1932

Abstract

The intricate network of the brain's neurons and synapses poses unparalleled challenges for research, distinct from other biological studies. This is particularly true when dissecting how neurons and their functional units work at a cell biological level. While traditional microscopy has been foundational, it was unable to reveal the deeper complexities of neural interactions. However, an imaging renaissance has transformed our capabilities. Advancements in light and electron microscopy, combined with correlative imaging, now achieve unprecedented resolutions, uncovering the most nuanced neural structures. Maximizing these tools requires more than just technical proficiency. It is crucial to align research aims, allocate resources wisely, and analyze data effectively. At the heart of this evolution is interdisciplinary collaboration, where various experts come together to translate detailed imagery into significant biological insights. This review navigates the latest developments in microscopy, underscoring both the promise of and prerequisites for bending this powerful tool set to understanding neuronal cell biology.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-neuro-111020-090208
2024-08-08
2024-10-05
Loading full text...

Full text loading...

/deliver/fulltext/neuro/47/1/annurev-neuro-111020-090208.html?itemId=/content/journals/10.1146/annurev-neuro-111020-090208&mimeType=html&fmt=ahah

Literature Cited

  1. Abdelfattah A, Allu SR, Campbell RE, Cheng X, Cižmár T, et al. 2022.. Neurophotonic tools for microscopic measurements and manipulation: status report. . Neurophotonics 9::013001
    [Crossref] [Google Scholar]
  2. Anvarian Z, Mykytyn K, Mukhopadhyay S, Pedersen LB, Christensen ST. 2019.. Cellular signalling by primary cilia in development, organ function and disease. . Nat. Rev. Nephrol. 15::199219
    [Crossref] [Google Scholar]
  3. Arizono M, Idziak A, Quici F, Nägerl UV. 2023.. Getting sharper: the brain under the spotlight of super-resolution microscopy. . Trends Cell Biol. 33::14861
    [Crossref] [Google Scholar]
  4. Bai Y, Zhu B, Oliveria J-P, Cannon BJ, Feyaerts D, et al. 2023.. Expanded vacuum-stable gels for multiplexed high-resolution spatial histopathology. . Nat. Commun. 14::4013
    [Crossref] [Google Scholar]
  5. Bäuerlein FJB, Fernández-Busnadiego R, Baumeister W. 2020.. Investigating the structure of neurotoxic protein aggregates inside cells. . Trends Cell Biol. 30::95166
    [Crossref] [Google Scholar]
  6. Bond C, Santiago-Ruiz AN, Tang Q, Lakadamyali M. 2022.. Technological advances in super-resolution microscopy to study cellular processes. . Mol. Cell 82::31532
    [Crossref] [Google Scholar]
  7. Bonney SK, Coelho-Santos V, Huang S-F, Takeno M, Kornfeld J, et al. 2022.. Public volume electron microscopy data: an essential resource to study the brain microvasculature. . Front. Cell Dev. Biol. 10::849469
    [Crossref] [Google Scholar]
  8. Calì C, Agus M, Kare K, Boges DJ, Lehväslaiho H, et al. 2019.. 3D cellular reconstruction of cortical glia and parenchymal morphometric analysis from Serial Block-Face Electron Microscopy of juvenile rat. . Prog. Neurobiol. 183::101696
    [Crossref] [Google Scholar]
  9. Callaway E. 2020.. Revolutionary cryo-EM is taking over structural biology. . Nature 578::201
    [Crossref] [Google Scholar]
  10. Cazaux J. 2005.. Recent developments and new strategies in scanning electron microscopy. . J. Microsc. 217::1635
    [Crossref] [Google Scholar]
  11. Choquet D, Sainlos M, Sibarita J-B. 2021.. Advanced imaging and labelling methods to decipher brain cell organization and function. . Nat. Rev. Neurosci. 22::23755
    [Crossref] [Google Scholar]
  12. Coyne AN, Baskerville V, Zaepfel BL, Dickson DW, Rigo F, et al. 2021.. Nuclear accumulation of CHMP7 initiates nuclear pore complex injury and subsequent TDP-43 dysfunction in sporadic and familial ALS. . Sci. Transl. Med. 13::eabe1923
    [Crossref] [Google Scholar]
  13. Coyne AN, Rothstein JD. 2022.. Nuclear pore complexes—a doorway to neural injury in neurodegeneration. . Nat. Rev. Neurol. 18::34862
    [Crossref] [Google Scholar]
  14. Cristi AC, Rapuri S, Coyne AN. 2023.. Nuclear pore complex and nucleocytoplasmic transport disruption in neurodegeneration. . FEBS Lett. 597::254666
    [Crossref] [Google Scholar]
  15. Cserép C, Schwarcz AD, Pósfai B, László ZI, Kellermayer A, et al. 2022.. Microglial control of neuronal development via somatic purinergic junctions. . Cell Rep. 40::111369
    [Crossref] [Google Scholar]
  16. Dimou E, Katsinelos T, Meisl G, Tuck BJ, Keeling S, et al. 2023.. Super-resolution imaging unveils the self-replication of tau aggregates upon seeding. . Cell Rep. 42::112725
    [Crossref] [Google Scholar]
  17. Djannatian M, Radha S, Weikert U, Safaiyan S, Wrede C, et al. 2023.. Myelination generates aberrant ultrastructure that is resolved by microglia. . J. Cell Biol. 222::e202204010
    [Crossref] [Google Scholar]
  18. Eguchi K, Le Monnier E, Shigemoto R. 2023.. Nanoscale phosphoinositide distribution on cell membranes of mouse cerebellar neurons. . J. Neurosci. 43::4197216
    [Crossref] [Google Scholar]
  19. Gollihue JL, Norris CM. 2020.. Astrocyte mitochondria: central players and potential therapeutic targets for neurodegenerative diseases and injury. . Ageing Res. Rev. 59::101039
    [Crossref] [Google Scholar]
  20. Gomes CM, ed. 2019.. Protein Misfolding Diseases: Methods And Protocols. New York:: Springer
    [Google Scholar]
  21. Hafner A-S, Donlin-Asp PG, Leitch B, Herzog E, Schuman EM. 2019.. Local protein synthesis is a ubiquitous feature of neuronal pre- and postsynaptic compartments. . Science 364::eaau3644
    [Crossref] [Google Scholar]
  22. Heine J, Reuss M, Harke B, D'Este E, Sahl SJ, Hell SW. 2017.. Adaptive-illumination STED nanoscopy. . PNAS 114::9797802
    [Crossref] [Google Scholar]
  23. Hoffman DP, Shtengel G, Xu CS, Campbell KR, Freeman M, et al. 2020.. Correlative three-dimensional super-resolution and block-face electron microscopy of whole vitreously frozen cells. . Science 367::aaz5357
    [Crossref] [Google Scholar]
  24. Hoffmann PC, Giandomenico SL, Ganeva I, Wozny MR, Sutcliffe M, et al. 2021.. Electron cryo-tomography reveals the subcellular architecture of growing axons in human brain organoids. . eLife 10::e70269
    [Crossref] [Google Scholar]
  25. Holländer H. 1970.. The section embedding (SE) technique. A new method for the combined light microscopic and electron microscopic examination of central nervous tissue. . Brain Res. 20::3947
    [Crossref] [Google Scholar]
  26. Iwata R, Casimir P, Erkol E, Boubakar L, Planque M, et al. 2023.. Mitochondria metabolism sets the species-specific tempo of neuronal development. . Science 379::eabn4705
    [Crossref] [Google Scholar]
  27. Karagiannis ED, Boyden ES. 2018.. Expansion microscopy: development and neuroscience applications. . Curr. Opin. Neurobiol. 50::5663
    [Crossref] [Google Scholar]
  28. Kiesel P, Alvarez Viar G, Tsoy N, Maraspini R, Gorilak P, et al. 2020.. The molecular structure of mammalian primary cilia revealed by cryo-electron tomography. . Nat. Struct. Mol. Biol. 27::111524
    [Crossref] [Google Scholar]
  29. Klevanski M, Herrmannsdoerfer F, Sass S, Venkataramani V, Heilemann M, Kuner T. 2020.. Automated highly multiplexed super-resolution imaging of protein nano-architecture in cells and tissues. . Nat. Commun. 11::1552
    [Crossref] [Google Scholar]
  30. Kolotuev I. 2023.. Work smart, not hard: how array tomography can help increase the ultrastructure data output. . J. Microsc. In press. https://doi.org/10.1111/jmi.13217
    [Google Scholar]
  31. Lelek M, Gyparaki MT, Beliu G, Schueder F, Griffié J, et al. 2021.. Single-molecule localization microscopy. . Nat. Rev. Methods Primer 1::39
    [Crossref] [Google Scholar]
  32. Leto K, Arancillo M, Becker EBE, Buffo A, Chiang C, et al. 2016.. Consensus paper: cerebellar development. . Cerebellum 15::789828
    [Crossref] [Google Scholar]
  33. Li S, Raychaudhuri S, Lee SA, Brockmann MM, Wang J, et al. 2021.. Asynchronous release sites align with NMDA receptors in mouse hippocampal synapses. . Nat. Commun. 12::677
    [Crossref] [Google Scholar]
  34. Lin DH, Hoelz A. 2019.. The structure of the nuclear pore complex (an update). . Annu. Rev. Biochem. 88::72583
    [Crossref] [Google Scholar]
  35. Liu Y-T, Tao C-L, Zhang X, Xia W, Shi D-Q, et al. 2020.. Mesophasic organization of GABAA receptors in hippocampal inhibitory synapses. . Nat. Neurosci. 23::158996
    [Crossref] [Google Scholar]
  36. Ma D, Deng B, Sun C, McComb DW, Gu C. 2022.. The mechanical microenvironment regulates axon diameters visualized by cryo-electron tomography. . Cells 11::2533
    [Crossref] [Google Scholar]
  37. Milne JLS, Borgnia MJ, Bartesaghi A, Tran EEH, Earl LA, et al. 2013.. Cryo-electron microscopy: a primer for the non-microscopist. . FEBS J. 280::2845
    [Crossref] [Google Scholar]
  38. Nakai Y, Iwashita T. 1976.. Correlative light and electron microscopy of the frog adrenal gland cells using adjacent epon-embedded sections. . Arch. Histol. Jpn. 39::18391
    [Crossref] [Google Scholar]
  39. Nugent E, Kaminski CF, Kaminski Schierle GS. 2017.. Super-resolution imaging of alpha-synuclein polymorphisms and their potential role in neurodegeneration. . Integr. Biol. 9::20610
    [Crossref] [Google Scholar]
  40. Ong T, Trivedi N, Wakefield R, Frase S, Solecki DJ. 2020.. Siah2 integrates mitogenic and extracellular matrix signals linking neuronal progenitor ciliogenesis with germinal zone occupancy. . Nat. Commun. 11::5312
    [Crossref] [Google Scholar]
  41. Prakash K, Diederich B, Heintzmann R, Schermelleh L. 2022.. Super-resolution microscopy: a brief history and new avenues. . Philos. Trans. R. Soc. Math. Phys. Eng. Sci. 380::20210110
    [Google Scholar]
  42. Rigort A, Plitzko JM. 2015.. Cryo-focused-ion-beam applications in structural biology. . Arch. Biochem. Biophys. 581::12230
    [Crossref] [Google Scholar]
  43. Sahl SJ, Hell SW, Jakobs S. 2017.. Fluorescence nanoscopy in cell biology. . Nat. Rev. Mol. Cell Biol. 18::685701
    [Crossref] [Google Scholar]
  44. Salmon CK, Syed TA, Kacerovsky JB, Alivodej N, Schober AL, et al. 2023.. Organizing principles of astrocytic nanoarchitecture in the mouse cerebral cortex. . Curr. Biol. 33::95772.e5
    [Crossref] [Google Scholar]
  45. Sauerbeck AD, Gangolli M, Reitz SJ, Salyards MH, Kim SH, et al. 2020.. SEQUIN multiscale imaging of mammalian central synapses reveals loss of synaptic connectivity resulting from diffuse traumatic brain injury. . Neuron 107::25773.e5
    [Crossref] [Google Scholar]
  46. Scheffer LK, Xu CS, Januszewski M, Lu Z, Takemura S-Y, et al. 2020.. A connectome and analysis of the adult Drosophila central brain. . eLife 9::e57443
    [Crossref] [Google Scholar]
  47. Seifert R, Markert SM, Britz S, Perschin V, Erbacher C, et al. 2020.. DeepCLEM: automated registration for correlative light and electron microscopy using deep learning. . F1000Research 9::1275
    [Crossref] [Google Scholar]
  48. Seo J, Sim Y, Kim J, Kim H, Cho I, et al. 2022.. PICASSO allows ultra-multiplexed fluorescence imaging of spatially overlapping proteins without reference spectra measurements. . Nat. Commun. 13::2475
    [Crossref] [Google Scholar]
  49. Sheu S-H, Upadhyayula S, Dupuy V, Pang S, Deng F, et al. 2022.. A serotonergic axon-cilium synapse drives nuclear signaling to alter chromatin accessibility. . Cell 185::3390407.e18
    [Crossref] [Google Scholar]
  50. Subramaniam S, Kleywegt GJ. 2022.. A paradigm shift in structural biology. . Nat. Methods 19::2023
    [Crossref] [Google Scholar]
  51. Tom Dieck S, Kochen L, Hanus C, Heumüller M, Bartnik I, et al. 2015.. Direct visualization of newly synthesized target proteins in situ. . Nat. Methods 12::41114
    [Crossref] [Google Scholar]
  52. Truckenbrodt S. 2023.. Expansion microscopy: super-resolution imaging with hydrogels. . Anal. Chem. 95::332
    [Crossref] [Google Scholar]
  53. Tsang TK, Bushong EA, Boassa D, Hu J, Romoli B, et al. 2018.. High-quality ultrastructural preservation using cryofixation for 3D electron microscopy of genetically labeled tissues. . eLife 7::e35524
    [Crossref] [Google Scholar]
  54. Tustison NJ, Cook PA, Klein A, Song G, Das SR, et al. 2014.. Large-scale evaluation of ANTs and FreeSurfer cortical thickness measurements. . NeuroImage 99::16679
    [Crossref] [Google Scholar]
  55. Upmanyu N, Jin J, von der Emde H, Ganzella M, Bösche L, et al. 2022.. Colocalization of different neurotransmitter transporters on synaptic vesicles is sparse except for VGLUT1 and ZnT3. . Neuron 110::148397.e7
    [Crossref] [Google Scholar]
  56. Vassilopoulos S, Gibaud S, Jimenez A, Caillol G, Leterrier C. 2019.. Ultrastructure of the axonal periodic scaffold reveals a braid-like organization of actin rings. . Nat. Commun. 10::5803
    [Crossref] [Google Scholar]
  57. Watanabe S, Liu Q, Davis MW, Hollopeter G, Thomas N, et al. 2013.. Ultrafast endocytosis at Caenorhabditis elegans neuromuscular junctions. . eLife 2::e00723
    [Crossref] [Google Scholar]
  58. Weber M, von der Emde H, Leutenegger M, Gunkel P, Sambandan S, et al. 2023.. MINSTED nanoscopy enters the Ångström localization range. . Nat. Biotechnol. 41::56976
    [Crossref] [Google Scholar]
  59. Weinhard L, di Bartolomei G, Bolasco G, Machado P, Schieber NL, et al. 2018.. Microglia remodel synapses by presynaptic trogocytosis and spine head filopodia induction. . Nat. Commun. 9::1228
    [Crossref] [Google Scholar]
  60. Westra M, Gutierrez Y, MacGillavry HD. 2021.. Contribution of membrane lipids to postsynaptic protein organization. . Front. Synaptic Neurosci. 13::790773
    [Crossref] [Google Scholar]
  61. Winey M, Meehl JB, O'Toole ET, Giddings TH. 2014.. Conventional transmission electron microscopy. . Mol. Biol. Cell 25::31923
    [Crossref] [Google Scholar]
  62. Wu Y, Gu C, Huang L, Zhao Y, Tang Y, et al. 2021.. Hypoxia preconditioning improves structure and function of astrocytes mitochondria via PGC-1α/HIF signal. . J. Biosci. 46::7
    [Crossref] [Google Scholar]
  63. Zamponi E, Meehl JB, Voeltz GK. 2022.. The ER ladder is a unique morphological feature of developing mammalian axons. . Dev. Cell 57::136982.e6
    [Crossref] [Google Scholar]
  64. Zuber B, Lučić V. 2022.. Neurons as a model system for cryo-electron tomography. . J. Struct. Biol. X 6::100067
    [Google Scholar]
/content/journals/10.1146/annurev-neuro-111020-090208
Loading
/content/journals/10.1146/annurev-neuro-111020-090208
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error