1932

Abstract

The neocortex is a complex neurobiological system with many interacting regions. How these regions work together to subserve flexible behavior and cognition has become increasingly amenable to rigorous research. Here, I review recent experimental and theoretical work on the modus operandi of a multiregional cortex. These studies revealed several general principles for the neocortical interareal connectivity, low-dimensional macroscopic gradients of biological properties across cortical areas, and a hierarchy of timescales for information processing. Theoretical work suggests testable predictions regarding differential excitation and inhibition along feedforward and feedback pathways in the cortical hierarchy. Furthermore, modeling of distributed working memory and simple decision-making has given rise to a novel mathematical concept, dubbed bifurcation in space, that potentially explains how different cortical areas, with a canonical circuit organization but gradients of biological heterogeneities, are able to subserve their respective (e.g., sensory coding versus executive control) functions in a modularly organized brain.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-neuro-110920-035434
2022-07-08
2024-12-10
Loading full text...

Full text loading...

/deliver/fulltext/neuro/45/1/annurev-neuro-110920-035434.html?itemId=/content/journals/10.1146/annurev-neuro-110920-035434&mimeType=html&fmt=ahah

Literature Cited

  1. Abbott LF, Bock DD, Callaway EM, Denk W, Dulac C, et al. 2020.. The mind of a mouse. . Cell 182::137276
    [Google Scholar]
  2. Ahrens MB, Li JM, Orger MB, Robson DN, Schier AF, et al. 2012.. Brain-wide neuronal dynamics during motor adaptation in zebrafish. . Nature 485::47177
    [Google Scholar]
  3. Amit D. 1995.. The Hebbian paradigm reintegrated: local reverberations as internal representations. . Behav. Brain Sci. 18::61725
    [Google Scholar]
  4. Amunts K, Zilles K. 2015.. Architectonic mapping of the human brain beyond Brodmann. . Neuron 88::1086107
    [Google Scholar]
  5. Ardid S, Wang X-J, Compte A. 2007.. An integrated microcircuit model of attentional processing in the neocortex. . J. Neurosci. 27::848695
    [Google Scholar]
  6. Arnsten AFT. 1998.. Catecholamine modulation of prefrontal cortical cognitive function. . Trends Cogn. Sci. 2::43647
    [Google Scholar]
  7. Arnsten AFT, Cai JX, Murphy BL, Goldman-Rakic PS. 1994.. Dopamine D1 receptor mechanisms in the cognitive performance of young adult and aged monkeys. . Psychopharmacology 116::14351
    [Google Scholar]
  8. Arnsten AFT, Jin LE, Gamo NJ, Ramos B, Paspalas CD, et al. 2019.. Role of KCNQ potassium channels in stress-induced deficit of working memory. . Neurobiol. Stress 11::100187
    [Google Scholar]
  9. Baars BJ. 1988.. A Cognitive Theory of Consciousness. Cambridge, UK:: Cambridge Univ. Press
    [Google Scholar]
  10. Baddeley A. 1987.. Working Memory. Oxford, UK:: Oxford Univ. Press
    [Google Scholar]
  11. Baldassano C, Chen J, Zadbood A, Pillow JW, Hasson U, Norman KA. 2017.. Discovering event structure in continuous narrative perception and memory. . Neuron 95::70921
    [Google Scholar]
  12. Barbas H. 2015.. General cortical and special prefrontal connections: principles from structure to function. . Annu. Rev. Neurosci. 38::26989
    [Google Scholar]
  13. Baria AT, Maniscalco B, He BJ. 2017.. Initial-state-dependent, robust, transient neural dynamics encode conscious visual perception. . PLOS Comput. Biol. 13::e1005806
    [Google Scholar]
  14. Barthélemy M. 2011.. Spatial networks. . Phys. Rep. 499::1101
    [Google Scholar]
  15. Bassett DS, Sporns O. 2017.. Network neuroscience. . Nat. Neurosci. 20::35364
    [Google Scholar]
  16. Bastos AM, Usrey WM, Adams RA, Mangun GR, Fries P, Friston KJ. 2012.. Canonical microcircuits for predictive coding. . Neuron 76::695711
    [Google Scholar]
  17. Bastos AM, Vezoli J, Bosman CA, Schoffelen JM, Oostenveld R, et al. 2015.. Visual areas exert feedforward and feedback influences through distinct frequency channels. . Neuron 85::390401
    [Google Scholar]
  18. Bernhardt BC, Smallwood J, Keilholz S, Margulies DS. 2022.. Gradients in brain organization. . NeuroImage 251::18987
    [Google Scholar]
  19. Binzegger T, Douglas RJ, Martin KAC. 2009.. Topology and dynamics of the canonical circuit of cat V1. . Neural. Netw. 22::107178
    [Google Scholar]
  20. Block N. 2019.. What is wrong with the no-report paradigm and how to fix it. . Trends Cogn. Sci. 23::100313
    [Google Scholar]
  21. Bohland JW, Wu C, Barbas H, Bokil H, Bota M, et al. 2009.. A proposal for a coordinated effort for the determination of brainwide neuroanatomical connectivity in model organisms at a mesoscopic scale. . PLOS Comput. Biol. 5::e1000334
    [Google Scholar]
  22. Breakspear M. 2017.. Dynamic models of large-scale brain activity. . Nat. Neurosci. 20::34052
    [Google Scholar]
  23. Brozoski TJ, Brown RM, Rosvold HE, Goldman PS. 1979.. Cognitive deficit caused by regional depletion of dopamine in prefrontal cortex of rhesus monkey. . Science 205::92932
    [Google Scholar]
  24. Brunel N, Wang X-J. 2001.. Effects of neuromodulation in a cortical network model of object working memory dominated by recurrent inhibition. . J. Comput. Neurosci. 11::6385
    [Google Scholar]
  25. Buffalo EA, Fries P, Landman R, Buschman TJ, Desimone R. 2011.. Laminar differences in gamma and alpha coherence in the ventral stream. . PNAS 108::1126267
    [Google Scholar]
  26. Burt JB, Demirtaş M, Eckner WJ, Navejar NM, Ji JL, et al. 2018.. Hierarchy of transcriptomic specialization across human cortex captured by structural neuroimaging topography. . Nat. Neurosci. 21::125159
    [Google Scholar]
  27. Buschman T, Miller E. 2007.. Top-down versus bottom-up control of attention in the prefrontal and posterior parietal cortices. . Science 315::186062
    [Google Scholar]
  28. Cardin JA. 2018.. Inhibitory interneurons regulate temporal precision and correlations in cortical circuits. . Trends Neurosci. 41::689700
    [Google Scholar]
  29. Cavanagh SE, Towers JP, Wallis JD, Hunt LT, Kennerley SW. 2018.. Reconciling persistent and dynamic hypotheses of working memory coding in prefrontal cortex. . Nat. Commun. 9::3498
    [Google Scholar]
  30. Chaudhuri R, Bernacchia A, Wang X-J. 2014.. A diversity of localized timescales in network activity. . eLife 3::e01239
    [Google Scholar]
  31. Chaudhuri R, Knoblauch K, Gariel MA, Kennedy H, Wang X-J. 2015.. A large-scale circuit mechanism for hierarchical dynamical processing in the primate cortex. . Neuron 88::41931
    [Google Scholar]
  32. Chien H-YS, Honey CJ. 2020.. Constructing and forgetting temporal context in the human cerebral cortex. . Neuron 106::67586
    [Google Scholar]
  33. Christophel TB, Klink PC, Spitzer B, Roelfsema PR, Haynes JD. 2017.. The distributed nature of working memory. . Trends Cogn. Sci. 21::11124
    [Google Scholar]
  34. Constantinidis C, Funahashi S, Lee D, Murray JD, Qi XL, et al. 2018.. Persistent spiking activity underlies working memory. . J. Neurosci. 38:: 702028
    [Google Scholar]
  35. Crick F, Koch C. 1990.. Towards a neurobiological theory of consciousness. . Semin. Neurosci. 2::26375
    [Google Scholar]
  36. de Lafuente V, Romo R. 2005.. Neuronal correlates of subjective sensory experience. . Nat. Neurosci. 8::1698703
    [Google Scholar]
  37. Deco G, Jirsa VK. 2012.. Ongoing cortical activity at rest: criticality, multistability, and ghost attractors. . J. Neurosci. 32::336675
    [Google Scholar]
  38. Dehaene S. 2014.. Consciousness and the Brain: Deciphering How the Brain Codes Our Thoughts. New York:: Penguin
    [Google Scholar]
  39. Dehaene S, Changeux JP, Naccache L, Sackur J, Sergent C. 2006.. Conscious, preconscious, and subliminal processing: a testable taxonomy. . Trends Cogn. Sci. 10::20411
    [Google Scholar]
  40. Dehaene S, Sergent C, Changeux JP. 2003.. A neuronal network model linking subjective reports and objective physiological data during conscious perception. . PNAS 100::852025
    [Google Scholar]
  41. Del Cul A, Baillet S, Dehaene S. 2007.. Brain dynamics underlying the nonlinear threshold for access to consciousness. . PLOS Biol. 5::e260
    [Google Scholar]
  42. Demirtąs M, Burt JB, Helmer M, Ji JL, Adkinson BD, et al. 2019.. Hierarchical heterogeneity across human cortex shapes large-scale neural dynamics. . Neuron 101::118194
    [Google Scholar]
  43. DeNardo LA, Berns DS, DeLoach K, Luo L. 2015.. Connectivity of mouse somatosensory and prefrontal cortex examined with trans-synaptic tracing. . Nat. Neurosci. 18::168797
    [Google Scholar]
  44. Desimone R, Duncan J. 1995.. Neural mechanisms of selective visual attention. . Annu. Rev. Neurosci. 18::193222
    [Google Scholar]
  45. Diesmann M, Gewaltig M, Aertsen A. 1999.. Stable propagation of synchronous spiking in cortical neural networks. . Nature 402::52933
    [Google Scholar]
  46. Donahue CJ, Sotiropoulos SN, Jbabdi S, Hernandez-Fernandez M, Behrens TE, et al. 2016.. Using diffusion tractography to predict cortical connection strength and distance: a quantitative comparison with tracers in the monkey. . J. Neurosci. 36::675870
    [Google Scholar]
  47. Dorkenwald S, McKellar CE, Macrina T, Kemnitz N, Lee K, et al. 2022.. FlyWire: online community for whole-brain connectomics. . Nat. Methods 19::11928
    [Google Scholar]
  48. Dotson NM, Hoffman SJ, Goodell B, Gray CM. 2017.. A large-scale semi-chronic microdrive recording system for non-human primates. . Neuron 96::76982
    [Google Scholar]
  49. Dotson NM, Hoffman SJ, Goodell B, Gray CM. 2018.. Feature-based visual short-term memory is widely distributed and hierarchically organized. . Neuron 99::21526
    [Google Scholar]
  50. Dragomir EI, Stih V, Portugues R. 2020.. Evidence accumulation during a sensorimotor decision task revealed by whole-brain imaging. . Nat. Neurosci. 23::8593
    [Google Scholar]
  51. D'Souza RD, Meier AM, Bista P, Wang Q, Burkhalter A. 2016.. Recruitment of inhibition and excitation across mouse visual cortex depends on the hierarchy of interconnecting areas. . eLife 5::e19332
    [Google Scholar]
  52. D'Souza RD, Wang Q, Ji W, Meier AM, Kennedy H, et al. 2022.. Hierarchical and nonhierarchical features of the mouse visual cortical network. . Nat. Commun. 13::503
    [Google Scholar]
  53. Eliasmith C. 2013.. How to Build a Brain: A Neural Architecture for Biological Cognition. Oxford, UK:: Oxford Univ. Press
    [Google Scholar]
  54. Elston G. 2007.. Specialization of the neocortical pyramidal cell during primate evolution. . In Evolution of the Nervous Systems: A Comprehensive Reference 4: Primates, ed. JH Kaass, TM Preuss , pp. 191242. Amsterdam:: Elsevier
    [Google Scholar]
  55. Ercsey-Ravasz M, Markov NT, Lamy C, Van Essen DC, Knoblauch K, ed. 2013.. A predictive network model of cerebral cortical connectivity based on a distance rule. . Neuron 80::18497
    [Google Scholar]
  56. Fascianelli V, Tsujimoto S, Marcos E, Genovesio A. 2019.. Autocorrelation structure in the macaque dorsolateral, but not orbital or polar, prefrontal cortex predicts response-coding strength in a visually cued strategy task. . Cereb. Cortex 29::23041
    [Google Scholar]
  57. Felleman DJ, Van Essen DC. 1991.. Distributed hierarchical processing in the primate cerebral cortex. . Cereb. Cortex 1::147
    [Google Scholar]
  58. Fiser A, Mahringer D, Oyibo HK, Petersen AV, Leinweber M, Keller GB. 2016.. Experience-dependent spatial expectations in mouse visual cortex. . Nat. Neurosci. 19::165864
    [Google Scholar]
  59. Fornito A, Zalesky A, Bullmore E. 2016.. Fundamentals of Brain Network Analysis. London:: Academic
    [Google Scholar]
  60. Foster NN, Barry J, Korobkova L, Garcia L, Gao L, et al. 2021.. The mouse cortico–basal ganglia–thalamic network. . Nature 598::18894
    [Google Scholar]
  61. Fries P. 2005.. A mechanism for cognitive dynamics: neuronal communication through neuronal coherence. . Trends Cogn. Sci. 9::47480
    [Google Scholar]
  62. Froudist-Walsh S, Bliss DP, Ding X, Jankovic-Rapan L, Niu M, et al. 2021.. A dopamine gradient controls access to distributed working memory in monkey cortex. . Neuron 109::350020.E13
    [Google Scholar]
  63. Fulcher BD, Murray JD, Zerbi V, Wang X-J. 2019.. Multimodal gradients across mouse cortex. . PNAS 116::468995
    [Google Scholar]
  64. Funahashi S, Bruce CJ, Goldman-Rakic PS. 1989.. Mnemonic coding of visual space in the monkey's dorsolateral prefrontal cortex. . J. Neurophysiol. 61::33149
    [Google Scholar]
  65. Funahashi S, Takeda K, Watanabe Y. 2004.. Neural mechanisms of spatial working memory: contributions of the dorsolateral prefrontal cortex and the thalamic mediodorsal nucleus. . Cogn. Affect. Behav. Neurosci. 4::40920
    [Google Scholar]
  66. Gallego JA, Perich MG, Miller LE, Solla SA. 2017.. Neural manifolds for the control of movement. . Neuron 94::97884
    [Google Scholar]
  67. Gallero-Salas Y, Han S, Sych Y, Voigt FF, Laurenczy B, et al. 2021.. Sensory and behavioral components of neocortical signal flow in discrimination tasks with short-term memory. . Neuron 109::13548
    [Google Scholar]
  68. Gămănųt R, Kennedy H, Toroczkai Z, Ercsey-Ravasz M, Van Essen DC, et al. 2018.. The mouse cortical connectome, characterized by an ultra-dense cortical graph, maintains specificity by distinct connectivity profiles. . Neuron 97::698715
    [Google Scholar]
  69. Gao W-J, Wang Y, Goldman-Rakic PS. 2003.. Dopamine modulation of perisomatic and peridendritic inhibition in prefrontal cortex. . J. Neurosci. 23::162230
    [Google Scholar]
  70. Gilbert CD, Li W. 2013.. Top-down influences on visual processing. . Nat. Rev. Neurosci. 14::35063
    [Google Scholar]
  71. Gilman JP, Medalla M, Luebke JI. 2017.. Area-specific features of pyramidal neurons—a comparative study in mouse and rhesus monkey. . Cereb. Cortex 27::207894
    [Google Scholar]
  72. Glasser MF, Van Essen DC. 2011.. Mapping human cortical areas in vivo based on myelin content as revealed by T1- and T2-weighted MRI. . J. Neurosci. 31::11597616
    [Google Scholar]
  73. Gnadt JW, Andersen RA. 1988.. Memory related motor planning activity in posterior parietal cortex of macaque. . Exp. Brain Res. 70::21620
    [Google Scholar]
  74. Gold JI, Shadlen MN. 2007.. The neural basis of decision making. . Annu. Rev. Neurosci. 30::53574
    [Google Scholar]
  75. Hagmann P, Cammoun L, Gigandet X, Meuli R, Honey C, et al. 2008.. Mapping the structural core of human cerebral cortex. . PLOS Biol. 6::e159
    [Google Scholar]
  76. Hahn G, Ponce-Alvarez A, Deco G, Aertsen A, Kumar A. 2019.. Portraits of communication in neuronal networks. . Nat. Rev. Neurosci. 20::11727
    [Google Scholar]
  77. Harris JA, Mihalas S, Hirokawa KE, Whitesell JD, Choi H, et al. 2019.. Hierarchical organization of cortical and thalamic connectivity. . Nature 575::195202
    [Google Scholar]
  78. Hasson U, Chen J, Honey CJ. 2015.. Hierarchical process memory: memory as an integral component of information processing. . Trends Cogn. Sci. 19::30413
    [Google Scholar]
  79. Hasson U, Yang E, Vallines I, Heeger DJ, Rubin N. 2008.. A hierarchy of temporal receptive windows in human cortex. . J. Neurosci. 28::253950
    [Google Scholar]
  80. Hattori R, Danskin B, Babic Z, Mlynaryk N, Komiyama T. 2019.. Area-specificity and plasticity of history-dependent value coding during learning. . Cell 177::185872
    [Google Scholar]
  81. Helmstaedter M, Briggman KL, Turaga SC, Jain V, Seung HS, Denk W. 2013.. Connectomic reconstruction of the inner plexiform layer in the mouse retina. . Nature 500::16874
    [Google Scholar]
  82. Hickok G, Poeppel D. 2007.. The cortical organization of speech processing. . Nat. Rev. Neurosci. 8::393402
    [Google Scholar]
  83. Hikosaka O, Wurtz RH. 1983.. Visual and oculomotor functions of monkey substantia nigra pars reticulata. III. Memory-contingent visual and saccade responses. . J. Neurophysiol. 49::126884
    [Google Scholar]
  84. Horvát S, Gămănu R, Ercsey-Ravasz M, Magrou L, Gămănu B, et al. 2016.. Spatial embedding and wiring cost constrain the functional layout of the cortical network of rodents and primates. . PLOS Biol. 14::e1002512
    [Google Scholar]
  85. Huang C, Ruff DA, Pyle R, Rosenbaum R, Cohen MR, Doiron B. 2019.. Circuit models of low-dimensional shared variability in cortical networks. . Neuron 101::33748
    [Google Scholar]
  86. Inagaki HK, Fontolan L, Romani S, Svoboda K. 2019.. Discrete attractor dynamics underlies persistent activity in the frontal cortex. . Nature 566::21217
    [Google Scholar]
  87. Izhikevich EM, Edelman GM. 2008.. Large-scale model of mammalian thalamocortical systems. . PNAS 105::359398
    [Google Scholar]
  88. Jazayeri M, Ostojic S. 2021.. Interpreting neural computations by examining intrinsic and embedding dimensionality of neural activity. . Curr. Opin. Neurobiol. 70::11320
    [Google Scholar]
  89. Joglekar MR, Mejias JF, Yang GR, Wang X-J. 2018.. Inter-areal balanced amplification enhances signal propagation in a large-scale circuit model of the primate cortex. . Neuron 98::22234
    [Google Scholar]
  90. Jun JJ, Steinmetz NA, Siegle JH, Denman DJ, Bauza M, et al. 2017.. Fully integrated silicon probes for high-density recording of neural activity. . Nature 551::23236
    [Google Scholar]
  91. Kapoor V, Dwarakanath A, Safavi S, Werner J, Besserve M, et al. 2020.. Decoding the contents of consciousness from prefrontal ensembles. . bioRxiv 2020.01.28.921841. https://doi.org/10.1101/2020.01.28.921841
    [Crossref]
  92. Kaufman MT, Churchland MM, Ryu SI, Shenoy KV. 2014.. Cortical activity in the null space: permitting preparation without movement. . Nat. Neurosci. 17::44048
    [Google Scholar]
  93. Keller GB, Mrsic-Flogel TD. 2018.. Predictive processing: a canonical cortical computation. . Neuron 100::42435
    [Google Scholar]
  94. Kepecs A, Fishell G. 2014.. Interneuron cell types are fit to function. . Nature 505::31826
    [Google Scholar]
  95. Kiebel SJ, Daunizeau J, Friston KJ. 2008.. A hierarchy of time-scales and the brain. . PLOS Comput. Biol. 4::e1000209
    [Google Scholar]
  96. Kim Y, Yang GR, Pradhan K, Venkataraju KU, Bota M, et al. 2017.. Brain-wide maps reveal stereotyped cell-type-based cortical architecture and subcortical sexual dimorphism. . Cell 171::45669
    [Google Scholar]
  97. Klatzmann U, Froudist-Walsh S, Bliss DP, Theodoni P, Mejias J, et al. 2022.. A connectome-based model of conscious access in monkey cortex. . bioRxiv 2022.02.20.481230. https://doi.org/10.1101/2022.02.20.481230
    [Crossref]
  98. Koch C. 2004.. The Quest for Consciousness: A Neurobiological Approach. Englewood, CO:: Roberts
    [Google Scholar]
  99. Kohn A, Jasper AI, Semedo JD, Gokcen E, Machens CK, Byron MY. 2020.. Principles of corticocortical communication: proposed schemes and design considerations. . Trends Neurosci. 43::72537
    [Google Scholar]
  100. Kondo H, Tanaka K, Hashikawa T, Jones EG. 1999.. Neurochemical gradients along monkey sensory cortical pathways: calbindin-immunoreactive pyramidal neurons in layers II and III. . Eur. J. Neurosci. 11::4197203
    [Google Scholar]
  101. Kong X, Kong R, Orban C, Wang P, Zhang S, et al. 2021.. Sensory-motor cortices shape functional connectivity dynamics in the human brain. . Nat. Commun. 12::6373
    [Google Scholar]
  102. Kreiman G, Serre T. 2020.. Beyond the feedforward sweep: feedback computations in the visual cortex. . Ann. N.Y. Acad. Sci. 1464::22241
    [Google Scholar]
  103. Krienen FM, Goldman M, Zhang Q, Del Rosario RC, Florio M, et al. 2020.. Innovations present in the primate interneuron repertoire. . Nature 586::26269
    [Google Scholar]
  104. Lashley KS. 1929.. Brain Mechanisms and Intelligence. Chicago:: Chicago Univ. Press
    [Google Scholar]
  105. Leavitt ML, Mendoza-Halliday D, Martinez-Trujillo JC. 2017.. Sustained activity encoding working memories: not fully distributed. . Trends Neurosci. 40::32846
    [Google Scholar]
  106. Lennie P. 1998.. Single units and visual cortical organization. . Perception 27::88935
    [Google Scholar]
  107. Levitin DJ. 2006.. This Is Your Brain on Music: The Science of a Human Obsession. New York:: Penguin
    [Google Scholar]
  108. Li S, Wang X-J. 2022.. Hierarchical timescales in the neocortex: mathematical mechanism and biological insights. . PNAS 119::e2110274119
    [Google Scholar]
  109. Luo L, Callaway E, Svoboda K. 2008.. Genetic dissection of neural circuits. . Neuron 57::63460
    [Google Scholar]
  110. Lyu C, Abbott LF, Maimon G. 2022.. Building an allocentric travelling direction signal via vector computation. . Nature 601::9297
    [Google Scholar]
  111. Maisson DJ-N, Cash-Padgett TV, Wang MZ, Hayden BY, Heilbronner SR, Zimmermann J. 2021.. Choice-relevant information transformation along a ventrodorsal axis in the medial prefrontal cortex. . Nat. Commun. 12::4830
    [Google Scholar]
  112. Manea AMG, Zilverstand A, Ǔgurbil K, Heilbronner SR, Zimmermann J. 2021.. Intrinsic timescales as an organizational principle of neural processing across the whole rhesus macaque brain. . bioRxiv 2021.10.05.463277. https://doi.org/10.1101/2021.10.05.463277
    [Crossref]
  113. Mante V, Sussillo D, Shenoy KV, Newsome WT. 2013.. Context-dependent computation by recurrent dynamics in prefrontal cortex. . Nature 503::7884
    [Google Scholar]
  114. Margulies DS, Ghosh SS, Goulas A, Falkiewicz M, Huntenburg JM, et al. 2016.. Situating the default-mode network along a principal gradient of macroscale cortical organization. . PNAS 113::1257479
    [Google Scholar]
  115. Markov NT, Ercsey-Ravasz MM, Ribeiro Gomes AR, Lamy C, Magrou L, et al. 2014a.. A weighted and directed interareal connectivity matrix for macaque cerebral cortex. . Cereb. Cortex 24::1736
    [Google Scholar]
  116. Markov NT, Vezoli J, Chameau P, Falchier A, Quilodran R, et al. 2014b.. Anatomy of hierarchy: feedforward and feedback pathways in macaque visual cortex. . J. Comp. Neurol. 522::22559
    [Google Scholar]
  117. Markram H, Toledo-Rodriguez M, Wang Y, Gupta A, Silberberg G, Wu C. 2004.. Interneurons of the neocortical inhibitory system. . Nat. Rev. Neurosci. 5::793807
    [Google Scholar]
  118. Martinez-Trujillo J, Treue S. 2004.. Feature-based attention increases the selectivity of population responses in primate visual cortex. . Curr. Biol. 14::74451
    [Google Scholar]
  119. Mashour GA, Roelfsema P, Changeux JP, Dehaene S. 2020.. Conscious processing and the global neuronal workspace hypothesis. . Neuron 105::77698
    [Google Scholar]
  120. Maunsell JH, Van Essen DC. 1983.. The connections of the middle temporal visual area (MT) and their relationship to a cortical hierarchy in the macaque monkey. . J. Neurosci. 3::256386
    [Google Scholar]
  121. Mejias JF, Murray JD, Kennedy H, Wang X-J. 2016.. Feedforward and feedback frequency-dependent interactions in a large-scale laminar network of the primate cortex. . Sci. Adv. 2::e1601335
    [Google Scholar]
  122. Mejias JF, Wang X-J. 2022.. Mechanisms of distributed working memory in a large-scale network of the macaque neocortex. . eLife 11::e72136
    [Google Scholar]
  123. Mesulam MM. 1990.. Large-scale neurocognitive networks and distributed processing for attention, language, and memory. . Ann. Neurol. 28::597613
    [Google Scholar]
  124. Michalareas G, Vezoli J, van Pelt S, Schoffelen JM, Kennedy H, Fries P. 2016.. Alpha-beta and gamma rhythms subserve feedback and feedforward influences among human visual cortical areas. . Neuron 89::38497
    [Google Scholar]
  125. Miller EK, Lundqvist M, Bastos AM. 2018.. Working memory 2.0. . Neuron 100::46375
    [Google Scholar]
  126. Moore T, Zirnsak M. 2017.. Neural mechanisms of selective visual attention. . Annu. Rev. Psychol. 68::4772
    [Google Scholar]
  127. Mueller A, Krock RM, Shepard S, Moore T. 2020.. Dopamine receptor expression among local and visual cortex-projecting frontal eye field neurons. . Cereb. Cortex 30::14864
    [Google Scholar]
  128. Murray JD, Bernacchia A, Freedman DJ, Romo R, Wallis JD, et al. 2014.. A hierarchy of intrinsic timescales across primate cortex. . Nat. Neurosci. 17::166163
    [Google Scholar]
  129. Musall S, Kaufman MT, Juavinett AL, Gluf S, Churchland AK. 2019.. Single-trial neural dynamics are dominated by richly varied movements. . Nat. Neurosci. 22::167786
    [Google Scholar]
  130. Nicolis G, Prigogine I. 1977.. Self-Organization in Nonequilibrium Systems: From Dissipative Structure to Order Through Fluctuations. New York:: Wiley
    [Google Scholar]
  131. Nobre AC, Stokes MG. 2019.. Premembering experience: a hierarchy of time-scales for proactive attention. . Neuron 104::13246
    [Google Scholar]
  132. Nozari E, Bertolero MA, Stiso J, Caciagli L, Cornblath EJ, et al. 2020.. Is the brain macroscopically linear? A system identification of resting state dynamics. . arXiv:2012.12351 [q-bio.NC]
  133. Ogawa T, Komatsu H. 2010.. Differential temporal storage capacity in the baseline activity of neurons in macaque frontal eye field and area V4. . J. Neurophysiol. 103::243345
    [Google Scholar]
  134. Oh SW, Harris JA, Ng L, Winslow B, Cain N, Mihalas S, et al. 2014.. A mesoscale connectome of the mouse brain. . Nature 508::20714
    [Google Scholar]
  135. Olshausen BA, Anderson CH, Van Essen DC. 1993.. A neurobiological model of visual attention and invariant pattern recognition based on dynamic routing of information. . J. Neurosci. 13::470019
    [Google Scholar]
  136. Perich MG, Arlt C, Soares S, Young ME, Mosher CP, et al. 2021.. Inferring brain-wide interactions using data-constrained recurrent neural network models. . bioRxiv 2020.12.18.423348. https://doi.org/10.1101/2020.12.18.423348
    [Crossref]
  137. Perkel DH, Bullock TH. 1968.. Neural coding. . Neurosci. Res. Program Bull. 6::219349
    [Google Scholar]
  138. Petreanu L, Mao T, Sternson SM, Svoboda K. 2009.. The subcellular organization of neocortical excitatory connections. . Nature 457::114245
    [Google Scholar]
  139. Pinto L, Rajan K, DePasquale B, Thiberge SY, Tank DW, Brody CD. 2019.. Task-dependent changes in the large-scale dynamics and necessity of cortical regions. . Neuron 104::81024
    [Google Scholar]
  140. Poeppel D. 2003.. The analysis of speech in different temporal integration windows: cerebral lateralization as ‘asymmetric sampling in time. Speech Commun. 41::24555
    [Google Scholar]
  141. Proske U, Gandevia SC. 2012.. The proprioceptive senses: their roles in signaling body shape, body position and movement, and muscle force. . Physiol. Rev. 92::165197
    [Google Scholar]
  142. Rao RP, Ballard DH. 1999.. Predictive coding in the visual cortex: a functional interpretation of some extra-classical receptive-field effects. . Nat. Neurosci. 2::7987
    [Google Scholar]
  143. Raut RV, Snyder AZ, Raichle ME. 2020.. Hierarchical dynamics as a macroscopic organizing principle of the human brain. . PNAS 117::2089097
    [Google Scholar]
  144. Runyan CA, Piasini E, Panzeri S, Harvey CD. 2017.. Distinct timescales of population coding across cortex. . Nature 548::9296
    [Google Scholar]
  145. Schaffer ES, Mishra N, Whiteway MR, Li W, Vancura MB, et al. 2021.. Flygenvectors: the spatial and temporal structure of neural activity across the fly brain. . bioRxiv 2021.09.25.461804. https://doi.org/10.1101/2021.09.25.461804
    [Crossref]
  146. Schneider DM, Nelson A, Mooney R. 2014.. A synaptic and circuit basis for corollary discharge in the auditory cortex. . Nature 513::18994
    [Google Scholar]
  147. Schultz W. 1998.. Predictive reward signal of dopamine neurons. . J. Neurophysiol. 80::127
    [Google Scholar]
  148. Seamans JK, Durstewitz D, Christie BR, Stevens CF, Sejnowski TJ. 2000.. Dopamine D1/D5 receptor modulation of excitatory synaptic inputs to layer V prefrontal cortex neurons. . PNAS 98::3016
    [Google Scholar]
  149. Semedo JD, Zandvakili A, Machens CK, Byron MY, Kohn A. 2019.. Cortical areas interact through a communication subspace. . Neuron 102::24959
    [Google Scholar]
  150. Sergent C, Corazzol M, Labouret G, Stockart F, Wexler M, King J-R, et al. 2021.. Bifurcation in brain dynamics reveals a signature of conscious processing independent of report. . Nat. Commun. 12::1149
    [Google Scholar]
  151. Seung HS. 1996.. How the brain keeps the eyes still. . PNAS 93::1333944
    [Google Scholar]
  152. Seung HS. 2012.. Connectome: How the Brain's Wiring Makes Us Who We Are. Boston, MA:: Houghton Mifflin Harcourt
    [Google Scholar]
  153. Shadlen MN, Kandel ER. 2021.. Decision-making and consciousness. . In Principles of Neural Science, ed. ER Kandel, JD Koester, SH Mack, SA Siegelbaum , pp. 1392416. New York:: McGraw Hill, 6th ed.
    [Google Scholar]
  154. Siegel M, Buschman TJ, Miller EK. 2015.. Cortical information flow during flexible sensorimotor decisions. . Science 348::135255
    [Google Scholar]
  155. Siegle JH, Jia X, Durand S, Gale S, Bennett C, et al. 2021.. Survey of spiking in the mouse visual system reveals functional hierarchy. . Nature 592::8692
    [Google Scholar]
  156. Sommer MA, Wurtz RH. 2008.. Brain circuits for the internal monitoring of movements. . Annu. Rev. Neurosci. 31::31738
    [Google Scholar]
  157. Song HF, Kennedy H, Wang X-J. 2014.. Spatial embedding of similarity structure in the cerebral cortex. . PNAS 111::1658085
    [Google Scholar]
  158. Spaak E, Bonnefond M, Maier A, Leopold DA, Jensen O. 2012.. Layer-specific entrainment of gamma-band neural activity by the alpha rhythm in monkey visual cortex. . Curr. Biol. 22::231318
    [Google Scholar]
  159. Spitmaan M, Seo H, Lee D, Soltani A. 2020.. Multiple timescales of neural dynamics and integration of task-relevant signals across cortex. . PNAS 117::2252231
    [Google Scholar]
  160. Sporns O. 2009.. Networks of the Brain. Cambridge, MA:: MIT Press
    [Google Scholar]
  161. Sreenivasan KK, Curtis CE, D'Esposito M. 2014.. Revisiting the role of persistent neural activity during working memory. . Trends Cogn. Sci. 18::8289
    [Google Scholar]
  162. Steinmetz NA, Aydin C, Lebedeva A, Okun M, Pachitariu M, et al. 2021.. Neuropixels 2.0: a miniaturized high-density probe for stable, long-term brain recordings. . Science 372::eabf4588
    [Google Scholar]
  163. Steinmetz NA, Zatka-Haas P, Carandini M, Harris KD. 2019.. Distributed coding of choice, action and engagement across the mouse brain. . Nature 576::26673
    [Google Scholar]
  164. Stringer C, Pachitariu M, Steinmetz N, Reddy CB, Carandini M, Harris KD. 2019.. Spontaneous behaviors drive multidimensional, brain-wide activity. . Science 364::255
    [Google Scholar]
  165. Strogatz SH. 2016.. Nonlinear Dynamics and Chaos: With Applications to Physics, Biology, Chemistry and Engineering. Oxford, UK:: Taylor & Francis, 2nd ed.
    [Google Scholar]
  166. Summerfield C, Egner T, Greene M, Koechlin E, Mangels J, Hirsch J. 2006.. Predictive codes for forthcoming perception in the frontal cortex. . Science 314::131114
    [Google Scholar]
  167. Swanson LW, Lichtman JW. 2016.. From Cajal to connectome and beyond. . Annu. Rev. Neurosci. 39::197216
    [Google Scholar]
  168. Tasic B, Yao Z, Graybuck LT, Smith KA, Nguyen TN, et al. 2018.. Shared and distinct transcriptomic cell types across neocortical areas. . Nature 563::7278
    [Google Scholar]
  169. Theodoni P, Majka P, Reser DH, Wójcik DK, Rosa MGP, Wang X-J. 2022.. Structural attributes and principles of the neocortical connectome in the marmoset monkey. . Cereb. Cortex 32::1528
    [Google Scholar]
  170. Thomson AM, Bannister AP, Mercer A, Morris OT. 2002.. Target and temporal pattern selection at neocortical synapses. . Philos. Trans. R. Soc. B 357::178191
    [Google Scholar]
  171. Torres-Gomez S, Blonde JD, Mendoza-Halliday D, Kuebler E, Everest M, et al. 2020.. Changes in the proportion of inhibitory interneuron types from sensory to executive areas of the primate neocortex: implications for the origins of working memory representations. . Cereb. Cortex 30::454462
    [Google Scholar]
  172. Tremblay R, Lee S, Rudy B. 2016.. GABAergic interneurons in the neocortex: from cellular properties to circuits. . Neuron 91::26092
    [Google Scholar]
  173. Turner-Evans DB, Jensen KT, Ali S, Paterson T, Sheridan A, et al. 2020.. The neuroanatomical ultrastructure and function of a biological ring attractor. . Neuron 108::14563
    [Google Scholar]
  174. van Kerkoerle T, Self MW, Dagnino B, Gariel-Mathis MA, Poort J, et al. 2014.. Alpha and gamma oscillations characterize feedback and feedforward processing in monkey visual cortex. . PNAS 111::1433241
    [Google Scholar]
  175. van Vugt B, Dagnino B, Vartak D, Safaai H, Panzeri S, et al. 2018.. The threshold for conscious report: signal loss and response bias in visual and frontal cortex. . Science 360::53742
    [Google Scholar]
  176. Vezoli J, Magrou L, Goebel R, Wang X-J, Knoblauch K, et al. 2021.. Cortical hierarchy, dual counterstream architecture and the importance of top-down generative networks. . NeuroImage 225::117479
    [Google Scholar]
  177. Vickery TJ, Chun MM, Lee D. 2011.. Ubiquity and specificity of reinforcement signals throughout the human brain. . Neuron 72::16677
    [Google Scholar]
  178. Vijayraghavan S, Wang M, Birnbaum SG, Williams GV, Arnsten AF. 2007.. Inverted-U dopamine D1 receptor actions on prefrontal neurons engaged in working memory. . Nat. Neurosci. 10::37684
    [Google Scholar]
  179. Vogels TP, Abbott LF. 2009.. Gating multiple signals through detailed balance of excitation and inhibition in spiking networks. . Nat. Neurosci. 12::48391
    [Google Scholar]
  180. Wang X-J. 2001.. Synaptic reverberation underlying mnemonic persistent activity. . Trends Neurosci. 24::45563
    [Google Scholar]
  181. Wang X-J. 2002.. Probabilistic decision making by slow reverberation in cortical circuits. . Neuron 36::95568
    [Google Scholar]
  182. Wang X-J. 2008.. Decision making in recurrent neuronal circuits. . Neuron 60::21534
    [Google Scholar]
  183. Wang X-J. 2010.. Neurophysiological and computational principles of cortical rhythms in cognition. . Physiol. Rev. 90::1195268
    [Google Scholar]
  184. Wang X-J. 2020.. Macroscopic gradients of synaptic excitation and inhibition in the neocortex. . Nat. Rev. Neurosci. 21::16978
    [Google Scholar]
  185. Wang X-J. 2021.. 50 years of mnemonic persistent activity: Quo vadis?. Trends Neurosci. 44::888902
    [Google Scholar]
  186. Wang X-J, Kennedy H. 2016.. Brain structure and dynamics across scales: in search of rules. . Curr. Opin. Neurobiol. 37::9298
    [Google Scholar]
  187. Wang X-J, Pereira U, Rosa MGP, Kennedy H. 2020.. Brain connectomes come of age. . Curr. Opin. Neurobiol. 65::15261
    [Google Scholar]
  188. Wang X-J, Tegnér J, Constantinidis C, Goldman-Rakic PS. 2004.. Division of labor among distinct subtypes of inhibitory neurons in a cortical microcircuit of working memory. . PNAS 101::136873
    [Google Scholar]
  189. Wang X-J, Yang GR. 2018.. A disinhibitory circuit motif and flexible information routing in the brain. . Curr. Opin. Neurobiol. 49::7583
    [Google Scholar]
  190. Wasmuht DF, Spaak E, Buschman TJ, Miller EK, Stokes MG. 2018.. Intrinsic neuronal dynamics predict distinct functional roles during working memory. . Nat. Commun. 9::3499
    [Google Scholar]
  191. White JG, Southgate E, Thomson JN, Brenner S. 1986.. The structure of the nervous system of the nematode Caenorhabditis elegans. . Philos. Trans. R. Soc. B 314::1340
    [Google Scholar]
  192. Williams GV, Goldman-Rakic PS. 1995.. Modulation of memory fields by dopamine D1 receptors in prefrontal cortex. . Nature 376::57275
    [Google Scholar]
  193. Wilming N, Murphy PR, Meyniel F, Donner TH. 2020.. Large-scale dynamics of perceptual decision information across human cortex. . Nat. Commun. 11::5109
    [Google Scholar]
  194. Wong KF, Wang X-J. 2006.. A recurrent network mechanism of time integration in perceptual decisions. . J. Neurosci. 26::131428
    [Google Scholar]
  195. Xu CS, Januszewski M, Lu Z, Takemura S-Y, Hayworth K, et al. 2020.. A connectome of the adult Drosophila central brain. . bioRxiv 2020.01.21.911859. https://doi.org/10.1101/2020.01.21.911859
    [Crossref]
  196. Xu F, Shen Y, Ding L, Yang CY, Tan H, et al. 2021.. High-throughput mapping of a whole rhesus monkey brain at micrometer resolution. . Nat. Biotechnol. 39::152128
    [Google Scholar]
  197. Xu X, Olivas ND, Ikrar T, Peng T, Holmes TC, et al. 2016.. Primary visual cortex shows laminar-specific and balanced circuit organization of excitatory and inhibitory synaptic connectivity. . J. Physiol. 594::1891910
    [Google Scholar]
  198. Xu Y. 2020.. Revisit once more the sensory storage account of visual working memory. . Vis. Cogn. 28::43346
    [Google Scholar]
  199. Yang GR, Murray JD, Wang X-J. 2016.. A dendritic disinhibitory circuit mechanism for pathway-specific gating. . Nat. Commun. 7::12815
    [Google Scholar]
  200. Yoo S-A, Martinez-Trujillo J, Treue S, Tsotsos JK, Fallah M. 2021.. Feature-based attention induces non-linearities in neuronal tuning and behavior during visual motion perception. . bioRxiv 2021.02.17.431646. https://doi.org/10.1101/2021.02.17.431646
    [Crossref]
  201. Yoo SBM, Hayden BY. 2020.. The transition from evaluation to selection involves neural subspace reorganization in core reward regions. . Neuron 105::71224
    [Google Scholar]
  202. Young H, Belbut B, Baeta M, Petreanu L. 2021.. Laminar-specific cortico-cortical loops in mouse visual cortex. . eLife 10::e59551
    [Google Scholar]
  203. Zagha E, Erlich JC, Lee S, Lur G, O'Connor DH, et al. 2022.. The importance of accounting for movement when relating neuronal activity to sensory and cognitive processes. . J. Neurosci. 42::137582
    [Google Scholar]
  204. Zagha E, Ge X, McCormick DA. 2015.. Competing neural ensembles in motor cortex gate goal-directed motor output. . Neuron 88::56577
    [Google Scholar]
  205. Zatorre RJ, Belin P, Penhune VB. 2002.. Structure and function of auditory cortex: music and speech. . Trends Cogn. Sci. 6::3746
    [Google Scholar]
  206. Zilles K, Palomero-Gallagher N. 2017.. Multiple transmitter receptors in regions and layers of the human cerebral cortex. . Front. Neuroanat. 11::78
    [Google Scholar]
/content/journals/10.1146/annurev-neuro-110920-035434
Loading
/content/journals/10.1146/annurev-neuro-110920-035434
Loading

Data & Media loading...

Supplementary Data

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error