1932

Abstract

Seeing in three dimensions is a major property of the visual system in mammals. The circuit underlying this property begins in the retina, from which retinal ganglion cells (RGCs) extend to the same or opposite side of the brain. RGC axons decussate to form the optic chiasm, then grow to targets in the thalamus and midbrain, where they synapse with neurons that project to the visual cortex. Here we review the cellular and molecular mechanisms of RGC axonal growth cone guidance across or away from the midline via receptors to cues in the midline environment. We present new views on the specification of ipsi- and contralateral RGC subpopulations and factors implementing their organization in the optic tract and termination in subregions of their targets. Lastly, we describe the functional and behavioral aspects of binocular vision, focusing on the mouse, and discuss recent discoveries in the evolution of the binocular circuit.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-neuro-111020-093230
2024-08-08
2025-04-27
Loading full text...

Full text loading...

/deliver/fulltext/neuro/47/1/annurev-neuro-111020-093230.html?itemId=/content/journals/10.1146/annurev-neuro-111020-093230&mimeType=html&fmt=ahah

Literature Cited

  1. Ackman JB, Burbridge TJ, Crair MC. 2012.. Retinal waves coordinate patterned activity throughout the developing visual system. . Nature 490::21925
    [Crossref] [Google Scholar]
  2. Arbeille E, Bashaw GJ. 2018.. Brain tumor promotes axon growth across the midline through interactions with the microtubule stabilizing protein Apc2. . PLOS Genet. 14::e1007314
    [Crossref] [Google Scholar]
  3. Arroyo DA, Feller MB. 2016.. Spatiotemporal features of retinal waves instruct the wiring of the visual circuitry. . Front. Neural Circuits 10::54
    [Crossref] [Google Scholar]
  4. Bakker R, Wagstaff EL, Kruijt CC, Emri E, van Karnebeek CDM, et al. 2022.. The retinal pigmentation pathway in human albinism: not so black and white. . Prog. Retin. Eye Res. 91::101091
    [Crossref] [Google Scholar]
  5. Balasubramanian R, Min X, Quinn PMJ, Giudice Q Lo, Tao C, et al. 2021.. Phase transition specified by a binary code patterns the vertebrate eye cup. . Sci. Adv. 7::eabj9846
    [Crossref] [Google Scholar]
  6. Beier C, Zhang Z, Yurgel M, Hattar S. 2021.. Projections of ipRGCs and conventional RGCs to retinorecipient brain nuclei. . J. Comp. Neurol. 529::186375
    [Crossref] [Google Scholar]
  7. Bélanger MC, Robert B, Cayouette M. 2017.. Msx1-positive progenitors in the retinal ciliary margin give rise to both neural and non-neural progenies in mammals. . Dev. Cell. 40::13750
    [Crossref] [Google Scholar]
  8. Bhansali P, Rayport I, Rebsam A, Mason C. 2014.. Delayed neurogenesis leads to altered specification of ventrotemporal retinal ganglion cells in albino mice. . Neural Dev. 9::11
    [Crossref] [Google Scholar]
  9. Boone HC, Samonds JM, Crouse EC, Barr C, Priebe NJ, McGee AW. 2021.. Natural binocular depth discrimination behavior in mice explained by visual cortical activity. . Curr. Biol. 31::219198.e3
    [Crossref] [Google Scholar]
  10. Buono L, Corbacho J, Naranjo S, Almuedo-Castillo M, Moreno-Marmol T, et al. 2021.. Analysis of gene network bifurcation during optic cup morphogenesis in zebrafish. . Nat. Commun. 12::3866
    [Crossref] [Google Scholar]
  11. Cioni JM, Wong HH-W, Bressan D, Kodama L, Harris WA, Holt CE. 2018.. Axon-axon interactions regulate topographic optic tract sorting via CYFIP2-dependent WAVE complex function. . Neuron 97::107893.e6
    [Crossref] [Google Scholar]
  12. Clements R, Wright KM. 2018.. Retinal ganglion cell axon sorting at the optic chiasm requires dystroglycan. . Dev. Biol. 442::21019
    [Crossref] [Google Scholar]
  13. Datwani A, McConnell MJ, Kanold PO, Micheva KD, Busse B, et al. 2009.. Classical MHCI molecules regulate retinogeniculate refinement and limit ocular dominance plasticity. . Neuron 64::46370
    [Crossref] [Google Scholar]
  14. Dell AL, Fried-Cassorla E, Xu H, Raper JA. 2013.. cAMP-induced expression of neuropilin1 promotes retinal axon crossing in the zebrafish optic chiasm. . J. Neurosci. 33::1107688
    [Crossref] [Google Scholar]
  15. Dhande OS, Hua EW, Guh E, Yeh J, Bhatt S, et al. 2011.. Development of single retinofugal axon arbors in normal and β2 knock-out mice. . J. Neurosci. 31::338499
    [Crossref] [Google Scholar]
  16. Erskine L, Reijntjes S, Pratt T, Denti L, Schwarz Q, et al. 2011.. VEGF signaling through neuropilin 1 guides commissural axon crossing at the optic chiasm. . Neuron 70::95165
    [Crossref] [Google Scholar]
  17. Escalante A, Murillo B, Morenilla-Palao C, Klar A, Herrera E. 2013.. Zic2-dependent axon midline avoidance controls the formation of major ipsilateral tracts in the CNS. . Neuron 80::1392406
    [Crossref] [Google Scholar]
  18. Feord RC, Sumner ME, Pusdekar S, Kalra L, Gonzalez-Bellido PT, Wardill TJ. 2020.. Cuttlefish use stereopsis to strike at prey. . Sci. Adv. 6::eaay6036
    [Crossref] [Google Scholar]
  19. Fernández-Nogales M, López-Cascales MT, Murcia-Belmonte V, Escalante A, Fernández-Albert J, et al. 2022.. Multiomic analysis of neurons with divergent projection patterns identifies novel regulators of axon pathfinding. . Adv. Sci. 9::2200615
    [Crossref] [Google Scholar]
  20. Fernández-Nogales M, Murcia-Belmonte V, Chen HY, Herrera E. 2019.. The peripheral eye: a neurogenic area with potential to treat retinal pathologies?. Prog. Retin. Eye Res. 68::11023
    [Crossref] [Google Scholar]
  21. Fernando M, Lee S, Wark JR, Xiao D, Lim BY, et al. 2022.. Differentiation of brain and retinal organoids from confluent cultures of pluripotent stem cells connected by nerve-like axonal projections of optic origin. . Stem. Cell Rep. 17::147692
    [Crossref] [Google Scholar]
  22. Fligor CM, Lavekar SS, Harkin J, Shields PK, VanderWall KB, et al. 2021.. Extension of retinofugal projections in an assembled model of human pluripotent stem cell-derived organoids. . Stem. Cell Rep. 16::222841
    [Crossref] [Google Scholar]
  23. Fries M, Brown TW, Jolicoeur C, Boulan B, Boudreau-Pinsonneault C, et al. 2023.. Pou3f1 orchestrates a gene regulatory network controlling contralateral retinogeniculate projections. . Cell Rep. 42::112985
    [Crossref] [Google Scholar]
  24. García-Frigola C, Herrera E. 2010.. Zic2 regulates the expression of Sert to modulate eye-specific refinement at the visual targets. . EMBO J. 29::317083
    [Crossref] [Google Scholar]
  25. Gebhardt C, Auer TO, Henriques PM, Rajan G, Duroure K, et al. 2019.. An interhemispheric neural circuit allowing binocular integration in the optic tectum. . Nat. Commun. 10::5471
    [Crossref] [Google Scholar]
  26. Giudice QL, Leleu M, La Manno G, Fabre PJ. 2019.. Single-cell transcriptional logic of cell-fate specification and axon guidance in early-born retinal neurons. . Development 146::dev178103
    [Crossref] [Google Scholar]
  27. Godement P, Salaün J, Imbert M. 1984.. Prenatal and postnatal development of retinogeniculate and retinocollicular projections in the mouse. . J. Comp. Neurol. 230::55275
    [Crossref] [Google Scholar]
  28. Goltstein PM, Laubender D, Bonhoeffer T, Hübener M. 2023.. Ocular dominance columns in mouse visual cortex. . bioRxiv 2023.07.22.550034. https://doi.org/10.1101/2023.07.22.550034
  29. Goodman CS, Shatz CJ. 1993.. Developmental mechanisms that generate precise patterns of neuronal connectivity. . Cell 10:(Suppl.):7798
    [Crossref] [Google Scholar]
  30. Herrera E, Brown L, Aruga J, Rachel RA, Dolen G, et al. 2003.. Zic2 patterns binocular vision by specifying the uncrossed retinal projection. . Cell 114::54557
    [Crossref] [Google Scholar]
  31. Herrera E, Garcia-Frigola C. 2008.. Genetics and development of the optic chiasm. . Front. Biosci. 13::164653
    [Crossref] [Google Scholar]
  32. Hoffmann MB, Dumoulin SO. 2015.. Congenital visual pathway abnormalities: a window onto cortical stability and plasticity. . Trends Neurosci. 38::5565
    [Crossref] [Google Scholar]
  33. Hong YK, Burr EF, Sanes JR, Chen C. 2019.. Heterogeneity of retinogeniculate axon arbors. . Eur. J. Neurosci. 49::94856
    [Crossref] [Google Scholar]
  34. Hörnberg H, Cioni JM, Harris WA, Holt CE. 2016.. Hermes regulates axon sorting in the optic tract by post-trancriptional regulation of neuropilin 1. . J. Neurosci. 36::12697706
    [Crossref] [Google Scholar]
  35. Huberman AD, Feller MB, Chapman B. 2008.. Mechanisms underlying development of visual maps and receptive fields. . Annu. Rev. Neurosci. 31::479509
    [Crossref] [Google Scholar]
  36. Hutson LD, Chien C-B. 2002.. Pathfinding and error correction by retinal axons: the role of astray/robo2. . Neuron 33::20517
    [Crossref] [Google Scholar]
  37. Iwai-Takekoshi L, Balasubramanian R, Sitko A, Khan R, Weinreb S, et al. 2018.. Activation of Wnt signaling reduces ipsilaterally projecting retinal ganglion cells in pigmented retina. . Development 145::dev163212
    [Crossref] [Google Scholar]
  38. Iwai-Takekoshi L, Ramos A, Schaler A, Weinreb S, Blazeski R, Mason C. 2016.. Retinal pigment epithelial integrity is compromised in the developing albino mouse retina. . J. Comp. Neurol. 524::3696716
    [Crossref] [Google Scholar]
  39. Jaubert-Miazza L, Green E, Lo FS, Bui K, Mills J, Guido W. 2005.. Structural and functional composition of the developing retinogeniculate pathway in the mouse. . Vis. Neurosci. 22::66176
    [Crossref] [Google Scholar]
  40. Johnson KP, Fitzpatrick MJ, Zhao L, Wang B, McCracken S, et al. 2021.. Cell-type-specific binocular vision guides predation in mice. . Neuron 109::152739.e4
    [Crossref] [Google Scholar]
  41. Kay RB, Triplett JW. 2017.. Visual neurons in the superior colliculus innervated by Islet2+ or Islet2 retinal ganglion cells display distinct tuning properties. . Front. Neural Circuits 11::73
    [Crossref] [Google Scholar]
  42. Kennedy MC, Rubinson K. 1977.. Retinal projections in larval, transforming and adult sea lamprey, Petromyzon marinus. . J. Comp Neurol. 171::46579
    [Crossref] [Google Scholar]
  43. Kim K, Lee KY. 2001.. Tyrosine phosphorylation translocates β-catenin from cell-cell interface to the cytoplasm, but does not significantly enhance the LEF-1-dependent transactivating function. . Cell Biol. Int. 25::42127
    [Crossref] [Google Scholar]
  44. Kingston R, Amin D, Misra S, Gross JM, Kuwajima T. 2021.. Serotonin transporter-mediated molecular axis regulates regional retinal ganglion cell vulnerability and axon regeneration after nerve injury. . PLOS Genet. 17::e1009885
    [Crossref] [Google Scholar]
  45. Knickmeyer MD, Mateo JL, Heermann S. 2021.. BMP signaling interferes with optic chiasm formation and retinal ganglion cell pathfinding in zebrafish. . Int. J. Mol. Sci. 22::4560
    [Crossref] [Google Scholar]
  46. Koch SM, Dela Cruz CG, Hnasko TS, Edwards RH, Huberman AD, Ullian EM. 2011.. Pathway-specific genetic attenuation of glutamate release alters select features of competition-based visual circuit refinement. . Neuron 71::23542
    [Crossref] [Google Scholar]
  47. Kuwajima T, Soares CA, Sitko AA, Lefebvre V, Mason C. 2017.. SoxC transcription factors promote contralateral retinal ganglion cell differentiation and axon guidance in the mouse visual system. . Neuron 93::111025.e5
    [Crossref] [Google Scholar]
  48. Kuwajima T, Yoshida Y, Takegahara N, Petros TJ, Kumanogoh A, et al. 2012.. Optic chiasm presentation of semaphorin6D in the context of plexin-A1 and Nr-CAM promotes retinal axon midline crossing. . Neuron 74::67690
    [Crossref] [Google Scholar]
  49. Lambot MA, Depasse F, Noel JC, Vanderhaeghen P. 2005.. Mapping labels in the human developing visual system and the evolution of binocular vision. . J. Neurosci. 25::723237
    [Crossref] [Google Scholar]
  50. Lapan SW, Reddien PW. 2012.. Transcriptome analysis of the Planarian eye identifies ovo as a specific regulator of eye regeneration. . Cell Rep. 2::294307
    [Crossref] [Google Scholar]
  51. Larsson M. 2011.. Binocular vision and ipsilateral retinal projections in relation to eye and forelimb coordination. . Brain. Behav. Evol. 77::21930
    [Crossref] [Google Scholar]
  52. Larsson M. 2013.. The optic chiasm: a turning point in the evolution of eye/hand coordination. . Front. Zool. 10::41
    [Crossref] [Google Scholar]
  53. Larsson ML. 2015.. Binocular vision, the optic chiasm, and their associations with vertebrate motor behavior. . Front. Ecol. Evol. 3::89
    [Crossref] [Google Scholar]
  54. Le V-H, Orniacki C, Murcia-Belmonte V, Denti L, Schütz D, et al. 2024.. CXCL12 promotes the crossing of retinal ganglion cell axons at the optic chiasm. . Development 151::dev202446
    [Crossref] [Google Scholar]
  55. Leamey CA, Merlin S, Lattouf P, Sawatari A, Zhou X, et al. 2007.. Ten_m3 regulates eye-specific patterning in the mammalian visual pathway and is required for binocular vision. . PLOS Biol. 5::207792
    [Crossref] [Google Scholar]
  56. Lee MA, Sitko AA, Khalid S, Shirasu-Hiza M, Mason CA. 2019.. Spatiotemporal distribution of glia in and around the developing mouse optic tract. . J. Comp. Neurol. 527::50821
    [Crossref] [Google Scholar]
  57. Marcos S, Nieto-Lopez F, Sandonìs A, Cardozo MJ, Di Marco F, et al. 2015.. Secreted Frizzled related proteins modulate pathfinding and fasciculation of mouse retina ganglion cell axons by direct and indirect mechanisms. . J. Neurosci. 35::472940
    [Crossref] [Google Scholar]
  58. Marcucci F, Murcia-Belmonte V, Wang Q, Coca Y, Ferreiro-Galve S, et al. 2016.. The ciliary margin zone of the mammalian retina generates retinal ganglion cells. . Cell Rep. 17::315364
    [Crossref] [Google Scholar]
  59. Marcucci F, Soares CA, Mason C. 2019.. Distinct timing of neurogenesis of ipsilateral and contralateral retinal ganglion cells. . J. Comp. Neurol. 527::21224
    [Crossref] [Google Scholar]
  60. Mattie FJ, Stackpole MM, Stone MC, Clippard JR, Rudnick DA, et al. 2010.. Directed microtubule growth, +TIPs, and kinesin-2 are required for uniform microtubule polarity in dendrites. . Curr. Biol. 20::216977
    [Crossref] [Google Scholar]
  61. McFarlane S, McNeill L, Holt CE. 1995.. FGF signaling and target recognition in the developing Xenopus visual system. . Neuron 15::101728
    [Crossref] [Google Scholar]
  62. Min KW, Kim N, Lee JH, Sung Y, Kim M, et al. 2023.. Visuomotor anomalies in achiasmatic mice expressing a transfer-defective Vax1 mutant. . Exp. Mol. Med. 55::385400
    [Crossref] [Google Scholar]
  63. Mogi K, Misawa K, Utsunomiya K, Kawada Y, Yamazaki T, et al. 2009.. Optic chiasm in the species of order Clupeiformes, family Clupeidae: Optic chiasm of Spratelloides gracilis shows an opposite laterality to that of Etrumeus teres. . Laterality 14::495514
    [Crossref] [Google Scholar]
  64. Morenilla-Palao C, López-Cascales MT, López-Atalaya JP, Baeza D, Calvo-Díaz L, et al. 2020.. A Zic2-regulated switch in a noncanonical Wnt/βcatenin pathway is essential for the formation of bilateral circuits. . Sci. Adv. 6::eaaz8797
    [Crossref] [Google Scholar]
  65. Murcia-Belmonte V, Coca Y, Vegar C, Negueruela S, de Juan Romero C, et al. 2019.. A retino-retinal projection guided by Unc5c emerged in species with retinal waves. . Curr. Biol. 29::114960.e4
    [Crossref] [Google Scholar]
  66. Nakamoto C, Durward E, Horie M, Nakamoto M. 2019.. Nell2 regulates the contralateral-versus-ipsilateral visual projection as a domain-specific positional cue. . Dev. 146::dev170704
    [Crossref] [Google Scholar]
  67. Nicol X, Voyatzis S, Muzerelle A, Narboux-Nême N, Südhof TC, et al. 2007.. cAMP oscillations and retinal activity are permissive for ephrin signaling during the establishment of the retinotopic map. . Nat. Neurosci. 10::34047
    [Crossref] [Google Scholar]
  68. Ohki K, Chung S, Ch'ng YH, Kara P, Reid RC. 2005.. Functional imaging with cellular resolution reveals precise microarchitecture in visual cortex. . Nature 433::597603
    [Crossref] [Google Scholar]
  69. Okamoto K, Takeuchi K, Agata K. 2005.. Neural projections in planarian brain revealed by fluorescent dye tracing. . Zoolog. Sci. 22::53546
    [Crossref] [Google Scholar]
  70. Osterhout JA, Josten N, Yamada J, Pan F, Wu S wen, et al. 2011.. Cadherin-6 mediates axon-target matching in a non-image-forming visual circuit. . Neuron 71::63239
    [Crossref] [Google Scholar]
  71. Osterhout JA, Stafford BK, Nguyen PL, Yoshihara Y, Huberman AD. 2015.. Contactin-4 mediates axon-target specificity and functional development of the accessory optic system. . Neuron 86::98599
    [Crossref] [Google Scholar]
  72. Pak W, Hindges R, Lim Y-S, Pfaff SL, O'Leary DDM. 2004.. Magnitude of binocular vision controlled by Islet-2 repression of a genetic program that specifies laterality of retinal axon pathfinding. . Cell 119::56778
    [Crossref] [Google Scholar]
  73. Panza P, Sitko AA, Maischein HM, Koch I, Flötenmeyer M, et al. 2015.. The LRR receptor Islr2 is required for retinal axon routing at the vertebrate optic chiasm. . Neural Dev. 10::23
    [Crossref] [Google Scholar]
  74. Parker PRL, Abe ETT, Beatie NT, Leonard ESP, Martins DM, et al. 2022.. Distance estimation from monocular cues in an ethological visuomotor task. . eLife 11::e74708
    [Crossref] [Google Scholar]
  75. Pearson RA, Dale N, Llaudet E, Mobbs P. 2005.. ATP released via gap junction hemichannels from the pigment epithelium regulates neural retinal progenitor proliferation. . Neuron 46::73144
    [Crossref] [Google Scholar]
  76. Peng J, Fabre PJ, Dolique T, Swikert SM, Kermasson L, et al. 2018.. Sonic Hedgehog is a remotely produced cue that controls axon guidance trans-axonally at a midline choice point. . Neuron 97::32640.e4
    [Crossref] [Google Scholar]
  77. Plump AS, Erskine L, Sabatier C, Brose K, Epstein CJ, et al. 2002.. Slit1 and Slit2 cooperate to prevent premature midline crossing of retinal axons in the mouse visual system. . Neuron 33::21932
    [Crossref] [Google Scholar]
  78. Prieur DS, Francius C, Gaspar P, Mason CA, Rebsam A. 2023.. Semaphorin-6D and plexin-A1 act in a non-cell autonomous manner to position and target retinal ganglion cell axons. . J. Neurosci. 43::576978
    [Crossref] [Google Scholar]
  79. Prieur DS, Rebsam A. 2017.. Retinal axon guidance at the midline: chiasmatic misrouting and consequences. . Dev. Neurobiol. 77::84460
    [Crossref] [Google Scholar]
  80. Quina LA. 2005.. Brn3a-expressing retinal ganglion cells project specifically to thalamocortical and collicular visual pathways. . J. Neurosci. 25::11595604
    [Crossref] [Google Scholar]
  81. Rachel RA, Mason CA, Beermann F. 2002.. Influence of tyrosinase levels on pigment accumulation in the retinal pigment epithelium and on the uncrossed retinal projection. . Pigment Cell Res. 15::27381
    [Crossref] [Google Scholar]
  82. Read JCA. 2023.. Stereopsis without correspondence. . Philos. Trans. R. Soc. B 378::20210449
    [Crossref] [Google Scholar]
  83. Rebsam A, Bhansali P, Mason CA. 2012.. Eye-specific projections of retinogeniculate axons are altered in albino mice. . J. Neurosci. 32::482126
    [Crossref] [Google Scholar]
  84. Rebsam A, Petros TJ, Mason CA. 2009.. Switching retinogeniculate axon laterality leads to normal targeting but abnormal eye-specific segregation that is activity dependent. . J. Neurosci. 29::1485563
    [Crossref] [Google Scholar]
  85. Rheaume BA, Jereen A, Bolisetty M, Sajid MS, Yang Y, et al. 2018.. Single cell transcriptome profiling of retinal ganglion cells identifies cellular subtypes. . Nat. Commun. 9::2759
    [Crossref] [Google Scholar]
  86. Ringach DL, Mineault PJ, Tring E, Olivas ND, Garcia-Junco-Clemente P, Trachtenberg JT. 2016.. Spatial clustering of tuning in mouse primary visual cortex. . Nat. Commun. 7::12270
    [Crossref] [Google Scholar]
  87. Salichon N, Gaspar P, Upton AL, Picaud S, Hanoun N, et al. 2001.. Excessive activation of serotonin (5-HT) 1B receptors disrupts the formation of sensory maps in monoamine oxidase A and 5-HT transporter knock-out mice. . J. Neurosci. 21::88496
    [Crossref] [Google Scholar]
  88. Sánchez-Huertas C, Herrera E. 2021.. With the permission of microtubules: an updated overview on microtubule function during axon pathfinding. . Front. Mol. Neurosci. 14::759404
    [Crossref] [Google Scholar]
  89. Santos RA, Fuertes AJC, Short G, Donohue KC, Shao H, et al. 2018.. DSCAM differentially modulates pre- and postsynaptic structural and functional central connectivity during visual system wiring. . Neural Dev. 13::22
    [Crossref] [Google Scholar]
  90. Schafer DP, Lehrman EK, Kautzman AG, Koyama R, Mardinly AR, et al. 2012.. Microglia sculpt postnatal neural circuits in an activity and complement-dependent manner. . Neuron 74::691705
    [Crossref] [Google Scholar]
  91. Seabrook TA, Burbridge TJ, Crair MC, Huberman AD. 2017.. Architecture, function, and assembly of the mouse visual system. . Annu. Rev. Neurosci. 40::499538
    [Crossref] [Google Scholar]
  92. Shekhar K, Whitney IE, Butrus S, Peng Y-R, Sanes JR. 2022.. Diversification of multipotential postmitotic mouse retinal ganglion cell precursors into discrete types. . eLife 11::e73809
    [Crossref] [Google Scholar]
  93. Sitko AA, Kuwajima T, Mason CA. 2018.. Eye-specific segregation and differential fasciculation of developing retinal ganglion cell axons in the mouse visual pathway. . J. Comp. Neurol. 526::107796
    [Crossref] [Google Scholar]
  94. Slavi N, Balasubramanian R, Lee MA, Liapin M, Oaks-Leaf R, et al. 2023.. CyclinD2-mediated regulation of neurogenic output from the retinal ciliary margin is perturbed in albinism. . Neuron 111::4964.e5
    [Crossref] [Google Scholar]
  95. Soares CA, Mason CA. 2015.. Transient ipsilateral retinal ganglion cell projections to the brain: extent, targeting, and disappearance. . Dev. Neurobiol. 75::1385401
    [Crossref] [Google Scholar]
  96. Spead O, Moreland T, Weaver CJ, Costa ID, Hegarty B, et al. 2023.. Teneurin trans-axonal signaling prunes topographically missorted axons. . Cell Rep. 42::112192
    [Crossref] [Google Scholar]
  97. Stryker MP, Schiller PH. 1975.. Eye and head movements evoked by electrical stimulation of monkey superior colliculus. . Exp. Brain Res. 23::10312
    [Crossref] [Google Scholar]
  98. Su J, Sabbagh U, Liang Y, Olejníková L, Dixon KG, et al. 2021.. A cell-ECM mechanism for connecting the ipsilateral eye to the brain. . PNAS 118::e2104343118
    [Crossref] [Google Scholar]
  99. Sun LO, Brady CM, Cahill H, Al-Khindi T, Sakuta H, et al. 2015.. Functional assembly of accessory optic system circuitry critical for compensatory eye movements. . Neuron 86::97184
    [Crossref] [Google Scholar]
  100. Thanos S, Bonhoeffer F. 1984.. Development of the transient ipsilateral retinotectal projection in the chick embryo: a numerical fluorescence-microscopic analysis. . J. Comp. Neurol. 224::40714
    [Crossref] [Google Scholar]
  101. Tsai NY, Wang F, Toma K, Yin C, Takatoh J, et al. 2022.. Trans-Seq maps a selective mammalian retinotectal synapse instructed by Nephronectin. . Nat. Neurosci. 25::65974
    [Crossref] [Google Scholar]
  102. Tuttle R, Braisted JE, Richards LJ, O'Leary DDM. 1998.. Retinal axon guidance by region-specific cues in diencephalon. . Development 125::791801
    [Crossref] [Google Scholar]
  103. Upton AL, Ravary A, Salichon N, Moessner R, Lesch KP, et al. 2002.. Lack of 5-HT1B receptor and of serotonin transporter have different effects on the segregation of retinal axons in the lateral geniculate nucleus compared to the superior colliculus. . Neuroscience 111::597610
    [Crossref] [Google Scholar]
  104. Upton AL, Salichon N, Lebrand C, Ravary A, Blakely R, et al. 1999.. Excess of serotonin (5-HT) alters the segregation of ispilateral and contralateral retinal projections in monoamine oxidase a knockout mice: possible role of 5-HT uptake in retinal ganglion cells during development. . J. Neurosci. 19::700724
    [Crossref] [Google Scholar]
  105. Victor JD, Apkarian P, Hirsch J, Conte MM, Packard M, et al. 2000.. Visual function and brain organization in non-decussating retinal-fugal fibre syndrome. . Cereb. Cortex 10::222
    [Crossref] [Google Scholar]
  106. Vigouroux RJ, César Q, Chédotal A, Nguyen-Ba-Charvet KT. 2020.. Revisiting the role of DCC in visual system development with a novel eye clearing method. . eLife 9::e51275
    [Crossref] [Google Scholar]
  107. Vigouroux RJ, Duroure K, Vougny J, Albadri S, Kozulin P, et al. 2021.. Bilateral visual projections exist in non-teleost bony fish and predate the emergence of tetrapods. . Science 372::15056
    [Crossref] [Google Scholar]
  108. Wan Y, Almeida AD, Rulands S, Chalour N, Muresan L, et al. 2016.. The ciliary marginal zone of the zebrafish retina: clonal and time-lapse analysis of a continuously growing tissue. . Dev. 143::1099107
    [Google Scholar]
  109. Wang Q, Marcucci F, Cerullo I, Mason C. 2016.. Ipsilateral and contralateral retinal ganglion cells express distinct genes during decussation at the optic chiasm. . eNeuro 3::ENEURO.0169-16.2016
    [Google Scholar]
  110. Ward R, Repérant J, Hergueta S, Miceli D, Lemire M. 1995.. Ipsilateral visual projections in non-eutherian species: random variation in the central nervous system?. Brain Res. Rev. 20::15570
    [Crossref] [Google Scholar]
  111. Williams SE, Mann F, Erskine L, Sakurai T, Wei S, et al. 2003.. Ephrin-B2 and EphB1 mediate retinal axon divergence at the optic chiasm. . Neuron 39::91935
    [Crossref] [Google Scholar]
  112. Yamamoto H, Agata K. 2011.. Optic chiasm formation in planarian I: Cooperative netrin- and robo-mediated signals are required for the early stage of optic chiasm formation. . Dev. Growth Differ. 53::30011
    [Crossref] [Google Scholar]
  113. Young TR, Black D, Mansuri H, Oohashi T, Zhou XH, et al. 2023.. Ten-m4 plays a unique role in the establishment of binocular visual circuits. . Dev. Neurobiol. 83::10424
    [Crossref] [Google Scholar]
/content/journals/10.1146/annurev-neuro-111020-093230
Loading
/content/journals/10.1146/annurev-neuro-111020-093230
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error