1932

Abstract

Recombinant adeno-associated viruses (AAVs) are commonly used gene delivery vehicles for neuroscience research. They have two engineerable features: the capsid (outer protein shell) and cargo (encapsulated genome). These features can be modified to enhance cell type or tissue tropism and control transgene expression, respectively. Several engineered AAV capsids with unique tropisms have been identified, including variants with enhanced central nervous system transduction, cell type specificity, and retrograde transport in neurons. Pairing these AAVs with modern gene regulatory elements and state-of-the-art reporter, sensor, and effector cargo enables highly specific transgene expression for anatomical and functional analyses of brain cells and circuits. Here, we discuss recent advances that provide a comprehensive (capsid and cargo) AAV toolkit for genetic access to molecularly defined brain cell types.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-neuro-111020-100834
2022-07-08
2024-06-13
Loading full text...

Full text loading...

/deliver/fulltext/neuro/45/1/annurev-neuro-111020-100834.html?itemId=/content/journals/10.1146/annurev-neuro-111020-100834&mimeType=html&fmt=ahah

Literature Cited

  1. Adachi K, Enoki T, Kawano Y, Veraz M, Nakai H. 2014. Drawing a high-resolution functional map of adeno-associated virus capsid by massively parallel sequencing. Nat. Commun. 5:13075
    [Google Scholar]
  2. Akcakaya P, Bobbin ML, Guo JA, Malagon-Lopez J, Clement K et al. 2018. In vivo CRISPR editing with no detectable genome-wide off-target mutations. Nature 561:7723416–19
    [Google Scholar]
  3. Arotcarena ML, Dovero S, Biendon N, Dutheil N, Planche V et al. 2021. Pilot study assessing the impact of intrathecal administration of variants AAV-PHP.B and AAV-PHP.eB on brain transduction in adult rhesus macaques. . Front. Bioeng. Biotechnol. 9:762209
    [Google Scholar]
  4. Aschauer DF, Kreuz S, Rumpel S. 2013. Analysis of transduction efficiency, tropism and axonal transport of AAV serotypes 1, 2, 5, 6, 8 and 9 in the mouse brain. PLOS ONE 8:9e76310
    [Google Scholar]
  5. Batista AR, King OD, Reardon CP, Davis C, Shankaracharya et al. 2019. Ly6a differential expression in blood-brain barrier is responsible for strain specific central nervous system transduction profile of AAV-PHP.B. Hum. Gene Ther 31:1–290–102
    [Google Scholar]
  6. Bedbrook CN, Deverman BE, Gradinaru V. 2018. Viral strategies for targeting the central and peripheral nervous systems. Annu. Rev. Neurosci. 41:323–48
    [Google Scholar]
  7. Bedbrook CN, Yang KK, Robinson JE, Mackey ED, Gradinaru V, Arnold FH. 2019. Machine learning-guided channelrhodopsin engineering enables minimally invasive optogenetics. Nat. Methods 16:111176–84
    [Google Scholar]
  8. Bohlen MO, McCown TJ, Powell SK, El-Nahal HG, Daw T et al. 2020. Adeno-associated virus capsid-promoter interactions in the brain translate from rat to the nonhuman primate. Hum. Gene Ther 31:21–221155–68
    [Google Scholar]
  9. Boucas J, Lux K, Huber A, Schievenbusch S, von Freyend MJ et al. 2009. Engineering adeno-associated virus serotype 2-based targeting vectors using a new insertion site-position 453-and single point mutations. J. Gene Med. 11:121103–13
    [Google Scholar]
  10. Broussard GJ, Liang Y, Fridman M, Unger EK, Meng G et al. 2018. In vivo measurement of afferent activity with axon-specific calcium imaging. Nat. Neurosci. 21:91272–80
    [Google Scholar]
  11. Brown D, Altermatt M, Dobreva T, Chen S, Wang A et al. 2021. Deep parallel characterization of AAV tropism and AAV-mediated transcriptional changes via single-cell RNA sequencing. Front. Immunol. 12:4117
    [Google Scholar]
  12. Campbell BC, Nabel EM, Murdock MH, Lao-Peregrin C, Tsoulfas P et al. 2020. mGreenLantern: a bright monomeric fluorescent protein with rapid expression and cell filling properties for neuronal imaging. PNAS 117:4830710–21
    [Google Scholar]
  13. Castle MJ, Baltanas FC, Kovacs I, Nagahara AH, Barba D, Tuszynski MH. 2020. Postmortem analysis in a clinical trial of AAV2-NGF gene therapy for Alzheimer's disease identifies a need for improved vector delivery. Hum. Gene Ther 31:7-8415–22
    [Google Scholar]
  14. Chakrabarty P, Rosario A, Cruz P, Siemienski Z, Ceballos-Diaz C et al. 2013. Capsid serotype and timing of injection determines AAV transduction in the neonatal mice brain. PLOS ONE 8:6e67680
    [Google Scholar]
  15. Challis RC, Ravindra Kumar S, Chan KY, Challis C, Beadle K et al. 2019. Systemic AAV vectors for widespread and targeted gene delivery in rodents. Nat. Protoc. 14:2379–414
    [Google Scholar]
  16. Chan KY, Jang MJ, Yoo BB, Greenbaum A, Ravi N et al. 2017. Engineered AAVs for efficient noninvasive gene delivery to the central and peripheral nervous systems. Nat. Neurosci. 20:81172–79
    [Google Scholar]
  17. Chatterjee D, Marmion DJ, McBride JL, Manfredsson FP, Butler D et al. 2021. Enhanced CNS transduction from AAV.PHP.eB infusion into the cisterna magna of older adult rats compared to AAV9. Gene Ther https://doi.org/10.1038/s41434-021-00244-y
    [Crossref] [Google Scholar]
  18. Chen X, Ravindra Kumar S, Adams CD, Yang D, Wang T et al. 2022. Engineered AAVs for non-invasive functional transgene expression in rodent and non-human primate central and peripheral nervous systems. Neuron In press
    [Google Scholar]
  19. Choi J-H, Yu N-K, Baek G-C, Bakes J, Seo D et al. 2014. Optimization of AAV expression cassettes to improve packaging capacity and transgene expression in neurons. Mol. Brain 7:117
    [Google Scholar]
  20. Chow RD, Guzman CD, Wang G, Schmidt F, Youngblood MW et al. 2017. AAV-mediated direct in vivo CRISPR screen identifies functional suppressors in glioblastoma. Nat. Neurosci. 20:101329–41
    [Google Scholar]
  21. Chuapoco MR, Flytzanis NC, Goeden N, Octeau JC, Roxas KM et al. 2022. Intravenous gene transfer throughout the brain of infant Old World primates using AAV. bioRxiv 2022.01.08.475342. https://doi.org/10.1101/2022.01.08.475342
    [Crossref]
  22. Daigle TL, Madisen L, Hage TA, Valley MT, Knoblich U et al. 2018. A suite of transgenic driver and reporter mouse lines with enhanced brain cell type targeting and functionality. Cell 174:2465–80.e22
    [Google Scholar]
  23. Davidsson M, Wang G, Aldrin-Kirk P, Cardoso T, Nolbrant S et al. 2019. A systematic capsid evolution approach performed in vivo for the design of AAV vectors with tailored properties and tropism. PNAS 116:5227053–62
    [Google Scholar]
  24. Davis KM, Pattanayak V, Thompson DB, Zuris JA, Liu DR. 2015. Small molecule-triggered Cas9 protein with improved genome-editing specificity. Nat. Chem. Biol. 11:5316–18
    [Google Scholar]
  25. Dayton RD, Grames MS, Klein RL. 2018. More expansive gene transfer to the rat CNS: AAV PHP.EB vector dose-response and comparison to AAV PHP.B. Gene Ther. 25:5392–400
    [Google Scholar]
  26. de Alencastro G, Pekrun K, Valdmanis P, Tiffany M, Xu J, Kay MA. 2020. Tracking adeno-associated virus capsid evolution by high-throughput sequencing. Hum. Gene Ther 31:9–10553–64
    [Google Scholar]
  27. de Leeuw CN, Korecki AJ, Berry GE, Hickmott JW, Lam SL et al. 2016. rAAV-compatible MiniPromoters for restricted expression in the brain and eye. Mol. Brain 9:152
    [Google Scholar]
  28. Deverman BE, Pravdo PL, Simpson BP, Kumar SR, Chan KY et al. 2016. Cre-dependent selection yields AAV variants for widespread gene transfer to the adult brain. Nat. Biotechnol. 34:2204–9
    [Google Scholar]
  29. Deverman BE, Ravina BM, Bankiewicz KS, Paul SM, Sah DWY. 2018. Gene therapy for neurological disorders: progress and prospects. Nat. Rev. Drug Discov. 17:9641–59
    [Google Scholar]
  30. Dimidschstein J, Chen Q, Tremblay R, Rogers S, Saldi G et al. 2016. A viral strategy for targeting and manipulating interneurons across vertebrate species. Nat. Neurosci. 19:121743–49
    [Google Scholar]
  31. Doudna JA. 2020. The promise and challenge of therapeutic genome editing. Nature 578:7794229–36
    [Google Scholar]
  32. Dow LE, Fisher J, O'Rourke KP, Muley A, Kastenhuber ER et al. 2015. Inducible in vivo genome editing with CRISPR-Cas9. Nat. Biotechnol. 33:4390–94
    [Google Scholar]
  33. Duan Y, Ye T, Qu Z, Chen Y, Miranda A et al. 2021. Brain-wide Cas9-mediated cleavage of a gene causing familial Alzheimer's disease alleviates amyloid-related pathologies in mice. Nat. Biomed. Eng. 6:16880
    [Google Scholar]
  34. Ellsworth JL, Gingras J, Smith LJ, Rubin H, Seabrook TA et al. 2019. Clade F AAVHSCs cross the blood brain barrier and transduce the central nervous system in addition to peripheral tissues following intravenous administration in nonhuman primates. PLOS ONE 14:11e0225582
    [Google Scholar]
  35. Eng C-HL, Lawson M, Zhu Q, Dries R, Koulena N et al. 2019. Transcriptome-scale super-resolved imaging in tissues by RNA seqFISH+. Nature 568:7751235–39
    [Google Scholar]
  36. Feldman AG, Parsons JA, Dutmer CM, Veerapandiyan A, Hafberg E et al. 2020. Subacute liver failure following gene replacement therapy for spinal muscular atrophy type 1. J. Pediatr. 225:252–58.e1
    [Google Scholar]
  37. Flotte TR, Cataltepe O, Puri A, Batista AR, Moser R et al. 2022. AAV gene therapy for Tay-Sachs disease. Nat. Med. 28:2251–59
    [Google Scholar]
  38. Foust KD, Nurre E, Montgomery CL, Hernandez A, Chan CM, Kaspar BK. 2009. Intravascular AAV9 preferentially targets neonatal-neurons and adult-astrocytes in CNS. Nat. Biotechnol. 27:159–65
    [Google Scholar]
  39. Garcia FJ, Sun N, Lee H, Godlewski B, Galani K et al. 2022. Single-cell dissection of the human brain vasculature. Nature 603:89399
    [Google Scholar]
  40. Girod A, Ried M, Wobus C, Lahm H, Leike K et al. 1999. Genetic capsid modifications allow efficient re-targeting of adeno-associated virus type 2. Nat. Med. 5:91052–56
    [Google Scholar]
  41. Goertsen D, Flytzanis NC, Goeden N, Chuapoco MR, Cummins A et al. 2022. AAV capsid variants with brain-wide transgene expression and decreased liver targeting after intravenous delivery in mouse and marmoset. Nat. Neurosci. 25:1106–15
    [Google Scholar]
  42. Gong X, Mendoza-Halliday D, Ting JT, Kaiser T, Sun X et al. 2020. An ultra-sensitive step-function opsin for minimally invasive optogenetic stimulation in mice and macaques. Neuron 107:138–51.e8
    [Google Scholar]
  43. Gray SJ, Choi VW, Asokan A, Haberman RA, McCown TJ, Samulski RJ. 2011a. Production of recombinant adeno-associated viral vectors and use in in vitro and in vivo administration. Curr. Protoc. Neurosci. 57:14.17.1–30
    [Google Scholar]
  44. Gray SJ, Matagne V, Bachaboina L, Yadav S, Ojeda SR, Samulski RJ. 2011b. Preclinical differences of intravascular AAV9 delivery to neurons and glia: a comparative study of adult mice and nonhuman primates. Mol. Ther. J. Am. Soc. Gene Ther. 19:61058–69
    [Google Scholar]
  45. Gray SJ, Nagabhushan Kalburgi S, McCown TJ, Jude Samulski R 2013. Global CNS gene delivery and evasion of anti-AAV-neutralizing antibodies by intrathecal AAV administration in non-human primates. Gene Ther 20:4450–59
    [Google Scholar]
  46. Graybuck LT, Daigle TL, Sedeño-Cortés AE, Walker M, Kalmbach B et al. 2021. Enhancer viruses for combinatorial cell-subclass-specific labeling. Neuron 109:91449–64.e13
    [Google Scholar]
  47. Grieger JC, Choi VW, Samulski RJ. 2006. Production and characterization of adeno-associated viral vectors. Nat. Protoc. 1:31412–28
    [Google Scholar]
  48. Grimm D, Lee JS, Wang L, Desai T, Akache B et al. 2008. In vitro and in vivo gene therapy vector evolution via multispecies interbreeding and retargeting of adeno-associated viruses. J. Virol. 82:125887–911
    [Google Scholar]
  49. Haery L, Deverman BE, Matho KS, Cetin A, Woodard K et al. 2019. Adeno-associated virus technologies and methods for targeted neuronal manipulation. Front. Neuroanat. 13:93
    [Google Scholar]
  50. Hanlon KS, Meltzer JC, Buzhdygan T, Cheng MJ, Sena-Esteves M et al. 2019. Selection of an efficient AAV vector for robust CNS transgene expression. Mol. Ther. Methods Clin. Dev. 15:320–32
    [Google Scholar]
  51. He T, Itano MS, Earley LF, Hall NE, Riddick N et al. 2019. The influence of murine genetic background in adeno-associated virus transduction of the mouse brain. Hum. Gene Ther. Clin. Dev. 30:4169–81
    [Google Scholar]
  52. High-dose AAV gene therapy deaths. 2020. Nat. Biotechnol. 38:910
    [Google Scholar]
  53. Hinderer C, Bell P, Vite CH, Louboutin J-P, Grant R et al. 2014. Widespread gene transfer in the central nervous system of cynomolgus macaques following delivery of AAV9 into the cisterna magna. Mol. Ther. Methods Clin. Dev. 1:14051
    [Google Scholar]
  54. Hinderer C, Katz N, Buza EL, Dyer C, Goode T et al. 2018. Severe toxicity in nonhuman primates and piglets following high-dose intravenous administration of an adeno-associated virus vector expressing human SMN. Hum. Gene Ther 29:3285–98
    [Google Scholar]
  55. Ho ML, Adler BA, Torre ML, Silberg JJ, Suh J. 2013. SCHEMA computational design of virus capsid chimeras: calibrating how genome packaging, protection, and transduction correlate with calculated structural disruption. ACS Synth. Biol. 2:12724–33
    [Google Scholar]
  56. Hordeaux J, Buza EL, Dyer C, Goode T, Mitchell TW et al. 2020a. Adeno-associated virus-induced dorsal root ganglion pathology. Hum. Gene Ther. 31:15–16808–18
    [Google Scholar]
  57. Hordeaux J, Buza EL, Jeffrey B, Song C, Jahan T et al. 2020b. MicroRNA-mediated inhibition of transgene expression reduces dorsal root ganglion toxicity by AAV vectors in primates. Sci. Transl. Med. 12:569eaba9188
    [Google Scholar]
  58. Hordeaux J, Wang Q, Katz N, Buza EL, Bell P, Wilson JM. 2018. The neurotropic properties of AAV-PHP.B are limited to C57BL/6J mice. Mol. Ther. J. Am. Soc. Gene Ther. 26:3664–68
    [Google Scholar]
  59. Hordeaux J, Yuan Y, Clark PM, Wang Q, Martino RA et al. 2019. The GPI-linked protein LY6A drives AAV-PHP.B transport across the blood-brain barrier. Mol. Ther. 27:5912–21
    [Google Scholar]
  60. Hoshino C, Konno A, Hosoi N, Kaneko R, Mukai R et al. 2021. GABAergic neuron-specific whole-brain transduction by AAV-PHP.B incorporated with a new GAD65 promoter. Mol. Brain 14:133
    [Google Scholar]
  61. Hrvatin S, Tzeng CP, Nagy MA, Stroud H, Koutsioumpa C et al. 2019. A scalable platform for the development of cell-type-specific viral drivers. eLife 8:e48089
    [Google Scholar]
  62. Huang Q, Chan KY, Tobey IG, Chan YA, Poterba T et al. 2019. Delivering genes across the blood-brain barrier: LY6A, a novel cellular receptor for AAV-PHP.B capsids. PLOS ONE 14:11e0225206
    [Google Scholar]
  63. Hudry E, Vandenberghe LH. 2019. Therapeutic AAV gene transfer to the nervous system: a clinical reality. Neuron 101:5839–62
    [Google Scholar]
  64. Isakova A, Fehlmann T, Keller A, Quake SR. 2020. A mouse tissue atlas of small noncoding RNA. PNAS 117:4125634–45
    [Google Scholar]
  65. Jackson KL, Dayton RD, Deverman BE, Klein RL. 2016. Better targeting, better efficiency for wide-scale neuronal transduction with the synapsin promoter and AAV-PHP.B. Front. Mol. Neurosci. 9:116
    [Google Scholar]
  66. Johnston S, Parylak SL, Kim S, Mac N, Lim C et al. 2021. AAV ablates neurogenesis in the adult murine hippocampus. eLife 10:e59291
    [Google Scholar]
  67. Keaveney MK, Tseng H, Ta TL, Gritton HJ, Man H-Y, Han X 2018. A microRNA-based gene-targeting tool for virally labeling interneurons in the rodent cortex. Cell Rep 24:2294–303
    [Google Scholar]
  68. Kim E, Koo T, Park SW, Kim D, Kim K et al. 2017. In vivo genome editing with a small Cas9 orthologue derived from Campylobacter jejuni. Nat. Commun. 8:114500
    [Google Scholar]
  69. Kleinstiver BP, Pattanayak V, Prew MS, Tsai SQ, Nguyen NT et al. 2016. High-fidelity CRISPR-Cas9 nucleases with no detectable genome-wide off-target effects. Nature 529:7587490–95
    [Google Scholar]
  70. Koerber JT, Jang J-H, Schaffer DV. 2008. DNA shuffling of adeno-associated virus yields functionally diverse viral progeny. Mol. Ther. J. Am. Soc. Gene Ther. 16:101703–9
    [Google Scholar]
  71. Koerber JT, Klimczak R, Jang J-H, Dalkara D, Flannery JG, Schaffer DV. 2009. Molecular evolution of adeno-associated virus for enhanced glial gene delivery. Mol. Ther. J. Am. Soc. Gene Ther. 17:122088–95
    [Google Scholar]
  72. Kondratov O, Kondratova L, Mandel RJ, Coleman K, Savage MA et al. 2021. A comprehensive study of a 29-capsid AAV library in a non-human primate central nervous system. Mol. Ther. 29:92806–20
    [Google Scholar]
  73. Kumar N, Stanford W, de Solis C, Aradhana A, Abraham ND et al. 2018. The development of an AAV-based CRISPR SaCas9 genome editing system that can be delivered to neurons in vivo and regulated via doxycycline and Cre-recombinase. Front. Mol. Neurosci. 11:413
    [Google Scholar]
  74. Kuzmin DA, Shutova MV, Johnston NR, Smith OP, Fedorin VV et al. 2021. The clinical landscape for AAV gene therapies. Nat. Rev. Drug Discov. 20:3173–74
    [Google Scholar]
  75. Lau C-H, Suh Y 2017. In vivo genome editing in animals using AAV-CRISPR system: applications to translational research of human disease. F1000Research 6:2153
    [Google Scholar]
  76. Lee J, Mou H, Ibraheim R, Liang S-Q, Liu P et al. 2019. Tissue-restricted genome editing in vivo specified by microRNA-repressible anti-CRISPR proteins. RNA 25:111421–31
    [Google Scholar]
  77. Levy JM, Yeh W-H, Pendse N, Davis JR, Hennessey E et al. 2020. Cytosine and adenine base editing of the brain, liver, retina, heart and skeletal muscle of mice via adeno-associated viruses. Nat. Biomed. Eng. 4:197–110
    [Google Scholar]
  78. Li A, Lee CM, Hurley AE, Jarrett KE, De Giorgi M et al. 2019. A self-deleting AAV-CRISPR system for in vivo genome editing. Mol. Ther. Methods Clin. Dev. 12:111–22
    [Google Scholar]
  79. Li W, Asokan A, Wu Z, Van Dyke T, DiPrimio N et al. 2008. Engineering and selection of shuffled AAV genomes: a new strategy for producing targeted biological nanoparticles. Mol. Ther. J. Am. Soc. Gene Ther. 16:71252–60
    [Google Scholar]
  80. Liguore WA, Domire JS, Button D, Wang Y, Dufour BD et al. 2019. AAV-PHP.B administration results in a differential pattern of CNS biodistribution in non-human primates compared with mice. Mol. Ther. J. Am. Soc. Gene Ther. 27:112018–37
    [Google Scholar]
  81. Liu XS, Jaenisch R. 2019. Editing the epigenome to tackle brain disorders. Trends Neurosci 42:12861–70
    [Google Scholar]
  82. Loughner CL, Bruford EA, McAndrews MS, Delp EE, Swamynathan S, Swamynathan SK. 2016. Organization, evolution and functions of the human and mouse Ly6/uPAR family genes. Hum. Genom. 10:10
    [Google Scholar]
  83. Maes ME, Colombo G, Schulz R, Siegert S. 2019. Targeting microglia with lentivirus and AAV: recent advances and remaining challenges. Neurosci. Lett. 707:134310
    [Google Scholar]
  84. Maguire CA, Crommentuijn MH, Mu D, Hudry E, Serrano-Pozo A et al. 2013. Mouse gender influences brain transduction by intravascularly administered AAV9. Mol. Ther. 21:81470–71
    [Google Scholar]
  85. Maheshri N, Koerber JT, Kaspar BK, Schaffer DV. 2006. Directed evolution of adeno-associated virus yields enhanced gene delivery vectors. Nat. Biotechnol. 24:2198–204
    [Google Scholar]
  86. Marshel JH, Kim YS, Machado TA, Quirin S, Benson B et al. 2019. Cortical layer-specific critical dynamics triggering perception. Science 365:6453eaaw5202
    [Google Scholar]
  87. Martino RA, Fluck EC, Murphy J, Wang Q, Hoff H et al. 2021. Context-specific function of the engineered peptide domain of PHP.B. J. Virol. 95:20e0116421
    [Google Scholar]
  88. Matharu N, Rattanasopha S, Tamura S, Maliskova L, Wang Y et al. 2019. CRISPR-mediated activation of a promoter or enhancer rescues obesity caused by haploinsufficiency. Science 363:6424eaau0629
    [Google Scholar]
  89. Matsuzaki Y, Konno A, Mochizuki R, Shinohara Y, Nitta K et al. 2018. Intravenous administration of the adeno-associated virus-PHP.B capsid fails to upregulate transduction efficiency in the marmoset brain. Neurosci. Lett. 665:182–88
    [Google Scholar]
  90. Matsuzaki Y, Tanaka M, Hakoda S, Masuda T, Miyata R et al. 2019. Neurotropic properties of AAV-PHP.B are shared among diverse inbred strains of mice. Mol. Ther. J. Am. Soc. Gene Ther. 27:4700–4
    [Google Scholar]
  91. Mehta P, Kreeger L, Wylie DC, Pattadkal JJ, Lusignan T et al. 2019. Functional access to neuron subclasses in rodent and primate forebrain. Cell Rep 26:102818–32.e8
    [Google Scholar]
  92. Mendell JR, Al-Zaidy S, Shell R, Arnold WD, Rodino-Klapac LR et al. 2017. Single-dose gene-replacement therapy for spinal muscular atrophy. N. Engl. J. Med. 377:181713–22
    [Google Scholar]
  93. Mich JK, Graybuck LT, Hess EE, Mahoney JT, Kojima Y et al. 2021. Functional enhancer elements drive subclass-selective expression from mouse to primate neocortex. Cell Rep 34:13108754
    [Google Scholar]
  94. Miura Y, Li M-Y, Birey F, Ikeda K, Revah O et al. 2020. Generation of human striatal organoids and cortico-striatal assembloids from human pluripotent stem cells. Nat. Biotechnol. 38:121421–30
    [Google Scholar]
  95. Monteys AM, Hundley AA, Ranum PT, Tecedor L, Muehlmatt A et al. 2021. Regulated control of gene therapies by drug-induced splicing. Nature 596:7871291–95
    [Google Scholar]
  96. Morabito G, Giannelli SG, Ordazzo G, Bido S, Castoldi V et al. 2017. AAV-PHP.B-mediated global-scale expression in the mouse nervous system enables GBA1 gene therapy for wide protection from synucleinopathy. Mol. Ther. 25:122727–42
    [Google Scholar]
  97. Muhuri M, Zhan W, Maeda Y, Li J, Lotun A et al. 2021. Novel combinatorial microRNA-binding sites in AAV vectors synergistically diminish antigen presentation and transgene immunity for efficient and stable transduction. Front. Immunol. 12:674242
    [Google Scholar]
  98. Nagai J, Bellafard A, Qu Z, Yu X, Ollivier M et al. 2021. Specific and behaviorally consequential astrocyte Gq GPCR signaling attenuation in vivo with iβARK. Neuron 109:142256–74.e9
    [Google Scholar]
  99. Naidoo J, Stanek LM, Ohno K, Trewman S, Samaranch L et al. 2018. Extensive transduction and enhanced spread of a modified AAV2 capsid in the non-human primate CNS. Mol. Ther. 26:102418–30
    [Google Scholar]
  100. Nair RR, Blankvoort S, Lagartos MJ, Kentros C 2020. Enhancer-driven gene expression (EDGE) enables the generation of viral vectors specific to neuronal subtypes. iScience 23:3100888
    [Google Scholar]
  101. Nitta K, Matsuzaki Y, Konno A, Hirai H. 2017. Minimal Purkinje cell-specific PCP2/L7 promoter virally available for rodents and non-human primates. Mol. Ther. Methods Clin. Dev. 6:159–70
    [Google Scholar]
  102. Nonnenmacher M, Wang W, Child MA, Ren X-Q, Huang C et al. 2021. Rapid evolution of blood-brain-barrier-penetrating AAV capsids by RNA-driven biopanning. Mol. Ther. Methods Clin. Dev. 20:366–78
    [Google Scholar]
  103. Ogden PJ, Kelsic ED, Sinai S, Church GM. 2019. Comprehensive AAV capsid fitness landscape reveals a viral gene and enables machine-guided design. Science 366:64691139–43
    [Google Scholar]
  104. Ojala DS, Sun S, Santiago-Ortiz JL, Shapiro MG, Romero PA, Schaffer DV. 2018. In vivo selection of a computationally designed SCHEMA AAV library yields a novel variant for infection of adult neural stem cells in the SVZ. Mol. Ther. J. Am. Soc. Gene Ther. 26:1304–19
    [Google Scholar]
  105. Öztürk BE, Johnson ME, Kleyman M, Turunc S, He J et al. 2021. scAAVengr, a transcriptome-based pipeline for quantitative ranking of engineered AAVs with single-cell resolution. eLife 10:e64175
    [Google Scholar]
  106. Patriarchi T, Cho JR, Merten K, Howe MW, Marley A et al. 2018. Ultrafast neuronal imaging of dopamine dynamics with designed genetically encoded sensors. Science 360:6396aat4422
    [Google Scholar]
  107. Perabo L, Endell J, King S, Lux K, Goldnau D et al. 2006. Combinatorial engineering of a gene therapy vector: directed evolution of adeno-associated virus. J. Gene Med. 8:2155–62
    [Google Scholar]
  108. Pietersz KL, Plessis FD, Pouw SM, Liefhebber JM, van Deventer SJ et al. 2021. PhP.B enhanced adeno-associated virus mediated-expression following systemic delivery or direct brain administration. Front. Bioeng. Biotechnol. 9:617
    [Google Scholar]
  109. Porteus MH. 2019. A new class of medicines through DNA editing. N. Engl. J. Med. 380:10947–59
    [Google Scholar]
  110. Powell SK, Samulski RJ, McCown TJ. 2020. AAV capsid-promoter interactions determine CNS cell-selective gene expression in vivo. Mol. Ther. 28:51373–80
    [Google Scholar]
  111. Przybyla L, Gilbert LA. 2021. A new era in functional genomics screens. Nat. Rev. Genet. https://doi.org/10.1038/s41576-021-00409-w
    [Crossref] [Google Scholar]
  112. Rabinowitz JE, Xiao W, Samulski RJ 1999. Insertional mutagenesis of AAV2 capsid and the production of recombinant virus. Virology 265:2274–85
    [Google Scholar]
  113. Ran FA, Cong L, Yan WX, Scott DA, Gootenberg JS et al. 2015. In vivo genome editing using Staphylococcus aureus Cas9. Nature 520:7546186–91
    [Google Scholar]
  114. Ravindra Kumar S, Miles TF, Chen X, Brown D, Dobreva T et al. 2020. Multiplexed Cre-dependent selection yields systemic AAVs for targeting distinct brain cell types. Nat. Methods 17:5541–50
    [Google Scholar]
  115. Roth BL. 2016. DREADDs for neuroscientists. Neuron 89:4683–94
    [Google Scholar]
  116. Rubin AN, Malik R, Cho KKA, Lim KJ, Lindtner S et al. 2020. Regulatory elements inserted into AAVs confer preferential activity in cortical interneurons. eNeuro 7:6ENEURO.0211–20.2020
    [Google Scholar]
  117. Rumachik NG, Malaker SA, Poweleit N, Maynard LH, Adams CM et al. 2020. Methods matter: standard production platforms for recombinant AAV produce chemically and functionally distinct vectors. Mol. Ther. Methods Clin. Dev. 18:98–118
    [Google Scholar]
  118. Russell S, Bennett J, Wellman JA, Chung DC, Yu ZF et al. 2017. Efficacy and safety of voretigene neparvovec (AAV2-hRPE65v2) in patients with RPE65-mediated inherited retinal dystrophy: a randomised, controlled, open-label, phase 3 trial. Lancet 390:10097849–60
    [Google Scholar]
  119. Sahel J-A, Boulanger-Scemama E, Pagot C, Arleo A, Galluppi F et al. 2021. Partial recovery of visual function in a blind patient after optogenetic therapy. Nat. Med. 27:71223–29
    [Google Scholar]
  120. Samaranch L, Salegio EA, San Sebastian W, Kells AP, Foust KD et al. 2012. Adeno-associated virus serotype 9 transduction in the central nervous system of nonhuman primates. Hum. Gene Ther 23:4382–89
    [Google Scholar]
  121. Samulski RJ, Muzyczka N. 2014. AAV-mediated gene therapy for research and therapeutic purposes. Annu. Rev. Virol. 1:427–51
    [Google Scholar]
  122. Shemesh OA, Linghu C, Piatkevich KD, Goodwin D, Celiker OT et al. 2020. Precision calcium imaging of dense neural populations via a cell-body-targeted calcium indicator. Neuron 107:3470–86.e11
    [Google Scholar]
  123. Sinnett SE, Boyle E, Lyons C, Gray SJ. 2021. Engineered microRNA-based regulatory element permits safe high-dose miniMECP2 gene therapy in Rett mice. Brain 144:103005–19
    [Google Scholar]
  124. Srivastava A. 2016. In vivo tissue-tropism of adeno-associated viral vectors. Curr. Opin. Virol. 21:75–80
    [Google Scholar]
  125. Sullivan JA, Stanek LM, Lukason MJ, Bu J, Osmond SR et al. 2018. Rationally designed AAV2 and AAVrh8R capsids provide improved transduction in the retina and brain. Gene Ther 25:3205–19
    [Google Scholar]
  126. Suriano CM, Verpeut JL, Kumar N, Ma J, Jung C, Boulanger LM 2021. Adeno-associated virus (AAV) reduces cortical dendritic complexity in a TLR9-dependent manner. bioRxiv 2021.09.28.462148. https://doi.org/10.1101/2021.09.28.462148
    [Crossref]
  127. Szablowski JO, Lee-Gosselin A, Lue B, Malounda D, Shapiro MG. 2018. Acoustically targeted chemogenetics for the non-invasive control of neural circuits. Nat. Biomed. Eng. 2:7475–84
    [Google Scholar]
  128. Tabebordbar M, Lagerborg KA, Stanton A, King EM, Ye S et al. 2021. Directed evolution of a family of AAV capsid variants enabling potent muscle-directed gene delivery across species. Cell 184:194919–38.e22
    [Google Scholar]
  129. Tan F, Chu C, Qi J, Li W, You D et al. 2019. AAV-ie enables safe and efficient gene transfer to inner ear cells. Nat. Commun. 10:13733
    [Google Scholar]
  130. Tervo DGR, Huang B-Y, Viswanathan S, Gaj T, Lavzin M et al. 2016. A designer AAV variant permits efficient retrograde access to projection neurons. Neuron 92:2372–82
    [Google Scholar]
  131. Thévenot E, Jordão JF, O'Reilly MA, Markham K, Weng YQ et al. 2012. Targeted delivery of self-complementary adeno-associated virus serotype 9 to the brain, using magnetic resonance imaging-guided focused ultrasound. Hum. Gene Ther. 23:111144–55
    [Google Scholar]
  132. Tickner ZJ, Farzan M. 2021. Riboswitches for controlled expression of therapeutic transgenes delivered by adeno-associated viral vectors. Pharmaceuticals 14:6554
    [Google Scholar]
  133. Unger EK, Keller JP, Altermatt M, Liang R, Matsui A et al. 2020. Directed evolution of a selective and sensitive serotonin sensor via machine learning. Cell 183:71986–2002.e26
    [Google Scholar]
  134. Van Alstyne M, Tattoli I, Delestrée N, Recinos Y, Workman E et al. 2021. Gain of toxic function by long-term AAV9-mediated SMN overexpression in the sensorimotor circuit. Nat. Neurosci. 24:7930–40
    [Google Scholar]
  135. Vandenberghe LH, Breous E, Nam H-J, Gao G, Xiao R et al. 2009. Naturally occurring singleton residues in AAV capsid impact vector performance and illustrate structural constraints. Gene Ther 16:121416–28
    [Google Scholar]
  136. Vormstein-Schneider D, Lin JD, Pelkey KA, Chittajallu R, Guo B et al. 2020. Viral manipulation of functionally distinct interneurons in mice, non-human primates and humans. Nat. Neurosci. 23:121629–36
    [Google Scholar]
  137. Wang D, Zhang F, Gao G. 2020. CRISPR-based therapeutic genome editing: strategies and in vivo delivery by AAV vectors. Cell 181:1136–50
    [Google Scholar]
  138. Wang SK, Lapan SW, Hong CM, Krause TB, Cepko CL. 2020. In situ detection of adeno-associated viral vector genomes with SABER-FISH. Mol. Ther. Methods Clin. Dev. 19:376–86
    [Google Scholar]
  139. Watakabe A, Ohtsuka M, Kinoshita M, Takaji M, Isa K et al. 2015. Comparative analyses of adeno-associated viral vector serotypes 1, 2, 5, 8 and 9 in marmoset, mouse and macaque cerebral cortex. Neurosci. Res. 93:144–57
    [Google Scholar]
  140. Wegmann S, Devos SL, Zeitler B, Marlen K, Bennett RE et al. 2021. Persistent repression of tau in the brain using engineered zinc finger protein transcription factors. Sci. Adv. 7:12eabe1611
    [Google Scholar]
  141. Weinmann J, Weis S, Sippel J, Tulalamba W, Remes A et al. 2020. Identification of a myotropic AAV by massively parallel in vivo evaluation of barcoded capsid variants. Nat. Commun. 11:15432
    [Google Scholar]
  142. Weiss AR, Liguore WA, Domire JS, Button D, McBride JL. 2020. Intra-striatal AAV2.retro administration leads to extensive retrograde transport in the rhesus macaque brain: implications for disease modeling and therapeutic development. Sci. Rep. 10:16970
    [Google Scholar]
  143. Wu Z, Zhang Y, Yu H, Pan D, Wang Y et al. 2021. Programmed genome editing by a miniature CRISPR-Cas12f nuclease. Nat. Chem. Biol. 17:1132–38
    [Google Scholar]
  144. Xiao Y, Muhuri M, Li S, Qin W, Xu G et al. 2019. Circumventing cellular immunity by miR142-mediated regulation sufficiently supports rAAV-delivered OVA expression without activating humoral immunity. JCI Insight 4:13e99052
    [Google Scholar]
  145. Xie J, Xie Q, Zhang H, Ameres SL, Hung J-H et al. 2011. MicroRNA-regulated, systemically delivered rAAV9: a step closer to CNS-restricted transgene expression. Mol. Ther. 19:3526–35
    [Google Scholar]
  146. Xu X, Chemparathy A, Zeng L, Kempton HR, Shang S et al. 2021. Engineered miniature CRISPR-Cas system for mammalian genome regulation and editing. Mol. Cell 81:204333–45.e4
    [Google Scholar]
  147. Xu X, Qi LS. 2019. A CRISPR-dCas toolbox for genetic engineering and synthetic biology. J. Mol. Biol. 431:134–47
    [Google Scholar]
  148. Yang B, Li S, Wang H, Guo Y, Gessler DJ et al. 2014. Global CNS transduction of adult mice by intravenously delivered rAAVrh.8 and rAAVrh.10 and nonhuman primates by rAAVrh.10. Mol. Ther. 22:71299–309
    [Google Scholar]
  149. Yao S, Yuan P, Ouellette B, Zhou T, Mortrud M et al. 2020. RecV recombinase system for in vivo targeted optogenomic modifications of single cells or cell populations. Nat. Methods 17:4422–29
    [Google Scholar]
  150. Zhang F. 2019. Development of CRISPR-Cas systems for genome editing and beyond. Q. Rev. Biophys. 52:e6
    [Google Scholar]
  151. Zhong G, Wang H, He W, Li Y, Mou H et al. 2020. A reversible RNA on-switch that controls gene expression of AAV-delivered therapeutics in vivo. Nat. Biotechnol. 38:2169–75
    [Google Scholar]
  152. Zhu D, Schieferecke AJ, Lopez PA, Schaffer DV. 2021. Adeno-associated virus vector for central nervous system gene therapy. Trends Mol. Med. 27:6524–37
    [Google Scholar]
  153. Zincarelli C, Soltys S, Rengo G, Rabinowitz JE. 2008. Analysis of AAV serotypes 1–9 mediated gene expression and tropism in mice after systemic injection. Mol. Ther. 16:61073–80
    [Google Scholar]
/content/journals/10.1146/annurev-neuro-111020-100834
Loading
/content/journals/10.1146/annurev-neuro-111020-100834
Loading

Data & Media loading...

Supplementary Data

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error