1932

Abstract

Neurodevelopment and efferocytosis have fascinated scientists for decades. How an organism builds a nervous system that is precisely tuned for efficient behaviors and survival and how it simultaneously manages constant somatic cell turnover are complex questions that have resulted in distinct fields of study. Although neurodevelopment requires the overproduction of cells that are subsequently pruned back, very few studies marry these fields to elucidate the cellular and molecular mechanisms that drive nervous system development through the lens of cell clearance. In this review, we discuss these fields to highlight exciting areas of future synergy. We first review neurodevelopment from the perspective of overproduction and subsequent refinement and then discuss who clears this developmental debris and the mechanisms that control these events. We then end with how a more deliberate merger ofneurodevelopment and efferocytosis could reframe our understanding of homeostasis and disease and discuss areas of future study.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-neuro-110920-022431
2022-07-08
2024-05-09
Loading full text...

Full text loading...

/deliver/fulltext/neuro/45/1/annurev-neuro-110920-022431.html?itemId=/content/journals/10.1146/annurev-neuro-110920-022431&mimeType=html&fmt=ahah

Literature Cited

  1. Abrams JM, White K, Fessler LI, Steller H. 1993. Programmed cell death during Drosophila embryogenesis. Development 117:129–43
    [Google Scholar]
  2. Alliot F, Lecain E, Grima B, Pessac B 1991. Microglial progenitors with a high proliferative potential in the embryonic and adult mouse brain. PNAS 88:41541–45
    [Google Scholar]
  3. Anderson SR, Roberts JM, Zhang J, Steele MR, Romero CO et al. 2019a. Developmental apoptosis promotes a disease-related gene signature and independence from CSF1R signaling in retinal microglia. Cell Rep 27:72002–13.e5
    [Google Scholar]
  4. Anderson SR, Zhang J, Steele MR, Romero CO, Kautzman AG et al. 2019b. Complement targets newborn retinal ganglion cells for phagocytic elimination by microglia. J. Neurosci. 39:112025–40
    [Google Scholar]
  5. Arandjelovic S, Ravichandran KS 2015. Phagocytosis of apoptotic cells in homeostasis. Nat. Immunol. 16:9907–17
    [Google Scholar]
  6. Aspelund A, Antila S, Proulx ST, Karlsen TV, Karaman S et al. 2015. A dural lymphatic vascular system that drains brain interstitial fluid and macromolecules. J. Exp. Med. 212:7991–99
    [Google Scholar]
  7. Awasaki T, Tatsumi R, Takahashi K, Arai K, Nakanishi Y et al. 2006. Essential role of the apoptotic cell engulfment genes draper and ced-6 in programmed axon pruning during Drosophila metamorphosis. Neuron 50:6855–67
    [Google Scholar]
  8. Ayata P, Badimon A, Strasburger HJ, Duff MK, Sarah E et al. 2019. Epigenetic regulation of brain region-specific microglia clearance activity. Nat. Neurosci. 21:81049–60
    [Google Scholar]
  9. Bai Y, Suzuki T. 2020. Activity-dependent synaptic plasticity in Drosophila melanogaster. Front. Physiol. 11:161
    [Google Scholar]
  10. Baines RA, Bate M. 1998. Electrophysiological development of central neurons in the Drosophila embryo. J. Neurosci. 18:124673–83
    [Google Scholar]
  11. Bin JM, Lyons DA. 2016. Imaging myelination in vivo using transparent animal models. Brain Plast 2:13–29
    [Google Scholar]
  12. Blauth K, Banerjee S, Bhat MA 2010. Axonal ensheathment and intercellular barrier formation in Drosophila. International Review of Cell and Molecular Biology, Vol. 283 K Jeon 93–128 New York: Elsevier
    [Google Scholar]
  13. Boulanger-Weill J, Sumbre G. 2019. Functional integration of newborn neurons in the zebrafish optic tectum. Front. Cell Dev. Biol. 7:57
    [Google Scholar]
  14. Bourgeois JP, Rakic P. 1993. Changes of synaptic density in the primary visual cortex of the macaque monkey from fetal to adult stage. J. Neurosci. 13:72801–20
    [Google Scholar]
  15. Brelstaff J, Tolkovsky AM, Ghetti B, Goedert M, Spillantini MG 2018. Living neurons with tau filaments aberrantly expose phosphatidylserine and are phagocytosed by microglia. Cell Rep 24:81939–48.e4
    [Google Scholar]
  16. Brioschi S, Wang W-L, Peng V, Wang M, Shchukina I et al. 2021. Heterogeneity of meningeal B cells reveals a lymphopoietic niche at the CNS borders. Science 373:6553eabf9277
    [Google Scholar]
  17. Brugnera E, Haney L, Grimsley C, Lu M, Walk SF et al. 2002. Unconventional Rac-GEF activity is mediated through the Dock180-ELMO complex. Nat. Cell Biol. 4:8574–82
    [Google Scholar]
  18. Buchanan J, Elabbady L, Collman F, Jorstad NL, Bakken TE et al. 2021. Oligodendrocyte precursor cells prune axons in the mouse neocortex. bioRxiv 2021.05.29.446047. https://doi.org/10.1101/2021.05.29.446047
    [Crossref]
  19. Buchsbaum IY, Cappello S. 2019. Neuronal migration in the CNS during development and disease: insights from in vivo and in vitro models. Development 146:1dev163766
    [Google Scholar]
  20. Burstyn-Cohen T, Lew ED, Través PG, Burrola PG, Hash JC, Lemke G. 2012. Genetic dissection of TAM receptor-ligand interaction in retinal pigment epithelial cell phagocytosis. Neuron 76:61123–32
    [Google Scholar]
  21. Buss RR, Sun W, Oppenheim RW 2006. Adaptive roles of programmed cell death during nervous system development. Annu. Rev. Neurosci. 29:1–35
    [Google Scholar]
  22. Cantera R, Ferreiro MJ, Aransay AM, Barrio R. 2014. Global gene expression shift during the transition from early neural development to late neuronal differentiation in Drosophila melanogaster. PLOS ONE 9:5e97703
    [Google Scholar]
  23. Casano AM, Albert M, Peri F 2016. Developmental apoptosis mediates entry and positioning of microglia in the zebrafish brain. Cell Rep 16:4897–906
    [Google Scholar]
  24. Castellano F, Montcourrier P, Chavrier P. 2000. Membrane recruitment of Rac1 triggers phagocytosis. J. Cell Sci. 113:172955–61
    [Google Scholar]
  25. Cheadle L, Rivera SA, Phelps JS, Burkly LC, Lee WA et al. 2020. Sensory experience engages microglia to shape neural connectivity through a non-phagocytic mechanism. Neuron 108:3451–68.e9
    [Google Scholar]
  26. Chekeni FB, Elliott MR, Sandilos JK, Walk SF, Kinchen JM et al. 2010. Pannexin 1 channels mediate ‘find-me’ signal release and membrane permeability during apoptosis. Nat. Lett. 467:863–67
    [Google Scholar]
  27. Chen H-R, Sun Y-Y, Chen C-W, Kuo Y-M, Kuan IS et al. 2020. Fate mapping via CCR2-CreER mice reveals monocyte-to-microglia transition in development and neonatal stroke. Sci. Adv. 6:35eabb2119
    [Google Scholar]
  28. Chen J, Poskanzer KE, Freeman MR, Monk KR 2020. Live-imaging of astrocyte morphogenesis and function in zebrafish neural circuits. Nat. Neurosci. 23:101297–306
    [Google Scholar]
  29. Chen Z, Del Valle Rodriguez A, Li X, Erclik T, Fernandes VM, Desplan C. 2016. A unique class of neural progenitors in the Drosophila optic lobe generates both migrating neurons and glia. Cell Rep 15:4774–86
    [Google Scholar]
  30. Choi I, Zhang Y, Seegobin SP, Pruvost M, Wang Q et al. 2020. Microglia clear neuron-released α-synuclein via selective autophagy and prevent neurodegeneration. Nat. Commun. 11:11386
    [Google Scholar]
  31. Chung WS, Clarke LE, Wang GX, Stafford BK, Sher A et al. 2013. Astrocytes mediate synapse elimination through MEGF10 and MERTK pathways. Nature 504:7480394–400
    [Google Scholar]
  32. Cole LK, Ross LS 2001. Apoptosis in the developing zebrafish embryo. Dev. Biol. 240:1123–42
    [Google Scholar]
  33. Colón-Ramos DA, Margeta MA, Shen K 2007. Glia promote local synaptogenesis through UNC-6 (Netrin) signaling in C. elegans. Science 318:5847103–6
    [Google Scholar]
  34. Cronk JC, Filiano AJ, Louveau A, Marin I, Marsh R et al. 2018. Peripherally derived macrophages can engraft the brain independent of irradiation and maintain an identity distinct from microglia. J. Exp. Med. 215:61627–47
    [Google Scholar]
  35. Cugurra A, Mamuladze T, Rustenhoven J, Dykstra T, Beroshvili G et al. 2021. Skull and vertebral bone marrow are myeloid cell reservoirs for the meninges and CNS parenchyma. Science 373:6553eabf7844
    [Google Scholar]
  36. Cunha LD, Yang M, Carter R, Guy C, Harris L et al. 2018. LC3-associated phagocytosis in myeloid cells promotes tumor immune tolerance. Cell 175:2429–41.e16
    [Google Scholar]
  37. Cunningham CL, Martínez-Cerdeño V, Noctor SC. 2013. Microglia regulate the number of neural precursor cells in the developing cerebral cortex. J. Neurosci. 33:104216–33
    [Google Scholar]
  38. Damisah EC, Hill RA, Rai A, Chen F, Rothlin CV et al. 2020. Astrocytes and microglia play orchestrated roles and respect phagocytic territories during neuronal corpse removal in vivo. Sci. Adv. 6:26eaba3239
    [Google Scholar]
  39. Datta D, Arion D, Corradi JP, Lewis DA. 2015. Altered expression of CDC42 signaling pathway components in cortical layer 3 pyramidal cells in schizophrenia. Biol. Psychiatry. 78:11775–85
    [Google Scholar]
  40. Davidson AJ, Wood W. 2020. Macrophages use distinct actin regulators to switch engulfment strategies and ensure phagocytic plasticity in vivo. Cell Rep 31:8107692
    [Google Scholar]
  41. de la Rosa EJ, de Pablo F. 2000. Cell death in early neural development: beyond the neurotrophic theory. Trends Neurosci 23:10454–58
    [Google Scholar]
  42. Diaz-Aparicio I, Paris I, Sierra-Torre V, Plaza-Zabala A, Rodríguez-Iglesias N et al. 2020. Microglia actively remodels adult hippocampal neurogenesis through the phagocytosis secretome. J. Neurosci. 40:71453–82
    [Google Scholar]
  43. Doran AC, Yurdagul A, Tabas I 2020. Efferocytosis in health and disease. Nat. Rev. Immunol. 20:4254–67
    [Google Scholar]
  44. Dorman LC, Nguyen PT, Escoubas CC, Vainchtein ID, Xiao Y et al. 2021. A type I interferon response defines a conserved microglial state required for effective phagocytosis. bioRxiv 2021.04.29.441889. https://doi.org/10.1101/2021.04.29.441889
    [Crossref]
  45. Duncan ID, Radcliff AB 2016. Inherited and acquired disorders of myelin: the underlying myelin pathology. Exp. Neurol. 283:452–75
    [Google Scholar]
  46. Elliott MR, Chekeni FB, Trampont PC, Lazarowski ER, Kadl A et al. 2009. Nucleotides released by apoptotic cells act as a find-me signal to promote phagocytic clearance. Nature 461:282–86
    [Google Scholar]
  47. Elliott MR, Ravichandran KS. 2016. The dynamics of apoptotic cell clearance. Dev. Cell. 38:2147–60
    [Google Scholar]
  48. Evans IR, Ghai PA, Urbančič V, Tan K-L, Wood W 2013. SCAR/WAVE-mediated processing of engulfed apoptotic corpses is essential for effective macrophage migration in Drosophila. Cell Death Differ 20:5709–20
    [Google Scholar]
  49. Fadok VA, Voelker DR, Campbell PA, Cohen JJ, Bratton DL, Henson PM. 1992. Exposure of phosphatidylserine on the surface of apoptotic lymphocytes triggers specific recognition and removal by macrophages. J. Immunol. 148:72207–16
    [Google Scholar]
  50. Filiano AJ, Xu Y, Tustison NJ, Marsh RL, Baker W et al. 2016. Unexpected role of interferon-γ in regulating neuronal connectivity and social behaviour. Nature 535:7612425–29
    [Google Scholar]
  51. Fourgeaud L, Traves PG, Tufail Y, Leal-Bailey H, Lew ED et al. 2016. TAM receptors regulate multiple features of microglial physiology. Nature 532:7598240–44
    [Google Scholar]
  52. Galluzzi L, Vitale I, Aaronson SA, Abrams JM, Adam D et al. 2018. Molecular mechanisms of cell death: recommendations of the Nomenclature Committee on Cell Death 2018. Cell Death Differ 25:3486–541
    [Google Scholar]
  53. Gardai SJ, McPhillips KA, Frasch CS, Janssen WJ, Starefeldt A et al. 2005. Cell-surface calreticulin initiates clearance of viable or apoptotic cells through trans-activation of LRP on the phagocyte. Cell 123:2321–34
    [Google Scholar]
  54. Ginhoux F, Greter M, Leboeuf M, Nandi S, See P et al. 2010. Fate mapping analysis reveals that adult microglia derive from primitive macrophages. Science 701:841–45
    [Google Scholar]
  55. Glantz LA, Lewis DA. 2000. Decreased dendritic spine density on prefrontal cortical pyramidal neurons in schizophrenia. Arch. Gen. Psychiatry 57:165–73
    [Google Scholar]
  56. Hagemeyer N, Hanft KM, Akriditou MA, Unger N, Park ES et al. 2017. Microglia contribute to normal myelinogenesis and to oligodendrocyte progenitor maintenance during adulthood. Acta Neuropathol 134:3441–58
    [Google Scholar]
  57. Harris KL, Whitington PM. 2001. Pathfinding by sensory axons in Drosophila: substrates and choice points in early lch5 axon outgrowth. J. Neurobiol. 48:4243–55
    [Google Scholar]
  58. Healy LM, Perron G, Won S-Y, Michell-Robinson MA, Rezk A et al. 2016. MerTK is a functional regulator of myelin phagocytosis by human myeloid cells. J. Immunol. 196:83375–84
    [Google Scholar]
  59. Herbomel P, Thisse B, Thisse C 2001. Zebrafish early macrophages colonize cephalic mesenchyme and developing brain, retina, and epidermis through a M-CSF receptor-dependent invasive process. Dev. Biol. 238:2274–88
    [Google Scholar]
  60. Hofmann K. 2019. The evolutionary origins of programmed cell death signaling. Cold Spring Harb. Perspect. Biol. 12:9a036442
    [Google Scholar]
  61. Hoopfer ED, McLaughlin T, Watts RJ, Schuldiner O, O'Leary DDM, Luo L 2006. Wlds protection distinguishes axon degeneration following injury from naturally occurring developmental pruning. Neuron 50:6883–95
    [Google Scholar]
  62. Hoshiko M, Arnoux I, Avignone E, Yamamoto N, Audinat E 2012. Deficiency of the microglial receptor CX3CR1 impairs postnatal functional development of thalamocortical synapses in the barrel cortex. J. Neurosci. 32:4315106–11
    [Google Scholar]
  63. Huang Q, Cohen MA, Alsina FC, Devlin G, Garrett A et al. 2020. Intravital imaging of mouse embryos. Science 368:6487181–86
    [Google Scholar]
  64. Huang Y, Happonen KE, Burrola PG, O'Connor C, Hah N et al. 2021. Microglia use TAM receptors to detect and engulf amyloid β plaques. Nat. Immunol. 22:5586–94
    [Google Scholar]
  65. Hubel DH, Wiesel TN, LeVay S. 1977. Plasticity of ocular dominance columns in monkey striate cortex. Philos. Trans. R. Soc. Lond. B. Biol. Sci. 278:961377–409
    [Google Scholar]
  66. Hutsler JJ, Zhang H. 2010. Increased dendritic spine densities on cortical projection neurons in autism spectrum disorders. Brain Res 1309:83–94
    [Google Scholar]
  67. Huttenlocher PR, Dabholkar AS. 1997. Regional differences in synaptogenesis in human cerebral cortex. J. Comp. Neurol. 387:2167–78
    [Google Scholar]
  68. Innocenti GM, Price DJ. 2005. Exuberance in the development of cortical networks. Nat. Rev. Neurosci. 6:12955–65
    [Google Scholar]
  69. Iram T, Ramirez-Ortiz Z, Byrne MH, Coleman UA, Kingery ND et al. 2016. Megf10 is a receptor for C1Q that mediates clearance of apoptotic cells by astrocytes. J. Neurosci. 36:195185–92
    [Google Scholar]
  70. Jacobson GA, Rupprecht P, Friedrich RW 2018. Experience-dependent plasticity of odor representations in the telencephalon of zebrafish. Curr. Biol. 28:11–14.e3
    [Google Scholar]
  71. Keshavan MS, Anderson S, Pettergrew JW 1994. Is schizophrenia due to excessive synaptic pruning in the prefrontal cortex? The Feinberg hypothesis revisited. J. Psychiatr. Res. 28:3239–65
    [Google Scholar]
  72. Kim H, Shin J, Kim S, Poling J, Park HC, Appel B. 2008. Notch-regulated oligodendrocyte specification from radial glia in the spinal cord of zebrafish embryos. Dev. Dyn. 237:82081–89
    [Google Scholar]
  73. Kim HJ, Cho MH, Shim WH, Kim JK, Jeon EY et al. 2017. Deficient autophagy in microglia impairs synaptic pruning and causes social behavioral defects. Mol. Psychiatry 22:111576–84
    [Google Scholar]
  74. Kinchen JM, Ravichandran KS. 2008. Phagosome maturation: going through the acid test. Nat. Rev. Mol. Cell Biol. 9:781–95
    [Google Scholar]
  75. Konishi H, Kiyama H. 2018. Microglial TREM2/DAP12 signaling: a double-edged sword in neural diseases. Front. . Cell. Neurosci. 12:206
    [Google Scholar]
  76. Konishi H, Okamoto T, Hara Y, Komine O, Tamada H et al. 2020. Astrocytic phagocytosis is a compensatory mechanism for microglial dysfunction. EMBO J 39:22e104464
    [Google Scholar]
  77. Lago-Baldaia I, Fernandes VM, Ackerman SD. 2020. More than mortar: glia as architects of nervous system development and disease. Front. Cell Dev. Biol. 8:611269
    [Google Scholar]
  78. Lammert CR, Frost EL, Bellinger CE, Bolte AC, McKee CA et al. 2020. AIM2 inflammasome surveillance of DNA damage shapes neurodevelopment. Nature 580:7805647–52
    [Google Scholar]
  79. Lampron A, Larochelle A, Laflamme N, Préfontaine P, Plante MM et al. 2015. Inefficient clearance of myelin debris by microglia impairs remyelinating processes. J. Exp. Med. 212:4481–95
    [Google Scholar]
  80. Lee E, Chung WS 2019. Glial control of synapse number in healthy and diseased brain. Front. . Cell. Neurosci. 13:42
    [Google Scholar]
  81. Lee J-H, Kim J, Noh S, Lee H, Lee S et al. 2021. Astrocytes phagocytose adult hippocampal synapses for circuit homeostasis. Nature 590:7847612–17
    [Google Scholar]
  82. Lemke G. 2013. Biology of the TAM receptors. Cold Spring Harb. Perspect. Biol. 5:11a009076
    [Google Scholar]
  83. Leonard JR, Klocke BJ, D'sa C, Flavell RA, Roth KA 2002. Strain-dependent neurodevelopmental abnormalities in caspase-3-deficient mice. J. Neuropathol. Exp. Neurol. 61:8673–77
    [Google Scholar]
  84. Leonardi-Essmann F, Emig M, Kitamura Y, Spanagel R, Gebicke-Haerter PJ. 2005. Fractalkine-upregulated milk-fat globule EGF factor-8 protein in cultured rat microglia. J. Neuroimmunol. 160:1–292–101
    [Google Scholar]
  85. Lewis JD, Theilmann RJ, Fonov V, Bellec P, Lincoln A et al. 2013a. Callosal fiber length and interhemispheric connectivity in adults with autism: brain overgrowth and underconnectivity. Hum. Brain Mapp. 34:71685–95
    [Google Scholar]
  86. Lewis JD, Theilmann RJ, Townsend J, Evans AC 2013b. Network efficiency in autism spectrum disorder and its relation to brain overgrowth. Front. Hum. Neurosci. 7:845
    [Google Scholar]
  87. Li J, Brickler T, Banuelos A, Marjon K, Shcherbina A et al. 2021. Overexpression of CD47 is associated with brain overgrowth and 16p11.2 deletion syndrome. PNAS 118:15e2005483118
    [Google Scholar]
  88. Linsley JW, Shah K, Castello N, Chan M, Haddad D et al. 2021. Genetically encoded cell-death indicators (GEDI) to detect an early irreversible commitment to neurodegeneration. Nat. Commun. 12:15284
    [Google Scholar]
  89. Louveau A, Smirnov I, Keyes TJ, Eccles JD, Rouhani SJ et al. 2015. Structural and functional features of central nervous system lymphatic vessels. Nature 523:7560337–41
    [Google Scholar]
  90. Lu Z, Elliott MR, Chen Y, Walsh JT, Klibanov AL et al. 2011. Phagocytic activity of neuronal progenitors regulates adult neurogenesis. Nat. Cell Biol. 13:91076–84
    [Google Scholar]
  91. Man SM, Karki R, Kanneganti T-D. 2017. Molecular mechanisms and functions of pyroptosis, inflammatory caspases and inflammasomes in infectious diseases. Immunol. Rev. 277:161–75
    [Google Scholar]
  92. Marín-Teva JL, Dusart I, Colin C, Gervais A, Van Rooijen N, Mallat M. 2004. Microglia promote the death of developing Purkinje cells. Neuron 41:4535–47
    [Google Scholar]
  93. Martinez J, Malireddi RKS, Lu Q, Cunha L, Pelletier S et al. 2015. Molecular characterization of LC3-associated phagocytosis reveals distinct roles for Rubicon, NOX2 and autophagy proteins. Nat. Cell Biol. 17:7893–906
    [Google Scholar]
  94. Massa V, Savery D, Ybot-Gonzalez P, Ferraro E, Rongvaux A et al. 2009. Apoptosis is not required for mammalian neural tube closure. PNAS 106:208233–38
    [Google Scholar]
  95. Masuda T, Sankowski R, Staszewski O, Böttcher C, Amann L et al. 2019. Spatial and temporal heterogeneity of mouse and human microglia at single-cell resolution. Nature 566:7744388–92
    [Google Scholar]
  96. Mayer CT, Gazumyan A, Kara EE, Gitlin AD, Golijanin J et al. 2017. The microanatomic segregation of selection by apoptosis in the germinal center. Science 358:6360eaao2602
    [Google Scholar]
  97. Mazaheri F, Breus O, Durdu S, Haas P, Wittbrodt J et al. 2014. Distinct roles for BAI1 and TIM-4 in the engulfment of dying neurons by microglia. Nat. Commun. 5:4046
    [Google Scholar]
  98. McDole K, Guignard L, Amat F, Berger A, Malandain G et al. 2018. In toto imaging and reconstruction of post-implantation mouse development at the single-cell level. Cell 175:3859–76.e33
    [Google Scholar]
  99. McKay SE, Oppenheim RW. 1991. Lack of evidence for cell death among avian spinal cord interneurons during normal development and following removal of targets and afferents. J. Neurobiol. 22:7721–33
    [Google Scholar]
  100. McMahon EJ, Bailey SL, Castenada CV, Waldner H, Miller SD. 2005. Epitope spreading initiates in the CNS in two mouse models of multiple sclerosis. Nat. Med. 11:3335–39
    [Google Scholar]
  101. Medina CB, Mehrotra P, Arandjelovic S, Perry JSA, Guo Y et al. 2020. Metabolites released from apoptotic cells act as tissue messengers. Nature 580:130–35
    [Google Scholar]
  102. Miller FD, Gauthier AS. 2007. Timing is everything: making neurons versus glia in the developing cortex. Neuron 54:3357–69
    [Google Scholar]
  103. Miyamoto A, Wake H, Ishikawa AW, Eto K, Shibata K et al. 2016. Microglia contact induces synapse formation in developing somatosensory cortex. Nat. Commun. 7:12540
    [Google Scholar]
  104. Miyares RL, Lee T. 2019. Temporal control of Drosophila central nervous system development. Curr. Opin. Neurobiol. 56:24–32
    [Google Scholar]
  105. Morioka S, Maueröder C, Ravichandran KS. 2019. Living on the edge: efferocytosis at the interface of homeostasis and pathology. Immunity 50:51149–62
    [Google Scholar]
  106. Morioka S, Perry JSA, Raymond MH, Medina CB, Zhu Y et al. 2018. Efferocytosis induces a novel SLC program to promote glucose uptake and lactate release. Nature 563:7733714–18
    [Google Scholar]
  107. Mrdjen D, Pavlovic A, Hartmann FJ, Schreiner B, Utz SG et al. 2018. High-dimensional single-cell mapping of central nervous system immune cells reveals distinct myeloid subsets in health, aging, and disease. Immunity 48:2380–95
    [Google Scholar]
  108. Müller C, Finnemann SC 2020. RPE phagocytosis. Retinal Pigment Epithelium in Health and Disease A Klettner, S Dithmar 47–64 Cham, Switz: Springer
    [Google Scholar]
  109. Muthukumar AK, Stork T, Freeman MR. 2014. Activity-dependent regulation of astrocyte GAT levels during synaptogenesis. Nat. Neurosci. 17:101340–50
    [Google Scholar]
  110. Nagata S, Hanayama R, Kawane K. 2010. Autoimmunity and the clearance of dead cells. Cell 140:5619–30
    [Google Scholar]
  111. Nelson SB, Valakh V. 2015. Excitatory/inhibitory balance and circuit homeostasis in autism spectrum disorders. Neuron 87:4684–98
    [Google Scholar]
  112. Nemes-Baran AD, White DR, DeSilva TM 2020. Fractalkine-dependent microglial pruning of viable oligodendrocyte progenitor cells regulates myelination. Cell Rep 32:7108047
    [Google Scholar]
  113. Nikić I, Merkler D, Sorbara C, Brinkoetter M, Kreutzfeldt M et al. 2011. A reversible form of axon damage in experimental autoimmune encephalomyelitis and multiple sclerosis. Nat. Med. 17:4495–99
    [Google Scholar]
  114. Nimmerjahn A, Kirchhoff F, Helmchen F. 2005. Resting microglial cells are highly dynamic surveillants of brain parenchyma in vivo. Science 308:57261314–18
    [Google Scholar]
  115. Noelia A-G, Bensinger SJ, Hong C, Beceiro S, Bradley MN et al. 2009. Apoptotic cells promote their own clearance and immune tolerance through activation of the nuclear receptor LXR. Immunity 31:2245–58
    [Google Scholar]
  116. Oliveira da Rocha GH, Loiola RA, Pantaleão LDN, Reutelingsperger C, Solito E, Poliselli Farsky SH. 2019. Control of expression and activity of peroxisome proliferated-activated receptor γ by Annexin A1 on microglia during efferocytosis. Cell Biochem. Funct. 37:7560–68
    [Google Scholar]
  117. Paloneva J, Manninen T, Christman G, Hovanes K, Mandelin J et al. 2002. Mutations in two genes encoding different subunits of a receptor signaling complex result in an identical disease phenotype. Am. J. Hum. Genet. 71:3656–62
    [Google Scholar]
  118. Panaretakis T, Kepp O, Brockmeier U, Tesniere A, Bjorklund A et al. 2009. Mechanisms of pre-apoptotic calreticulin exposure in immunogenic cell death. EMBO J 28:5578–90
    [Google Scholar]
  119. Paolicelli RC, Ferretti MT. 2017. Function and dysfunction of microglia during brain development: consequences for synapses and neural circuits. Front. Synaptic Neurosci. 9:9
    [Google Scholar]
  120. Park D, Han CZ, Elliott MR, Kinchen JM, Trampont PC et al. 2011. Continued clearance of apoptotic cells critically depends on the phagocyte Ucp2 protein. Nature 477:7363220–24
    [Google Scholar]
  121. Park D, Tosello-Trampont AC, Elliott MR, Lu M, Haney LB et al. 2007. BAI1 is an engulfment receptor for apoptotic cells upstream of the ELMO/Dock180/Rac module. Nature 450:7168430–34
    [Google Scholar]
  122. Parkhurst CN, Yang G, Ninan I, Savas JN, Yates JR et al. 2013. Microglia promote learning-dependent synapse formation through brain-derived neurotrophic factor. Cell 155:71596–609
    [Google Scholar]
  123. Parnaik R, Raff MC, Scholes J. 2000. Differences between the clearance of apoptotic cells by professional and non-professional phagocytes. Curr. Biol. 10:14857–60
    [Google Scholar]
  124. Pathak A, Clark S, Bronfman FC, Deppmann CD, Carter BD. 2021. Long-distance regressive signaling in neural development and disease. Wiley Interdiscip. Rev. Dev. Biol. 10:e382
    [Google Scholar]
  125. Penberthy KK, Lysiak JJ, Ravichandran KS. 2018. Rethinking phagocytes: clues from the retina and testes. Trends Cell Biol 28:4317–27
    [Google Scholar]
  126. Pereanu W, Shy D, Hartenstein V. 2005. Morphogenesis and proliferation of the larval brain glia in Drosophila. Dev. Biol. 283:1191–203
    [Google Scholar]
  127. Pérez-Garijo A, Fuchs Y, Steller H. 2013. Apoptotic cells can induce non-autonomous apoptosis through the TNF pathway. eLife 2:e01004
    [Google Scholar]
  128. Pinto-Teixeira F, Konstantinides N, Desplan C 2016. Programmed cell death acts at different stages of Drosophila neurodevelopment to shape the central nervous system. FEBS Lett 590:2435–53
    [Google Scholar]
  129. Podleśny-Drabiniok A, Marcora E, Goate AM 2020. Microglial phagocytosis: a disease-associated process emerging from Alzheimer's disease genetics. Trends Neurosci 43:12965–79
    [Google Scholar]
  130. Poon IK, Chiu Y-HH, Armstrong AJ, Kinchen JM, Juncadella IJ et al. 2014. Unexpected link between an antibiotic, pannexin channels and apoptosis. Nature 507:7492329–34
    [Google Scholar]
  131. Pop S, Chen CL, Sproston CJ, Kondo S, Ramdya P, Williams DW. 2020. Extensive and diverse patterns of cell death sculpt neural networks in insects. eLife 9:e59566
    [Google Scholar]
  132. Prasad D, Rothlin C, Burrola P, Tal B-C, Lu Q et al. 2006. TAM receptor function in the retinal pigment epithelium. Mol. Cell. Neurosci. 33:196–108
    [Google Scholar]
  133. Pressler R, Auvin S. 2013. Comparison of brain maturation among species: an example in translational research suggesting the possible use of bumetanide in newborn. Front. Neurol. 4:36
    [Google Scholar]
  134. Pringle NP, Richardson WD. 1993. A singularity of PDGF alpha-receptor expression in the dorsoventral axis of the neural tube may define the origin of the oligodendrocyte lineage. Development 117:2525–33
    [Google Scholar]
  135. Rapin I. 1997. Autism. N. Engl. J. Med. 337:297–104
    [Google Scholar]
  136. Ravanelli AM, Appel B. 2015. Motor neurons and oligodendrocytes arise from distinct cell lineages by progenitor recruitment. Genes Dev 29:232504–15
    [Google Scholar]
  137. Raymond MH, Davidson AJ, Shen Yi, Tudor DR, Lucas CDet al 2022. Live cell tracking of macrophage efferocytosis during Drosophila embryo development in vivo. Science In press
    [Google Scholar]
  138. Reddien PW, Cameron S, Horvitz HR 2001. Phagocytosis promotes programmed cell death in C. elegans. Nature 412:6843198–202
    [Google Scholar]
  139. Riccomagno MM, Kolodkin AL. 2015. Sculpting neural circuits by axon and dendrite pruning. Annu. Rev. Cell Dev. Biol. 31:779–805
    [Google Scholar]
  140. Rocha M, Singh N, Ahsan K, Beiriger A, Prince VE. 2020. Neural crest development: insights from the zebrafish. Dev. Dyn. 249:188–111
    [Google Scholar]
  141. Rossi F, Casano AM, Henke K, Richter K, Peri F. 2015. The SLC7A7 transporter identifies microglial precursors prior to entry into the brain. Cell Rep 11:71008–17
    [Google Scholar]
  142. Ruggiero L, Connor MP, Chen J, Langen R, Finnemann SC 2012. Diurnal, localized exposure of phosphatidylserine by rod outer segment tips in wild-type but not Itgb5−/− or Mfge8−/− mouse retina. PNAS 109:218145–48
    [Google Scholar]
  143. Sapar ML, Ji H, Wang B, Poe AR, Dubey K et al. 2018. Phosphatidylserine externalization results from and causes neurite degeneration in Drosophila. Cell Rep 24:92273–86
    [Google Scholar]
  144. Satoh JI, Tabunoki H, Ishida T, Yagishita S, Jinnai K et al. 2012. Phosphorylated Syk expression is enhanced in Nasu-Hakola disease brains. Neuropathology 32:2149–57
    [Google Scholar]
  145. Saunders JW. 1966. Death in embryonic systems. Science 154:3749604–12
    [Google Scholar]
  146. Schafer DP, Lehrman EK, Kautzman AG, Koyama R, Mardinly AR et al. 2012. Microglia sculpt postnatal neural circuits in an activity and complement-dependent manner. Neuron 74:4691–705
    [Google Scholar]
  147. Schafflick D, Wolbert J, Heming M, Thomas C, Hartlehnert M et al. 2021. Single-cell profiling of CNS border compartment leukocytes reveals that B cells and their progenitors reside in non-diseased meninges. Nat. Neurosci. 24:1225–34
    [Google Scholar]
  148. Schepanski S, Buss C, Hanganu-Opatz IL, Arck PC. 2018. Prenatal immune and endocrine modulators of offspring's brain development and cognitive functions later in life. Front. Immunol. 9:2186
    [Google Scholar]
  149. Schmidt R, Strähle U, Scholpp S. 2013. Neurogenesis in zebrafish—from embryo to adult. Neural Dev 8:3
    [Google Scholar]
  150. Segawa K, Kurata S, Yanagihashi Y, Brummelkamp TR, Matsuda F, Nagata S 2014. Caspase-mediated cleavage of phospholipid flippase for apoptotic phosphatidylserine exposure. Science 344:61881164–68
    [Google Scholar]
  151. Selemon LD, Zecevic N. 2015. Schizophrenia: a tale of two critical periods for prefrontal cortical development. Transl. Psychiatry 5:8e623
    [Google Scholar]
  152. Shao Z, Watanabe S, Christensen R, Jorgensen EM, Colón-Ramos DA. 2013. Synapse location during growth depends on glia location. Cell 154:2337–50
    [Google Scholar]
  153. Shen K, Sidik H, Talbot WS. 2016. The Rag-Ragulator complex regulates lysosome function and phagocytic flux in microglia. Cell Rep 14:3547–59
    [Google Scholar]
  154. Shen Y, Rosendale M, Campbell RE, Perrais D. 2014. pHuji, a pH-sensitive red fluorescent protein for imaging of exo- and endocytosis. J. Cell Biol. 207:3419–32
    [Google Scholar]
  155. Sierra A, Encinas JM, Deudero JJP, Chancey JH, Enikolopov G et al. 2010. Microglia shape adult hippocampal neurogenesis through apoptosis-coupled phagocytosis. Cell Stem Cell 7:4483–95
    [Google Scholar]
  156. Silbereis JC, Pochareddy S, Zhu Y, Li M, Sestan N 2016. The cellular and molecular landscapes of the developing human central nervous system. Neuron 89:2248–68
    [Google Scholar]
  157. Singh K, Singh RN. 1999. Metamorphosis of the central nervous system of Drosophila melanogaster Meigen (Diptera: Drosophilidae) during pupation. J. Biosci. 24:3345–60
    [Google Scholar]
  158. Southwell DG, Paredes MF, Galvao RP, Jones DL, Froemke RC et al. 2012. Intrinsically determined cell death of developing cortical interneurons. Nature 491:7422109–13
    [Google Scholar]
  159. Spead O, Verreet T, Donelson CJ, Poulain FE. 2018. Characterization of the caspase family in zebrafish. PLOS ONE 13:5e0197966
    [Google Scholar]
  160. Squarzoni P, Oller G, Hoeffel G, Pont-Lezica L, Rostaing P et al. 2014. Microglia modulate wiring of the embryonic forebrain. Cell Rep 8:51271–79
    [Google Scholar]
  161. Stevens B, Allen NJ, Vazquez LE, Howell GR, Christopherson KS et al. 2007. The classical complement cascade mediates CNS synapse elimination. Cell 131:61164–78
    [Google Scholar]
  162. Tang G, Gudsnuk K, Kuo SH, Cotrina ML, Rosoklija G et al. 2014. Loss of mTOR-dependent macroautophagy causes autistic-like synaptic pruning deficits. Neuron 83:51131–43
    [Google Scholar]
  163. Tasdemir-Yilmaz OE, Freeman MR. 2013. Astrocytes engage unique molecular programs to engulf pruned neuronal debris from distinct subsets of neurons. Genes Dev 28:120–33
    [Google Scholar]
  164. Tebbenkamp ATN, Willsey AJ, State MW, Šestan N. 2014. The developmental transcriptome of the human brain. Curr. Opin. Neurol. 27:2149–56
    [Google Scholar]
  165. Tetreault NA, Hakeem AY, Jiang S, Williams BA, Allman E et al. 2012. Microglia in the cerebral cortex in autism. J. Autism Dev. Disord. 42:122569–84
    [Google Scholar]
  166. Tremblay , Lowery RL, Majewska AK. 2010. Microglial interactions with synapses are modulated by visual experience. PLOS Biol 8:11e1000527
    [Google Scholar]
  167. Truman LA, Ford CA, Pasikowska M, Pound JD, Wilkinson SJ et al. 2008. CX3CL1/fractalkine is released from apoptotic lymphocytes to stimulate macrophage chemotaxis. Blood 112:135026–36
    [Google Scholar]
  168. Tsai H-H, Li H, Fuentealba LC, Molofsky AV, Raquel T-M et al. 2012. Regional astrocyte allocation regulates CNS synaptogenesis and repair. Science 337:6092358–62
    [Google Scholar]
  169. Ueno M, Fujita Y, Tanaka T, Nakamura Y, Kikuta J et al. 2013. Layer V cortical neurons require microglial support for survival during postnatal development. Nat. Neurosci. 16:5543–51
    [Google Scholar]
  170. van Ham TJ, Mapes J, Kokel D, Peterson RT 2010. Live imaging of apoptotic cells in zebrafish. FASEB J 24:114336–42
    [Google Scholar]
  171. VanRyzin JW, Marquardt AE, Argue KJ, Vecchiarelli HA, Ashton SE et al. 2019. Microglial phagocytosis of newborn cells is induced by endocannabinoids and sculpts sex differences in juvenile rat social play. Neuron 102:2435–49.e6
    [Google Scholar]
  172. Villani A, Benjaminsen J, Moritz C, Henke K, Hartmann J et al. 2019. Clearance by microglia depends on packaging of phagosomes into a unique cellular compartment. Dev. Cell. 49:177–88.e7
    [Google Scholar]
  173. Waites CL, Craig AM, Garner CC 2005. Mechanisms of vertebrate synaptogenesis. Annu. Rev. Neurosci. 28:251–74
    [Google Scholar]
  174. Wang C, Yue H, Hu Z, Shen Y, Ma J et al. 2020. Microglia mediate forgetting via complement-dependent synaptic elimination. Science 367:6478688–94
    [Google Scholar]
  175. Wang J, Wang J, Wang J, Yang B, Weng Q, He Q 2019. Targeting microglia and macrophages: a potential treatment strategy for multiple sclerosis. Front. Pharmacol. 10:286
    [Google Scholar]
  176. Wang Y, Subramanian M, Yurdagul A Jr., Barbosa-Lorenzi VC, Cai B et al. 2017. Mitochondrial fission promotes the continued clearance of apoptotic cells by macrophages. Cell 171:2331–45.e22
    [Google Scholar]
  177. Weavers H, Evans IR, Martin P, Wood W 2016. Corpse engulfment generates a molecular memory that primes the macrophage inflammatory response. Cell 165:71658–71
    [Google Scholar]
  178. Weil M, Jacobson MD, Raff MC. 1997. Is programmed cell death required for neural tube closure?. Curr. Biol. 7:4281–84
    [Google Scholar]
  179. Weinhard L, Bartolomei G, Bolasco G, Machado P, Schieber NL et al. 2018. Microglia remodel synapses by presynaptic trogocytosis and spine head filopodia induction. Nat. Commun. 9:11228
    [Google Scholar]
  180. Werneburg S, Jung J, Kunjamma RB, Ha SK, Luciano NJ et al. 2020. Targeted complement inhibition at synapses prevents microglial synaptic engulfment and synapse loss in demyelinating disease. Immunity 52:1167–82.e7
    [Google Scholar]
  181. Wicki-Stordeur LE, Sanchez-Arias JC, Dhaliwal J, Carmona-Wagner EO, Shestopalov VI et al. 2016. Pannexin 1 differentially affects neural precursor cell maintenance in the ventricular zone and peri-infarct cortex. J. Neurosci. 36:41203–10
    [Google Scholar]
  182. Wilton DK, Dissing-Olesen L, Stevens B. 2019. Neuron-glia signaling in synapse elimination. Annu. Rev. Neurosci. 42:107–27
    [Google Scholar]
  183. Wood W, Martin P 2017. Macrophage functions in tissue patterning and disease: new insights from the fly. Dev. Cell. 40:3221–33
    [Google Scholar]
  184. Wood W, Turmaine M, Weber R, Camp V, Maki RA et al. 2000. Mesenchymal cells engulf and clear apoptotic footplate cells in macrophageless PU.1 null mouse embryos. Development 127:245245–52
    [Google Scholar]
  185. Xie J, Jusuf PR, Bui BV, Goodbourn PT. 2019. Experience-dependent development of visual sensitivity in larval zebrafish. Sci. Rep. 9:18931
    [Google Scholar]
  186. Yamaguchi Y, Miura M. 2015. Programmed cell death in neurodevelopment. Dev. Cell. 32:4478–90
    [Google Scholar]
  187. Yurdagul A Jr., Subramanian M, Wang X, Crown SB, Ilkayeva OR et al. 2020. Macrophage metabolism of apoptotic cell-derived arginine promotes continual efferocytosis and resolution of injury. Cell Metab 31:3518–33
    [Google Scholar]
  188. Zeutzius I, Rahmann H. 1980. Quantitative ultrastructural investigations on synaptogenesis in the cerebellum and the optic tectum of light-reared and dark-reared rainbow trout (Salmo gairdneri Rich.). Differentiation 17:1–3181–86
    [Google Scholar]
  189. Zhu Y, Crowley SC, Latimer AJ, Lewis GM, Nash R, Kucenas S. 2019. Migratory neural crest cells phagocytose dead cells in the developing nervous system. Cell 179:174–89.e10
    [Google Scholar]
/content/journals/10.1146/annurev-neuro-110920-022431
Loading
/content/journals/10.1146/annurev-neuro-110920-022431
Loading

Data & Media loading...

Supplemental Material

Supplementary Data

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error