1932

Abstract

Emotions are fundamental to our experience and behavior, affecting and motivating all aspects of our lives. Scientists of various disciplines have been fascinated by emotions for centuries, yet even today vigorous debates abound about how to define emotions and how to best study their neural underpinnings. Defining emotions from an evolutionary perspective and acknowledging their important functional roles in supporting survival allows the study of emotion states in diverse species. This approach enables taking advantage of modern tools in behavioral, systems, and circuit neurosciences, allowing the precise dissection of neural mechanisms and behavior underlying emotion processes in model organisms. Here we review findings about the neural circuit mechanisms underlying emotion processing across species and try to identify points of convergence as well as important next steps in the pursuit of understanding how emotions emerge from neural activity.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-neuro-111020-103314
2023-07-10
2024-12-14
Loading full text...

Full text loading...

/deliver/fulltext/neuro/46/1/annurev-neuro-111020-103314.html?itemId=/content/journals/10.1146/annurev-neuro-111020-103314&mimeType=html&fmt=ahah

Literature Cited

  1. Adolphs R. 2017. How should neuroscience study emotions? By distinguishing emotion states, concepts, and experiences. Soc. Cogn. Affect. Neurosci. 12:124–31
    [Google Scholar]
  2. Adolphs R, Anderson DJ. 2018. The Neuroscience of Emotion: A New Synthesis Princeton, NJ: Princeton Univ. Press
    [Google Scholar]
  3. Adolphs R, Andler D. 2018. Investigating emotions as functional states distinct from feelings. Emot. Rev. 10:3191–201
    [Google Scholar]
  4. Adolphs R, Mlodinow L, Feldman Barrett L. 2019. What is an emotion?. Curr. Biol. 29:20R1060–64
    [Google Scholar]
  5. Allsop SA, Wichmann R, Mills F, Burgos-Robles A, Chang CJ et al. 2018. Corticoamygdala transfer of socially derived information gates observational learning. Cell 173:61329–42.e18
    [Google Scholar]
  6. Anderson DJ. 2016. Circuit modules linking internal states and social behaviour in flies and mice. Nat. Rev. Neurosci. 17:692–704
    [Google Scholar]
  7. Anderson DJ, Adolphs R. 2014. A framework for studying emotions across species. Cell 157:1187–200
    [Google Scholar]
  8. Ashhad S, Kam K, Del Negro CA, Feldman JL. 2022. Breathing rhythm and pattern and their influence on emotion. Annu. Rev. Neurosci. 45:223–47
    [Google Scholar]
  9. Bach DR, Dayan P. 2017. Algorithms for survival: a comparative perspective on emotions. Nat. Rev. Neurosci. 18:5311–19
    [Google Scholar]
  10. Bagur S, Lefort JM, Lacroix MM, de Lavilléon G, Herry C et al. 2021. Breathing-driven prefrontal oscillations regulate maintenance of conditioned-fear evoked freezing independently of initiation. Nat. Commun. 12:12605
    [Google Scholar]
  11. Bai L, Mesgarzadeh S, Ramesh KS, Huey EL, Liu Y et al. 2019. Genetic identification of vagal sensory neurons that control feeding. Cell 179:51129–43.e23
    [Google Scholar]
  12. Bard P. 1928. A diencephalic mechanism for the expression of rage with special reference to the sympathetic nervous system. Am. J. Physiol. 84:3490–515
    [Google Scholar]
  13. Bard P. 1934. On emotional expression after decortication with some remarks on certain theoretical views: part II. Psychol. Rev. 41:5424–49
    [Google Scholar]
  14. Berridge KC. 2003. Pleasures of the brain. Brain Cogn. 52:1106–28
    [Google Scholar]
  15. Berridge KC. 2018. Evolving concepts of emotion and motivation. Front. Psychol. 9:1647
    [Google Scholar]
  16. Berridge KC. 2019. Affective valence in the brain: modules or modes?. Nat. Rev. Neurosci. 20:4225–34
    [Google Scholar]
  17. Berridge KC, Dayan P. 2021. Liking. Curr. Biol. 31:24R1555–57
    [Google Scholar]
  18. Berridge KC, Kringelbach ML. 2015. Pleasure systems in the brain. Neuron 86:3646–64
    [Google Scholar]
  19. Berridge KC, Robinson TE. 1998. What is the role of dopamine in reward: hedonic impact, reward learning, or incentive salience?. Brain Res. Rev. 28:3309–69
    [Google Scholar]
  20. Berridge KC, Robinson TE. 2003. Parsing reward. Trends Neurosci. 26:9507–13
    [Google Scholar]
  21. Best M, Williams JM, Coccaro EF. 2002. Evidence for a dysfunctional prefrontal circuit in patients with an impulsive aggressive disorder. PNAS 99:128448–53
    [Google Scholar]
  22. Biro L, Sipos E, Bruzsik B, Farkas I, Zelena D et al. 2018. Task division within the prefrontal cortex: distinct neuron populations selectively control different aspects of aggressive behavior via the hypothalamus. J. Neurosci. 38:174065–75
    [Google Scholar]
  23. Blanchard DC, Blanchard RJ 2008. Defensive behaviors, fear, and anxiety. Handbook of Anxiety and Fear RJ Blanchard, DC Blanchard, G Griebel, D Nutt 63–79. New York: Academic
    [Google Scholar]
  24. Blanchard DC, Griebel G, Blanchard RJ. 2001. Mouse defensive behaviours: pharmacological and behavioural assays for anxiety and panic. Neurosci. Biobehav. Rev. 25:205–18
    [Google Scholar]
  25. Bliss-Moreau E. 2017. Constructing nonhuman animal emotion. Curr. Opin. Psychol. 17:184–88
    [Google Scholar]
  26. Brauer LH, De Wit H. 1997. High dose pimozide does not block amphetamine-induced euphoria in normal volunteers. Pharmacol. Biochem. Behav. 56:2265–72
    [Google Scholar]
  27. Buchanan KL, Rupprecht LE, Kaelberer MM, Sahasrabudhe A, Klein ME et al. 2022. The preference for sugar over sweetener depends on a gut sensor cell. Nat. Neurosci. 25:2191–200
    [Google Scholar]
  28. Burgdorf J, Panksepp J. 2006. The neurobiology of positive emotions. Neurosci. Biobehav. Rev. 30:2173–87
    [Google Scholar]
  29. Cai H, Haubensak W, Anthony TE, Anderson DJ. 2014. Central amygdala PKC-δ+ neurons mediate the influence of multiple anorexigenic signals. Nat. Neurosci. 17:91240–48
    [Google Scholar]
  30. Calhoon GG, Tye KM. 2015. Resolving the neural circuits of anxiety. Nat. Neurosci. 18:101394–404
    [Google Scholar]
  31. Cannon WB. 1927. The James-Lange theory of emotions: a critical examination and an alternative theory. Am. J. Psychol. 39:1106–24
    [Google Scholar]
  32. Castro DC, Berridge KC. 2017. Opioid and orexin hedonic hotspots in rat orbitofrontal cortex and insula. PNAS 114:43E9125–34
    [Google Scholar]
  33. Chapman HA, Anderson AK. 2012. Understanding disgust. Ann. N. Y. Acad. Sci. 1251:162–76
    [Google Scholar]
  34. Chen WG, Schloesser D, Arensdorf AM, Simmons JM, Cui C et al. 2021. The emerging science of interoception: sensing, integrating, interpreting, and regulating signals within the self. Trends Neurosci. 44:13–16
    [Google Scholar]
  35. Choy O, Raine A, Hamilton RH 2018. Stimulation of the prefrontal cortex reduces intentions to commit aggression: a randomized, double-blind, placebo-controlled, stratified, parallel-group trial. J. Neurosci. 38:296505–12
    [Google Scholar]
  36. Craig AD. 2002. How do you feel? Interoception: the sense of the physiological condition of the body. Nat. Rev. Neurosci. 3:8655–66
    [Google Scholar]
  37. Craig AD. 2003a. Interoception: the sense of the physiological condition of the body. Curr. Opin. Neurobiol. 13:4500–5
    [Google Scholar]
  38. Craig AD. 2003b. Pain mechanisms: labeled lines versus convergence in central processing. Annu. Rev. Neurosci. 26:1–30
    [Google Scholar]
  39. Critchley HD, Eccles J, Garfinkel SN. 2013. Interaction between cognition, emotion, and the autonomic nervous system. Handbook of Clinical Neurology, Vol. 117 Autonomic Nervous System RM Buijs, DF Swaab 59–77. New York: Elsevier
    [Google Scholar]
  40. Critchley HD, Garfinkel SN. 2017. Interoception and emotion. Curr. Opin. Psychol. 17:7–14
    [Google Scholar]
  41. Cromwell HC, Berridge KC. 1993. Where does damage lead to enhanced food aversion: the ventral pallidum/substantia innominata or lateral hypothalamus?. Brain Res. 624:1–21–10
    [Google Scholar]
  42. Cromwell HC, Berridge KC. 1994. Mapping of globus pallidus and ventral pallidum lesions that produce hyperkinetic treading. Brain Res. 668:1–216–29
    [Google Scholar]
  43. Curtis V. 2011. Why disgust matters. Philos. Trans. R. Soc. B 366:15833478–90
    [Google Scholar]
  44. Curtis VA. 2014. Infection-avoidance behaviour in humans and other animals. Trends Immunol. 35:10457–64
    [Google Scholar]
  45. D'Acquisto F. 2017. Affective immunology: where emotions and the immune response converge. Dialogues Clin. Neurosci. 19:19–19
    [Google Scholar]
  46. Damasio A. 1998. Emotion in the perspective of an integrated nervous system. Brain Res. Rev. 26:2–383–86
    [Google Scholar]
  47. Damasio A, Carvalho GB. 2013. The nature of feelings: evolutionary and neurobiological origins. Nat. Rev. Neurosci. 14:2143–52
    [Google Scholar]
  48. Damasio A, Damasio H, Tranel D. 2013. Persistence of feelings and sentience after bilateral damage of the insula. Cereb. Cortex 23:4833–46
    [Google Scholar]
  49. Darwin C. 1872. The Expression of the Emotions in Man and Animals London: Murray
    [Google Scholar]
  50. Davis M, Walker DL, Miles L, Grillon C. 2010. Phasic versus sustained fear in rats and humans: role of the extended amygdala in fear versus anxiety. Neuropsychopharmacology 35:1105–35
    [Google Scholar]
  51. de Waal FBM. 2011. What is an animal emotion?. Ann. N. Y. Acad. Sci. 1224:1191–206
    [Google Scholar]
  52. de Waal FBM, Andrews K. 2022. The question of animal emotions: Do animals, including invertebrates, have felt emotions and does this morally matter?. Science 375:1351–52
    [Google Scholar]
  53. de Waal FBM, Preston SD. 2017. Mammalian empathy: behavioural manifestations and neural basis. Nat. Rev. Neurosci. 18:498–509
    [Google Scholar]
  54. Delamater AR, LoLordo VM, Berridge KC. 1986. Control of fluid palatability by exteroceptive Pavlovian signals. J. Exp. Psychol. Anim. Behav. Process. 12:2143–52
    [Google Scholar]
  55. Denton D. 2012. Primordial Emotions: The Dawning of Consciousness Oxford, UK: Oxford Univ. Press
    [Google Scholar]
  56. Dolensek N, Gehrlach DA, Klein AS, Gogolla N. 2020. Facial expressions of emotion states and their neuronal correlates in mice. Science 368:648689–94
    [Google Scholar]
  57. Douglass AM, Kucukdereli H, Ponserre M, Markovic M, Gründemann J et al. 2017. Central amygdala circuits modulate food consumption through a positive-valence mechanism. Nat. Neurosci. 20:101384–94
    [Google Scholar]
  58. Dworkin JD, Linn KA, Teich EG, Zurn P, Shinohara RT, Bassett DS. 2020. The extent and drivers of gender imbalance in neuroscience reference lists. Nat. Neurosci. 23:8918–26
    [Google Scholar]
  59. Edelman BJ, Macé E. 2021. Functional ultrasound brain imaging: bridging networks, neurons, and behavior. Curr. Opin. Biomed. Eng. 18:100286
    [Google Scholar]
  60. Ekman P, Oster H. 1979. Facial expressions of emotion. Annu. Rev. Psychol. 30:527–54
    [Google Scholar]
  61. Falkner AL, Wei D, Song A, Watsek LW, Chen I et al. 2020. Hierarchical representations of aggression in a hypothalamic-midbrain circuit. Neuron 106:4637–48.e6
    [Google Scholar]
  62. Fanselow MS. 1994. Neural organization of the defensive behavior system responsible for fear. Psychon. Bull. Rev. 1:4429–38
    [Google Scholar]
  63. Feinstein JS, Adolphs R, Damasio A, Tranel D. 2011. The human amygdala and the induction and experience of fear. Curr. Biol. 21:134–38
    [Google Scholar]
  64. Feinstein JS, Buzza C, Hurlemann R, Follmer RL, Dahdaleh NS et al. 2013. Fear and panic in humans with bilateral amygdala damage. Nat. Neurosci. 16:3270–72
    [Google Scholar]
  65. Feldman Barrett L. 2006. Are emotions natural kinds?. Perspect. Psychol. Sci. 1:128–58
    [Google Scholar]
  66. Feldman Barrett L. 2017. The theory of constructed emotion: an active inference account of interoception and categorization. Soc. Cogn. Affect. Neurosci. 12:11–23
    [Google Scholar]
  67. Feldman Barrett L, Simmons WK 2015. Interoceptive predictions in the brain. Nat. Rev. Neurosci. 16:419–29
    [Google Scholar]
  68. Fernandes AB, Alves da Silva J, Almeida J, Cui G, Gerfen CR et al. 2020. Postingestive modulation of food seeking depends on vagus-mediated dopamine neuron activity. Neuron 106:5778–88.e6
    [Google Scholar]
  69. Furman M. 2021. Special issue on interoception. Trends Neurosci. 44:11–2
    [Google Scholar]
  70. Ganchrow JR, Steiner JE, Daher M. 1983. Neonatal facial expressions in response to different qualities and intensities of gustatory stimuli. Infant Behav. Dev. 6:4473–84
    [Google Scholar]
  71. Garfinkel SN, Critchley HD. 2016. Threat and the body: how the heart supports fear processing. Trends Cogn. Sci. 20:134–46
    [Google Scholar]
  72. Gehrlach DA, Dolensek N, Klein AS, Roy Chowdhury R, Matthys A et al. 2019. Aversive state processing in the posterior insular cortex. Nat. Neurosci. 22:91424–37
    [Google Scholar]
  73. Golden SA, Jin M, Shaham Y 2019. Animal models of (or for) aggression reward, addiction, and relapse: behavior and circuits. J. Neurosci. 39:213996–4008
    [Google Scholar]
  74. Goodwin NL, Nilsson SRO, Golden SA. 2020. Rage Against the Machine: advancing the study of aggression ethology via machine learning. Psychopharmacology 237:2569–88
    [Google Scholar]
  75. Grill HJ, Norgren R. 1978a. The taste reactivity test. I. Mimetic responses to gustatory stimuli in neurologically normal rats. Brain Res. 143:2263–79
    [Google Scholar]
  76. Grill HJ, Norgren R. 1978b. The taste reactivity test. II. Mimetic responses to gustatory stimuli in chronic thalamic and chronic decerebrate rats. Brain Res. 143:2281–97
    [Google Scholar]
  77. Gründemann J, Bitterman Y, Lu T, Krabbe S, Grewe BF et al. 2019. Amygdala ensembles encode behavioral states. Science 364:6437aav8736
    [Google Scholar]
  78. Grupe DW, Nitschke JB. 2013. Uncertainty and anticipation in anxiety: an integrated neurobiological and psychological perspective. Nat. Rev. 14:488–501
    [Google Scholar]
  79. Han W, Tellez LA, Perkins MH, Perez IO, Qu T et al. 2018. A neural circuit for gut-induced reward. Cell 175:3665–78.e23
    [Google Scholar]
  80. Haubensak W, Kunwar PS, Cai H, Ciocchi S, Wall NR et al. 2010. Genetic dissection of an amygdala microcircuit that gates conditioned fear. Nature 468:7321270–76
    [Google Scholar]
  81. Hess WR, Akert K. 1955. Experimental data on role of hypothalamus in mechanism of emotional behavior. AMA Arch. Neurol. Psychiatry 73:2127–29
    [Google Scholar]
  82. Ho CY, Berridge KC. 2014. Excessive disgust caused by brain lesions or temporary inactivations: mapping hotspots of nucleus accumbens and ventral pallidum. Eur. J. Neurosci. 40:103556–72
    [Google Scholar]
  83. James W. 1884. What is an emotion?. Mind 9:34188–205
    [Google Scholar]
  84. Jürgens U. 1979. Vocalization as an emotional indicator. Behaviour 69:1–288–117
    [Google Scholar]
  85. Jürgens U, Ploog D. 1970. Cerebral representation of vocalization in the squirrel monkey. Exp. Brain Res. 10:5532–54
    [Google Scholar]
  86. Kaplan JM, Roitman M, Grill HJ. 2000. Food deprivation does not potentiate glucose taste reactivity responses of chronic decerebrate rats. Brain Res. 870:1–2102–8
    [Google Scholar]
  87. Kavaliers M, Ossenkopp KP, Choleris E. 2019. Social neuroscience of disgust. Genes Brain Behav. 18:1e12508
    [Google Scholar]
  88. Kennedy A, Kunwar PS, Li L-y, Stagkourakis S, Wagenaar DA, Anderson DJ. 2020. Stimulus-specific hypothalamic encoding of a persistent defensive state. Nature 586:7831730–34
    [Google Scholar]
  89. Kim J, Pignatelli M, Xu S, Itohara S, Tonegawa S. 2016. Antagonistic negative and positive neurons of the basolateral amygdala. Nat. Neurosci. 19:121636–46
    [Google Scholar]
  90. Kim SY, Adhikari A, Lee SY, Marshel JH, Kim CK et al. 2013. Diverging neural pathways assemble a behavioural state from separable features in anxiety. Nature 496:7444219–23
    [Google Scholar]
  91. Klarer M, Arnold M, Gunther L, Winter C, Langhans W, Meyer U. 2014. Gut vagal afferents differentially modulate innate anxiety and learned fear. J. Neurosci. 34:217067–76
    [Google Scholar]
  92. Klein AS, Dolensek N, Weiand C, Gogolla N. 2021. Fear balance is maintained by bodily feedback to the insular cortex in mice. Science 374:1010–15
    [Google Scholar]
  93. Knutson B, Burgdorf J, Panksepp J. 2002. Ultrasonic vocalizations as indices of affective states in rats. Psychol. Bull. 128:6961–77
    [Google Scholar]
  94. Kohl J, Babayan BM, Rubinstein ND, Autry AE, Marin-Rodriguez B et al. 2018. Functional circuit architecture underlying parental behaviour. Nature 556:7701326–31
    [Google Scholar]
  95. Koren T, Yifa R, Amer M, Krot M, Boshnak N et al. 2021. Insular cortex neurons encode and retrieve specific immune responses. Cell 184:245902–15.e17
    [Google Scholar]
  96. Kragel PA, Čeko M, Theriault J, Chen D, Satpute AB et al. 2021. A human colliculus-pulvinar-amygdala pathway encodes negative emotion. Neuron 109:152404–12.e5
    [Google Scholar]
  97. Kragel PA, LaBar KS. 2014. Advancing emotion theory with multivariate pattern classification. Emot. Rev. 6:2160–74
    [Google Scholar]
  98. Kreibig SD. 2010. Autonomic nervous system activity in emotion: a review. Biol. Psychol. 84:394–421
    [Google Scholar]
  99. Kryklywy JH, Ehlers MR, Anderson AK, Todd RM. 2020. From architecture to evolution: multisensory evidence of decentralized emotion. Trends Cogn. Sci. 24:11916–29
    [Google Scholar]
  100. Kunwar PS, Zelikowsky M, Remedios R, Cai H, Yilmaz M et al. 2015. Ventromedial hypothalamic neurons control a defensive emotion state. eLife 4:e06633
    [Google Scholar]
  101. LeDoux J. 2003. The emotional brain, fear, and the amygdala. Cell. Mol. Neurobiol. 23:4–5727–38
    [Google Scholar]
  102. LeDoux J. 2000. Emotion circuits in the brain. Annu. Rev. Neurosci. 23:155–84
    [Google Scholar]
  103. LeDoux J. 2012. Rethinking the emotional brain. Neuron 73:4653–76
    [Google Scholar]
  104. LeDoux J. 2021. What emotions might be like in other animals. Curr. Biol. 31:13R824–29
    [Google Scholar]
  105. LeDoux J, Hofmann SG. 2018. The subjective experience of emotion: a fearful view. Curr. Opin. Behav. Sci. 19:67–72
    [Google Scholar]
  106. LeDoux J, Phelps L, Alberini C. 2016. What we talk about when we talk about emotions. Cell 167:61443–45
    [Google Scholar]
  107. Lee CR, Chen A, Tye KM 2021. The neural circuitry of social homeostasis: consequences of acute versus chronic social isolation. Cell 184:1500–16
    [Google Scholar]
  108. Lee H, Kim D-W, Remedios R, Anthony TE, Chang A et al. 2014. Scalable control of mounting and attack by Esr1+ neurons in the ventromedial hypothalamus. Nature 509:7502627–32
    [Google Scholar]
  109. Lee SC, Amir A, Haufler D, Pare D. 2017. Differential recruitment of competing valence-related amygdala networks during anxiety. Neuron 96:181–88.e5
    [Google Scholar]
  110. Liggins J, Pihl RO, Benkelfat C, Leyton M. 2012. The dopamine augmenter L-DOPA does not affect positive mood in healthy human volunteers. PLOS ONE 7:1e28370
    [Google Scholar]
  111. Liljencrantz J, Olausson H. 2014. Tactile C fibers and their contributions to pleasant sensations and to tactile allodynia. Front. Behav. Neurosci. 8:37
    [Google Scholar]
  112. Lischinsky JE, Lin D. 2020. Neural mechanisms of aggression across species. Nat. Neurosci. 23:1317–28
    [Google Scholar]
  113. Livneh Y, Sugden AU, Madara JC, Essner RA, Flores VI et al. 2020. Estimation of current and future physiological states in insular cortex. Neuron 105:1094–111.e10
    [Google Scholar]
  114. Luxem K, Sun JJ, Bradley SP, Krishnan K, Pereira TD et al. 2022. Open-source tools for behavioral video analysis: setup, methods, and development. arXiv 2204.02842 [q-bio.QM ]
  115. MacLean PD. 1949. Psychosomatic disease and the visceral brain; recent developments bearing on the Papez theory of emotion. Psychosom. Med. 11:6338–53
    [Google Scholar]
  116. Mahler SV, Smith KS, Berridge KC. 2007. Endocannabinoid hedonic hotspot for sensory pleasure: Anandamide in nucleus accumbens shell enhances ‘liking’ of a sweet reward. Neuropsychopharmacology 32:112267–78
    [Google Scholar]
  117. Marshall AG, Sharma ML, Marley K, Olausson H, McGlone FP. 2019. Spinal signalling of C-fiber mediated pleasant touch in humans. eLife 8:e51642
    [Google Scholar]
  118. Mathis MW, Mathis A. 2020. Deep learning tools for the measurement of animal behavior in neuroscience. Curr. Opin. Neurobiol. 60:1–11
    [Google Scholar]
  119. Mayer EA. 2011. Gut feelings: the emerging biology of gut-brain communication. Nat. Rev. Neurosci. 12:8453–66
    [Google Scholar]
  120. McIntyre CK. 2018. Is there a role for vagus nerve stimulation in the treatment of posttraumatic stress disorder?. Future Med. 1:295–99
    [Google Scholar]
  121. Namburi P, Al-Hasani R, Calhoon GG, Bruchas MR, Tye KM. 2015. Architectural representation of valence in the limbic system. Neuropsychopharmacology 41:1697–715
    [Google Scholar]
  122. Nelson RJ, Trainor BC. 2007. Neural mechanisms of aggression. Nat. Rev. Neurosci. 8:7536–46
    [Google Scholar]
  123. Nemeroff CB, Mayberg HS, Krahl SE, McNamara J, Frazer A et al. 2006. VNS therapy in treatment-resistant depression: clinical evidence and putative neurobiological mechanisms. Neuropsychopharmacology 31:71345–55
    [Google Scholar]
  124. Padilla-Coreano N, Tye KM, Zelikowsky M. 2022. Dynamic influences on the neural encoding of social valence. Nat. Rev. Neurosci. 23:535–50
    [Google Scholar]
  125. Panksepp J. 2005. Affective consciousness: core emotional feelings in animals and humans. Conscious. Cogn. 14:130–80
    [Google Scholar]
  126. Panksepp J. 2011a. The basic emotional circuits of mammalian brains: Do animals have affective lives?. Neurosci. Biobehav. Rev. 35:91791–804
    [Google Scholar]
  127. Panksepp J. 2011b. Cross-species affective neuroscience decoding of the primal affective experiences of humans and related animals. PLOS ONE 6:9e21236
    [Google Scholar]
  128. Panksepp J, Burgdorf J. 2000. 50-kHz chirping (laughter?) in response to conditioned and unconditioned tickle-induced reward in rats: effects of social housing and genetic variables. Behav. Brain Res. 115:125–38
    [Google Scholar]
  129. Panksepp J, Normansell L, Cox JF, Siviy SM. 1994. Effects of neonatal decortication on the social play of juvenile rats. Physiol. Behav. 56:3429–43
    [Google Scholar]
  130. Papez JW. 1937. A proposed mechanism of emotion. Arch. Neurol. Psychiatry 38:4725–43
    [Google Scholar]
  131. Paradiso E, Gazzola V, Keysers C. 2021. Neural mechanisms necessary for empathy-related phenomena across species. Curr. Opin. Neurobiol. 68:107–15
    [Google Scholar]
  132. Paulus MP, Stein MB. 2006. An insular view of anxiety. Biol. Psychiatry 60:4383–87
    [Google Scholar]
  133. Paulus MP, Stein MB. 2010. Interoception in anxiety and depression. Brain Struct. Funct. 214:451–63
    [Google Scholar]
  134. Peciña S, Berridge KC, Parker LA. 1997. Pimozide does not shift palatability: separation of anhedonia from sensorimotor suppression by taste reactivity. Pharmacol. Biochem. Behav. 58:3801–11
    [Google Scholar]
  135. Peciña S, Cagniard B, Berridge KC, Aldridge JW, Zhuang X. 2003. Hyperdopaminergic mutant mice have higher “wanting” but not “liking” for sweet rewards. J. Neurosci. 23:289395–402
    [Google Scholar]
  136. Perusini JN, Fanselow MS. 2015. Neurobehavioral perspectives on the distinction between fear and anxiety. Learn. Mem. 22:9417–25
    [Google Scholar]
  137. Richard Y, Tazi N, Frydecka D, Hamid MS, Moustafa AA. 2022. A systematic review of neural, cognitive, and clinical studies of anger and aggression. Curr. Psychol. https://doi.org/10.1007/s12144-022-03143-6
    [Crossref] [Google Scholar]
  138. Roelofs K. 2017. Freeze for action: neurobiological mechanisms in animal and human freezing. Philos. Trans. R Soc. B 372:171820160206
    [Google Scholar]
  139. Roelofs K, Dayan P. 2022. Freezing revisited: coordinated autonomic and central optimization of threat coping. Nat. Rev. Neurosci. 23:568–80
    [Google Scholar]
  140. Russell JA. 1980. A circumplex model of affect. J. Pers. Soc. Psychol. 39:61161–78
    [Google Scholar]
  141. Saper CB, Lowell BB. 2014. The hypothalamus. Curr. Biol. 24:23R1111–16
    [Google Scholar]
  142. Seth AK. 2013. Interoceptive inference, emotion, and the embodied self. Trends Cogn. Sci. 17:11565–73
    [Google Scholar]
  143. Seth AK, Friston KJ. 2016. Active interoceptive inference and the emotional brain. Philos. Trans. R Soc. B 371:170820160007
    [Google Scholar]
  144. Shariff AF, Tracy JL. 2011. What are emotion expressions for?. Curr. Dir. Psychol. Sci. 20:6395–99
    [Google Scholar]
  145. Shewmon DA, Holmes GL, Byrne PA. 1999. Consciousness in congenitally decorticate children: Developmental vegetative state as self-fulfilling prophecy. Dev. Med. Child Neurol. 41:6364–74
    [Google Scholar]
  146. Sienkiewicz-Jarosz H, Scinska A, Swiecicki L, Lipczynska-Lojkowska W, Kuran W et al. 2013. Sweet liking in patients with Parkinson's disease. J. Neurol. Sci. 329:1–217–22
    [Google Scholar]
  147. Singer T, Seymour B, O'Doherty J, Kaube H, Dolan RJ, Frith CD 2004. Empathy for pain involves the affective but not sensory components of pain. Science 303:56611157–62
    [Google Scholar]
  148. Smith KS, Berridge KC. 2007. Opioid limbic circuit for reward: interaction between hedonic hotspots of nucleus accumbens and ventral pallidum. J. Neurosci. 27:71594–605
    [Google Scholar]
  149. Steiner JE. 1973. The gustofacial response: observation on normal and anencephalic newborn infants. Symp. Oral Sens. Percept. 4:254–78
    [Google Scholar]
  150. Steiner JE, Glaser D, Hawilo ME, Berridge KC. 2001. Comparative expression of hedonic impact: affective reactions to taste by human infants and other primates. Neurosci. Biobehav. Rev. 25:153–74
    [Google Scholar]
  151. Stevenson RJ, Case TI, Oaten MJ, Stafford L, Saluja S. 2019. A proximal perspective on disgust. Emot. Rev. 11:3209–25
    [Google Scholar]
  152. Susskind JM, Lee DH, Cusi A, Feiman R, Grabski W, Anderson AK. 2008. Expressing fear enhances sensory acquisition. Nat. Neurosci. 11:7843–50
    [Google Scholar]
  153. Takahashi A, Nagayasu K, Nishitani N, Kaneko S, Koide T. 2014. Control of intermale aggression by medial prefrontal cortex activation in the mouse. PLOS ONE 9:4e94657
    [Google Scholar]
  154. Terburg D, Scheggia D, Triana del Rio R, Klumpers F, Ciobanu AC et al. 2018. The basolateral amygdala is essential for rapid escape: a human and rodent study. Cell 175:3723–35.e16
    [Google Scholar]
  155. Tovote P, Fadok JP, Lüthi A. 2015. Neuronal circuits for fear and anxiety. Nat. Rev. Neurosci. 16:6317–31
    [Google Scholar]
  156. Tschida K, Michael V, Takatoh J, Han BX, Zhao S et al. 2019. A specialized neural circuit gates social vocalizations in the mouse. Neuron 103:3459–72.e4
    [Google Scholar]
  157. Tye KM. 2018. Neural circuit motifs in valence processing. Neuron 100:2436–52
    [Google Scholar]
  158. Wallon H. 1972. The Emotions, Vol. 1 Baltimore, MA: Williams & Wilkins
    [Google Scholar]
  159. Wang L, Gillis-Smith S, Peng Y, Zhang J, Chen X et al. 2018. The coding of valence and identity in the mammalian taste system. Nature 558:7708127–31
    [Google Scholar]
  160. Wicker B, Keysers C, Plailly J, Royet JP, Gallese V, Rizzolatti G. 2003. Both of us disgusted in my insula: the common neural basis of seeing and feeling disgust. Neuron 40:3655–64
    [Google Scholar]
  161. Wiebking C, Bauer A, De Greck M, Duncan NW, Tempelmann C, Northoff G. 2010. Abnormal body perception and neural activity in the insula in depression: an fMRI study of the depressed “material me. .” World J. Biol. Psychiatry 11:3538–49
    [Google Scholar]
  162. Wilson TD, Valdivia S, Khan A, Ahn HS, Adke AP et al. 2019. Dual and opposing functions of the central amygdala in the modulation of pain. Cell Rep. 29:2332–46.e5
    [Google Scholar]
  163. Wise RA. 2006. Role of brain dopamine in food reward and reinforcement. Philos. Trans. R. Soc. B 361:14711149
    [Google Scholar]
  164. Zych AD, Gogolla N. 2021. Expressions of emotions across species. Curr. Opin. Neurobiol. 68:57–66
    [Google Scholar]
/content/journals/10.1146/annurev-neuro-111020-103314
Loading
/content/journals/10.1146/annurev-neuro-111020-103314
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error