Google Scholar]
  38. Kim H, Kim M, Im S-K, Fang S. 2018. Mouse Cre-LoxP system: general principles to determine tissue-specific roles of target genes. Lab Anim. Res. 34:147–59
    [Google Scholar]
  39. Kingsbury L, Huang S, Wang J, Gu K, Golshani P et al. 2019. Correlated neural activity and encoding of behavior across brains of socially interacting animals. Cell 178:429–46.e16
    [Google Scholar]
  40. Knopfel T, Song C. 2019. Optical voltage imaging in neurons: moving from technology development to practical tool. Nat. Rev. Neurosci. 20:719–27
    [Google Scholar]
  41. Kovacs GL. 2004. The endocrine brain: pathophysiological role of neuropeptide-neurotransmitter interactions. EJIFCC 15:107–12
    [Google Scholar]
  42. Kralj JM, Douglass AD, Hochbaum DR, Maclaurin D, Cohen AE. 2011. Optical recording of action potentials in mammalian neurons using a microbial rhodopsin. Nat. Methods 9:90–95
    [Google Scholar]
  43. Kügler S, Kilic E, Bähr M. 2003. Human synapsin 1 gene promoter confers highly neuron-specific long-term transgene expression from an adenoviral vector in the adult rat brain depending on the transduced area. Gene. Ther. 10:337–47
    [Google Scholar]
  44. Lee J, Liu Z, Suzuki PH, Ahrens JF, Lai S et al. 2020. Versatile phenotype-activated cell sorting. Sci. Adv. 6:eabb7438
    [Google Scholar]
  45. Lee SJ, Lodder B, Chen Y, Patriarchi T, Tian L, Sabatini BL. 2021. Cell-type-specific asynchronous modulation of PKA by dopamine in learning. Nature 590:451–56
    [Google Scholar]
  46. Lim MM, Young LJ. 2006. Neuropeptidergic regulation of affiliative behavior and social bonding in animals. Horm. Behav. 50:506–17
    [Google Scholar]
  47. Lobas MA, Tao R, Nagai J, Kronschlager MT, Borden PM et al. 2019. A genetically encoded single-wavelength sensor for imaging cytosolic and cell surface ATP. Nat. Commun. 10:711
    [Google Scholar]
  48. Mank M, Santos AF, Direnberger S, Mrsic-Flogel TD, Hofer SB et al. 2008. A genetically encoded calcium indicator for chronic in vivo two-photon imaging. Nat. Methods 5:805–11
    [Google Scholar]
  49. Marvin JS, Borghuis BG, Tian L, Cichon J, Harnett MT et al. 2013. An optimized fluorescent probe for visualizing glutamate neurotransmission. Nat. Methods 10:162–70
    [Google Scholar]
  50. Marvin JS, Scholl B, Wilson DE, Podgorski K, Kazemipour A et al. 2018. Stability, affinity, and chromatic variants of the glutamate sensor iGluSnFR. Nat. Methods 15:936–39
    [Google Scholar]
  51. Marvin JS, Shimoda Y, Magloire V, Leite M, Kawashima T et al. 2019. A genetically encoded fluorescent sensor for in vivo imaging of GABA. Nat. Methods 16:763–70
    [Google Scholar]
  52. Matthews T, Danese A, Wertz J, Odgers CL, Ambler A et al. 2016. Social isolation, loneliness and depression in young adulthood: a behavioural genetic analysis. Soc. Psychiatry Psychiatr. Epidemiol. 51:339–48
    [Google Scholar]
  53. Mita M, Ito M, Harada K, Sugawara I, Ueda H et al. 2019. Green fluorescent protein-based glucose indicators report glucose dynamics in living cells. Anal. Chem. 91:4821–30
    [Google Scholar]
  54. Miyawaki A, Llopis J, Heim R, McCaffery JM, Adams JA et al. 1997. Fluorescent indicators for Ca2+ based on green fluorescent proteins and calmodulin. Nature 388:882–87
    [Google Scholar]
  55. Mohebi A, Pettibone JR, Hamid AA, Wong J-MT, Vinson LT et al. 2019. Dissociable dopamine dynamics for learning and motivation. Nature 570:65–70
    [Google Scholar]
  56. Motulsky HJ, Neubig RR. 2010. Analyzing binding data. Curr. Protocols Neurosci. 52:7.5.1–65
    [Google Scholar]
  57. Mueller KL, Hoon MA, Erlenbach I, Chandrashekar J, Zuker CS, Ryba NJP. 2005. The receptors and coding logic for bitter taste. Nature 434:225–29
    [Google Scholar]
  58. Muir J, Lorsch ZS, Ramakrishnan C, Deisseroth K, Nestler EJ et al. 2018. In vivo fiber photometry reveals signature of future stress susceptibility in nucleus accumbens. Neuropsychopharmacology 43:255–63
    [Google Scholar]
  59. Nadim F, Bucher D. 2014. Neuromodulation of neurons and synapses. Curr. Opin. Neurobiol. 29:48–56
    [Google Scholar]
  60. Nagai T, Sawano A, Park ES, Miyawaki A. 2001. Circularly permuted green fluorescent proteins engineered to sense Ca2+. PNAS 98:3197–202
    [Google Scholar]
  61. Nagai T, Yamada S, Tominaga T, Ichikawa M, Miyawaki A. 2004. Expanded dynamic range of fluorescent indicators for Ca2+ by circularly permuted yellow fluorescent proteins. PNAS 101:10554–59
    [Google Scholar]
  62. Nakai J, Ohkura M, Imoto K. 2001. A high signal-to-noise Ca2+ probe composed of a single green fluorescent protein. Nat. Biotechnol. 19:137–41
    [Google Scholar]
  63. Nieuwenhuis B, Haenzi B, Hilton S, Carnicer-Lombarte A, Hobo B et al. 2021. Optimization of adeno-associated viral vector-mediated transduction of the corticospinal tract: comparison of four promoters. Gene Ther. 28:56–74
    [Google Scholar]
  64. Olsen RHJ, DiBerto JF, English JG, Glaudin AM, Krumm BE et al. 2020. TRUPATH, an open-source biosensor platform for interrogating the GPCR transducerome. Nat. Chem. Biol. 16:841–49
    [Google Scholar]
  65. Pal A, Tian L. 2020. Imaging voltage and brain chemistry with genetically encoded sensors and modulators. Curr. Opin. Chem. Biol. 57:166–76
    [Google Scholar]
  66. Palmer AE, Giacomello M, Kortemme T, Hires SA, Lev-Ram V et al. 2006. Ca2+ indicators based on computationally redesigned calmodulin-peptide pairs. Chem. Biol. 13:521–30
    [Google Scholar]
  67. Panzera LC, Hoppa MB. 2019. Genetically encoded voltage indicators are illuminating subcellular physiology of the axon. Front. Cell. Neurosci. 13:52
    [Google Scholar]
  68. Patriarchi T, Cho JR, Merten K, Howe MW, Marley A et al. 2018. Ultrafast neuronal imaging of dopamine dynamics with designed genetically encoded sensors. Science 360:aat4422
    [Google Scholar]
  69. Patriarchi T, Mohebi A, Sun J, Marley A, Liang R et al. 2020. An expanded palette of dopamine sensors for multiplex imaging in vivo. Nat. Methods 17:1147–55
    [Google Scholar]
  70. Peng W, Wu Z, Song K, Zhang S, Li Y, Xu M. 2020. Regulation of sleep homeostasis mediator adenosine by basal forebrain glutamatergic neurons. Science 369:eabb0556
    [Google Scholar]
  71. Piatkevich KD, Jung EE, Straub C, Linghu C, Park D et al. 2018. A robotic multidimensional directed evolution approach applied to fluorescent voltage reporters. Nat. Chem. Biol. 14:352–60
    [Google Scholar]
  72. Qian Y, Orozco Cosio DM, Piatkevich KD, Aufmkolk S, Su WC et al. 2020. Improved genetically encoded near-infrared fluorescent calcium ion indicators for in vivo imaging. PLOS Biol. 18:e3000965
    [Google Scholar]
  73. Qian Y, Piatkevich KD, McLarney B, Abdelfattah AS, Mehta S et al. 2019. A genetically encoded near-infrared fluorescent calcium ion indicator. Nat. Methods 16:171–74
    [Google Scholar]
  74. Quiocho FA, Ledvina PS. 1996. Atomic structure and specificity of bacterial periplasmic receptors for active transport and chemotaxis: variation of common themes. Mol. Microbiol. 20:17–25
    [Google Scholar]
  75. Rasmussen M, Kong L, Zhang G-R, Liu M, Wang X et al. 2007. Glutamatergic or GABAergic neuron-specific, long-term expression in neocortical neurons from helper virus-free HSV-1 vectors containing the phosphate-activated glutaminase, vesicular glutamate transporter-1, or glutamic acid decarboxylase promoter. Brain Res. 1144:19–32
    [Google Scholar]
  76. Sabatini BL, Tian L. 2020. Imaging neurotransmitter and neuromodulator dynamics in vivo with genetically encoded indicators. Neuron 108:17–32
    [Google Scholar]
  77. Sadakane O, Masamizu Y, Watakabe A, Terada S-I, Ohtsuka M et al. 2015. Long-term two-photon calcium imaging of neuronal populations with subcellular resolution in adult non-human primates. Cell Rep. 13:1989–99
    [Google Scholar]
  78. Seidemann E, Chen Y, Bai Y, Chen SC, Mehta P et al. 2016. Calcium imaging with genetically encoded indicators in behaving primates. eLife 5:e16178
    [Google Scholar]
  79. Shcherbakova DM, Shemetov AA, Kaberniuk AA, Verkhusha VV. 2015. Natural photoreceptors as a source of fluorescent proteins, biosensors, and optogenetic tools. Annu. Rev. Biochem. 84:519–50
    [Google Scholar]
  80. Shemetov AA, Monakhov MV, Zhang Q, Canton-Josh JE, Kumar M et al. 2021. A near-infrared genetically encoded calcium indicator for in vivo imaging. Nat. Biotechnol. 39:368–77
    [Google Scholar]
  81. Shen Y, Dana H, Abdelfattah AS, Patel R, Shea J et al. 2018. A genetically encoded Ca2+ indicator based on circularly permutated sea anemone red fluorescent protein eqFP578. BMC Biol. 16:9
    [Google Scholar]
  82. Shivange AV, Borden PM, Muthusamy AK, Nichols AL, Bera K et al. 2019. Determining the pharmacokinetics of nicotinic drugs in the endoplasmic reticulum using biosensors. J. Gen. Physiol. 151:738–57
    [Google Scholar]
  83. Shoichet BK, Kobilka BK. 2012. Structure-based drug screening for G-protein-coupled receptors. Trends Pharmacol. Sci. 33:268–72
    [Google Scholar]
  84. Smith JS, Lefkowitz RJ, Rajagopal S. 2018. Biased signalling: from simple switches to allosteric microprocessors. Nat. Rev. Drug Discov. 17:243–60
    [Google Scholar]
  85. St-Pierre F, Marshall JD, Yang Y, Gong Y, Schnitzer MJ, Lin MZ. 2014. High-fidelity optical reporting of neuronal electrical activity with an ultrafast fluorescent voltage sensor. Nat. Neurosci. 17:884–89
    [Google Scholar]
  86. Sun F, Zeng J, Jing M, Zhou J, Feng J et al. 2018. A genetically encoded fluorescent sensor enables rapid and specific detection of dopamine in flies, fish, and mice. Cell 174:481–96.e19
    [Google Scholar]
  87. Sun F, Zhou J, Dai B, Qian T, Zeng J et al. 2020. Next-generation GRAB sensors for monitoring dopaminergic activity in vivo. Nat. Methods 17:1156–66
    [Google Scholar]
  88. Sung YM, Wilkins AD, Rodriguez GJ, Wensel TG, Lichtarge O. 2016. Intramolecular allosteric communication in dopamine D2 receptor revealed by evolutionary amino acid covariation. PNAS 113:133539–44
    [Google Scholar]
  89. Tai F, Wang TZ. 2001. Social organization of mandarin voles in burrow system. Acta Theriol. Sin. 21:50–56
    [Google Scholar]
  90. Tai F, Wang TZ, Zhao YJ. 2001. Mating system of mandarin vole (Microtus mandarinus). Acta Zool. Sin. 47:260–67
    [Google Scholar]
  91. Tanaka M, Sun F, Li Y, Mooney R. 2018. A mesocortical dopamine circuit enables the cultural transmission of vocal behaviour. Nature 563:117–20
    [Google Scholar]
  92. Tian L, Hires SA, Mao T, Huber D, Chiappe ME et al. 2009. Imaging neural activity in worms, flies and mice with improved GCaMP calcium indicators. Nat. Methods 6:875–81
    [Google Scholar]
  93. Tikhonova IG, Costanzi S. 2009. Unraveling the structure and function of G protein-coupled receptors through NMR spectroscopy. Curr. Pharm. Des. 15:4003–16
    [Google Scholar]
  94. Trainor BC, Pride MC, Landeros RV, Knoblauch NW, Takahashi EY et al. 2011. Sex differences in social interaction behavior following social defeat stress in the monogamous California mouse (Peromyscus californicus). PLOS ONE 6:e17405
    [Google Scholar]
  95. Tunyasuvunakool K, Adler J, Wu Z, Green T, Zielinski M et al. 2021. Highly accurate protein structure prediction for the human proteome. Nature 596:590–96
    [Google Scholar]
  96. Unger EK, Keller JP, Altermatt M, Liang R, Matsui A et al. 2020. Directed evolution of a selective and sensitive serotonin sensor via machine learning. Cell 183:1986–2002.e26
    [Google Scholar]
  97. Villette V, Chavarha M, Dimov IK, Bradley J, Pradhan L et al. 2019. Ultrafast two-photon imaging of a high-gain voltage indicator in awake behaving mice. Cell 179:1590–608.e23
    [Google Scholar]
  98. Wan J, Peng W, Li X, Qian T, Song K et al. 2021. A genetically encoded sensor for measuring serotonin dynamics. Nat. Neurosci. 24:746–52
    [Google Scholar]
  99. Wang H, Jing M, Li Y. 2018. Lighting up the brain: genetically encoded fluorescent sensors for imaging neurotransmitters and neuromodulators. Curr. Opin. Neurobiol. 50:171–78
    [Google Scholar]
  100. Wang W, Kim CK, Ting AY. 2019. Molecular tools for imaging and recording neuronal activity. Nat. Chem. Biol. 15:101–10
    [Google Scholar]
  101. Wang X, Zhang C, Szábo G, Sun Q-Q. 2013. Distribution of CaMKIIα expression in the brain in vivo, studied by CaMKIIα-GFP mice. Brain Res 1518:9–25
    [Google Scholar]
  102. Whalen EJ, Rajagopal S, Lefkowitz RJ. 2011. Therapeutic potential of β-arrestin- and G protein-biased agonists. Trends Mol. Med. 17:126–39
    [Google Scholar]
  103. Wright EC, Hostinar CE, Trainor BC. 2020. Anxious to see you: neuroendocrine mechanisms of social vigilance and anxiety during adolescence. Eur. J. Neurosci. 52:2516–29
    [Google Scholar]
  104. Wu J, Abdelfattah AS, Zhou H, Ruangkittisakul A, Qian Y et al. 2018. Genetically encoded glutamate indicators with altered color and topology. ACS Chem. Biol. 13:1832–37
    [Google Scholar]
  105. Wu Z, He K, Chen Y, Li H, Pan S et al. 2022. A sensitive GRAB sensor for detecting extracellular ATP in vitro and in vivo. Neuron 11077082.e5
  106. Yang HH, St-Pierre F, Sun X, Ding X, Lin MZ, Clandinin TR. 2016. Subcellular imaging of voltage and calcium signals reveals neural processing in vivo. Cell 166:245–57
    [Google Scholar]
  107. Zhang D, Zhao Q, Wu B. 2015. Structural studies of G protein-coupled receptors. Mol. Cells 38:836–42
    [Google Scholar]
  108. Zhang L, Liang B, Barbera G, Hawes S, Zhang Y et al. 2019. Miniscope GRIN lens system for calcium imaging of neuronal activity from deep brain structures in behaving animals. Curr. Protoc. Neurosci. 86:e56
    [Google Scholar]
  109. Zhang Y, Rózsa M, Liang Y, Bushey D, Wei Zet al 2021. Fast and sensitive GCaMP calcium indicators for imaging neural populations. bioRxiv 2021.11.08.467793 https://doi.org/10.1101/2021.11.08.467793
    [Crossref] [Google Scholar]
  110. Zhao Y, Araki S, Wu J, Teramoto T, Chang YF et al. 2011. An expanded palette of genetically encoded Ca2+ indicators. Science 333:1888–91
    [Google Scholar]
  111. Ziv Y, Ghosh KK. 2015. Miniature microscopes for large-scale imaging of neuronal activity in freely behaving rodents. Curr. Opin. Neurobiol. 32:141–47
    [Google Scholar]
/content/journals/10.1146/annurev-neuro-110520-031137
Loading
/content/journals/10.1146/annurev-neuro-110520-031137
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error