1932

Abstract

The zebrafish visual system has become a paradigmatic preparation for behavioral and systems neuroscience. Around 40 types of retinal ganglion cells (RGCs) serve as matched filters for stimulus features, including light, optic flow, prey, and objects on a collision course. RGCs distribute their signals via axon collaterals to 12 retinorecipient areas in forebrain and midbrain. The major visuomotor hub, the optic tectum, harbors nine RGC input layers that combine information on multiple features. The retinotopic map in the tectum is locally adapted to visual scene statistics and visual subfield–specific behavioral demands. Tectal projections to premotor centers are topographically organized according to behavioral commands. The known connectivity in more than 20 processing streams allows us to dissect the cellular basis of elementary perceptual and cognitive functions. Visually evoked responses, such as prey capture or loom avoidance, are controlled by dedicated multistation pathways that—at least in the larva—resemble labeled lines. This architecture serves the neuronal code's purpose of driving adaptive behavior.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-neuro-111020-104854
2024-08-08
2024-10-14
Loading full text...

Full text loading...

/deliver/fulltext/neuro/47/1/annurev-neuro-111020-104854.html?itemId=/content/journals/10.1146/annurev-neuro-111020-104854&mimeType=html&fmt=ahah

Literature Cited

  1. Abbas F, Triplett MA, Goodhill GJ, Meyer MP. 2017.. A three-layer network model of direction selective circuits in the optic tectum. . Front. Neural Circuits 11::88
    [Crossref] [Google Scholar]
  2. Ahrens MB, Li JM, Orger MB, Robson DN, Schier AF, et al. 2012.. Brain-wide neuronal dynamics during motor adaptation in zebrafish. . Nature 485::47177
    [Crossref] [Google Scholar]
  3. Antinucci P, Folgueira M, Bianco IH. 2019.. Pretectal neurons control hunting behaviour. . eLife 8::e48114
    [Crossref] [Google Scholar]
  4. Avitan L, Pujic Z, Molter J, McCullough M, Zhu S, et al. 2020.. Behavioral signatures of a developing neural code. . Curr. Biol. 30::335263.e5
    [Crossref] [Google Scholar]
  5. Avitan L, Pujic Z, Molter J, Van De Poll M, Sun B, et al. 2017.. Spontaneous activity in the zebrafish tectum reorganizes over development and is influenced by visual experience. . Curr. Biol. 27::240719.e4
    [Crossref] [Google Scholar]
  6. Bahl A, Engert F. 2020.. Neural circuits for evidence accumulation and decision making in larval zebrafish. . Nat. Neurosci. 23::94102
    [Crossref] [Google Scholar]
  7. Baier H, Wullimann MF. 2021.. Anatomy and function of retinorecipient arborization fields in zebrafish. . J. Comp. Neurol. 529::345476
    [Crossref] [Google Scholar]
  8. Barker AJ, Baier H. 2015.. Sensorimotor decision making in the zebrafish tectum. . Curr. Biol. 25::280414
    [Crossref] [Google Scholar]
  9. Barker AJ, Helmbrecht TO, Grob AA, Baier H. 2021.. Functional, molecular and morphological heterogeneity of superficial interneurons in the larval zebrafish tectum. . J. Comp. Neurol. 529::215975
    [Crossref] [Google Scholar]
  10. Barlow HB. 1961.. Possible principles underlying the transformations of sensory messages. . In Sensory Communication, ed. WA Rosenblith , pp. 21734. Cambridge, MA:: MIT Press
    [Google Scholar]
  11. Bhattacharyya K, McLean DL, MacIver MA. 2017.. Visual threat assessment and reticulospinal encoding of calibrated responses in larval zebrafish. . Curr. Biol. 27::275162.e6
    [Crossref] [Google Scholar]
  12. Bianco IH, Kampff AR, Engert F. 2011.. Prey capture behavior evoked by simple visual stimuli in larval zebrafish. . Front. Syst. Neurosci. 5::101
    [Crossref] [Google Scholar]
  13. Bollmann JH. 2019.. The zebrafish visual system: from circuits to behavior. . Annu. Rev. Vis. Sci. 5::26993
    [Crossref] [Google Scholar]
  14. Borla MA, Palecek B, Budick S, O'Malley DM. 2002.. Prey capture by larval zebrafish: evidence for fine axial motor control. . Brain Behav. Evol. 60::20729
    [Crossref] [Google Scholar]
  15. Budick SA, O'Malley DM. 2000.. Locomotor repertoire of the larval zebrafish: swimming, turning and prey capture. . J. Exp. Biol. 203::256579
    [Crossref] [Google Scholar]
  16. Burgess HA, Granato M. 2007.. Modulation of locomotor activity in larval zebrafish during light adaptation. . J. Exp. Biol. 210::252639
    [Crossref] [Google Scholar]
  17. Cline HT. 1991.. Activity-dependent plasticity in the visual systems of frogs and fish. . Trends Neurosci. 14::10411
    [Crossref] [Google Scholar]
  18. Cong L, Wang Z, Chai Y, Hang W, Shang C, et al. 2017.. Rapid whole brain imaging of neural activity in freely behaving larval zebrafish (Danio rerio). . eLife 6::e28158
    [Crossref] [Google Scholar]
  19. Constantin L, Poulsen RE, Scholz LA, Favre-Bulle IA, Taylor MA, et al. 2020.. Altered brain-wide auditory networks in a zebrafish model of fragile X syndrome. . BMC Biol. 18::125
    [Crossref] [Google Scholar]
  20. Coombs S, Bak-Coleman J, Montgomery J. 2020.. Rheotaxis revisited: a multi-behavioral and multisensory perspective on how fish orient to flow. . J. Exp. Biol. 223::jeb223008
    [Crossref] [Google Scholar]
  21. Coomer C, Naumova D, Talay M, Zolyomi B, Snell N, et al. 2023.. Transsynaptic labeling and transcriptional control of zebrafish neural circuits. . bioRxiv 2023.04.03.535421. https://doi.org/10.1101/2023.04.03.535421
  22. Dal Maschio M, Donovan JC, Helmbrecht TO, Baier H. 2017.. Linking neurons to network function and behavior by two-photon holographic optogenetics and volumetric imaging. . Neuron 94::77489.e5
    [Crossref] [Google Scholar]
  23. Del Bene F, Wyart C, Robles E, Tran A, Looger L, et al. 2010.. Filtering of visual information in the tectum by an identified neural circuit. . Science 330::66973
    [Crossref] [Google Scholar]
  24. Dohaku R, Yamaguchi M, Yamamoto N, Shimizu T, Osakada F, Hibi M. 2019.. Tracing of afferent connections in the zebrafish cerebellum using recombinant rabies virus. . Front. Neural Circuits 13::30
    [Crossref] [Google Scholar]
  25. Dorkenwald S, Matsliah A, Sterling AR, Schlegel P, Yu SC, et al. 2023.. Neuronal wiring diagram of an adult brain. . bioRxiv 2023.06.27.546656. https://doi.org/10.1101/2023.06.27.546656
  26. Dragomir EI, Stih V, Portugues R. 2020.. Evidence accumulation during a sensorimotor decision task revealed by whole-brain imaging. . Nat. Neurosci. 23::8593
    [Crossref] [Google Scholar]
  27. Duchemin A, Privat M, Sumbre G. 2021.. Fourier motion processing in the optic tectum and pretectum of the zebrafish larva. . Front. Neural Circuits 15::814128
    [Crossref] [Google Scholar]
  28. Dunn TW, Gebhardt C, Naumann EA, Riegler C, Ahrens MB, et al. 2016.. Neural circuits underlying visually evoked escapes in larval zebrafish. . Neuron 89::61328
    [Crossref] [Google Scholar]
  29. Easter SS Jr., Nicola GN. 1996.. The development of vision in the zebrafish (Danio rerio). . Dev. Biol. 180::64663
    [Crossref] [Google Scholar]
  30. Eaton RC, Bombardieri RA, Meyer DL. 1977a.. The Mauthner-initiated startle response in teleost fish. . J. Exp. Biol. 66::6581
    [Crossref] [Google Scholar]
  31. Eaton RC, Farley RD, Kimmel CB, Schabtach E. 1977b.. Functional development in the Mauthner cell system of embryos and larvae of the zebra fish. . J. Neurobiol. 8::15172
    [Crossref] [Google Scholar]
  32. Engeszer RE, Barbiano LA, Ryan MJ, Parichy DM. 2007.. Timing and plasticity of shoaling behaviour in the zebrafish, Danio rerio. . Anim. Behav. 74::126975
    [Crossref] [Google Scholar]
  33. Fajardo O, Zhu P, Friedrich RW. 2013.. Control of a specific motor program by a small brain area in zebrafish. . Front. Neural Circuits 7::67
    [Crossref] [Google Scholar]
  34. Fame RM, Brajon C, Ghysen A. 2006.. Second-order projection from the posterior lateral line in the early zebrafish brain. . Neural Dev. 1::4
    [Crossref] [Google Scholar]
  35. Favre-Bulle IA, Taylor MA, Marquez-Legorreta E, Vanwalleghem G, Poulsen RE, et al. 2020.. Sound generation in zebrafish with Bio-Opto-Acoustics. . Nat. Commun. 11::6120
    [Crossref] [Google Scholar]
  36. Favre-Bulle IA, Vanwalleghem G, Taylor MA, Rubinsztein-Dunlop H, Scott EK. 2018.. Cellular-resolution imaging of vestibular processing across the larval zebrafish brain. . Curr. Biol. 28::371122.e3
    [Crossref] [Google Scholar]
  37. Fernandes AM, Mearns DS, Donovan JC, Larsch J, Helmbrecht TO, et al. 2021.. Neural circuitry for stimulus selection in the zebrafish visual system. . Neuron 109::80522.e6
    [Crossref] [Google Scholar]
  38. Filosa A, Barker AJ, Dal Maschio M, Baier H. 2016.. Feeding state modulates behavioral choice and processing of prey stimuli in the zebrafish tectum. . Neuron 90::596608
    [Crossref] [Google Scholar]
  39. Förster D, Dal Maschio M, Laurell E, Baier H. 2017.. An optogenetic toolbox for unbiased discovery of functionally connected cells in neural circuits. . Nat. Commun. 8::116
    [Crossref] [Google Scholar]
  40. Förster D, Helmbrecht TO, Mearns DS, Jordan L, Mokayes N, Baier H. 2020.. Retinotectal circuitry of larval zebrafish is adapted to detection and pursuit of prey. . eLife 9::e58596
    [Crossref] [Google Scholar]
  41. Fotowat H, Engert F. 2023.. Neural circuits underlying habituation of visually evoked escape behaviors in larval zebrafish. . eLife 12::e82916
    [Crossref] [Google Scholar]
  42. Gabriel JP, Trivedi CA, Maurer CM, Ryu S, Bollmann JH. 2012.. Layer-specific targeting of direction-selective neurons in the zebrafish optic tectum. . Neuron 76::114760
    [Crossref] [Google Scholar]
  43. Gahtan E, Tanger P, Baier H. 2005.. Visual prey capture in larval zebrafish is controlled by identified reticulospinal neurons downstream of the tectum. . J. Neurosci. 25::9294303
    [Crossref] [Google Scholar]
  44. Gatto E, Bruzzone M, Lucon-Xiccato T. 2021.. Innate visual discrimination abilities of zebrafish larvae. . Behav. Process. 193::104534
    [Crossref] [Google Scholar]
  45. Gebhardt C, Auer TO, Henriques PM, Rajan G, Duroure K, et al. 2019.. An interhemispheric neural circuit allowing binocular integration in the optic tectum. . Nat. Commun. 10::5471
    [Crossref] [Google Scholar]
  46. Heap LAL, Vanwalleghem G, Thompson AW, Favre-Bulle IA, Scott EK. 2018.. Luminance changes drive directional startle through a thalamic pathway. . Neuron 99::293301.e4
    [Crossref] [Google Scholar]
  47. Helmbrecht TO, Dal Maschio M, Donovan JC, Koutsouli S, Baier H. 2018.. Topography of a visuomotor transformation. . Neuron 100::142945.e4
    [Crossref] [Google Scholar]
  48. Henriques PM, Rahman N, Jackson SE, Bianco IH. 2019.. Nucleus isthmi is required to sustain target pursuit during visually guided prey-catching. . Curr. Biol. 29::177186.e5
    [Crossref] [Google Scholar]
  49. Hua JY, Smear MC, Baier H, Smith SJ. 2005.. Regulation of axon growth in vivo by activity-based competition. . Nature 434::102226
    [Crossref] [Google Scholar]
  50. Hunter PR, Lowe AS, Thompson ID, Meyer MP. 2013.. Emergent properties of the optic tectum revealed by population analysis of direction and orientation selectivity. . J. Neurosci. 33::1394045
    [Crossref] [Google Scholar]
  51. Isa T, Marquez-Legorreta E, Grillner S, Scott EK. 2021.. The tectum/superior colliculus as the vertebrate solution for spatial sensory integration and action. . Curr. Biol. 31::R74162
    [Crossref] [Google Scholar]
  52. Kappel JM, Förster D, Slangewal K, Shainer I, Svara F, et al. 2022.. Visual recognition of social signals by a tectothalamic neural circuit. . Nature 608::14652
    [Crossref] [Google Scholar]
  53. Katz LC, Shatz CJ. 1996.. Synaptic activity and the construction of cortical circuits. . Science 274::113338
    [Crossref] [Google Scholar]
  54. Khan B, Jaesiri OM, Lazarte IP, Li Y, Tian G, et al. 2023.. Zebrafish larvae use stimulus intensity and contrast to estimate distance to prey. . Curr. Biol. 33::317991.e4
    [Crossref] [Google Scholar]
  55. Kim DH, Kim J, Marques JC, Grama A, Hildebrand DGC, et al. 2017.. Pan-neuronal calcium imaging with cellular resolution in freely swimming zebrafish. . Nat. Methods 14::110714
    [Crossref] [Google Scholar]
  56. Kimmel CB, Eaton RC, Powell SL. 1980.. Decreased fast-start performance of zebrafish larvae lacking Mauthner neurons. . J. Comp. Physiol. 140::34350
    [Crossref] [Google Scholar]
  57. Kist AM, Portugues R. 2019.. Optomotor swimming in larval zebrafish is driven by global whole-field visual motion and local light-dark transitions. . Cell Rep. 29::65970.e3
    [Crossref] [Google Scholar]
  58. Kler S, Ma M, Narayan S, Ahrens MB, Pan YA. 2021.. Cre-dependent anterograde transsynaptic labeling and functional imaging in zebrafish using VSV with reduced cytotoxicity. . Front. Neuroanat. 15::758350
    [Crossref] [Google Scholar]
  59. Kölsch Y, Hahn J, Sappington A, Stemmer M, Fernandes AM, et al. 2021.. Molecular classification of zebrafish retinal ganglion cells links genes to cell types to behavior. . Neuron 109::64562.e9
    [Crossref] [Google Scholar]
  60. Kramer A, Wu Y, Baier H, Kubo F. 2019.. Neuronal architecture of a visual center that processes optic flow. . Neuron 103::11832.e7
    [Crossref] [Google Scholar]
  61. Kunst M, Laurell E, Mokayes N, Kramer A, Kubo F, et al. 2019.. A cellular-resolution atlas of the larval zebrafish brain. . Neuron 103::2138.e5
    [Crossref] [Google Scholar]
  62. Lagogiannis K, Diana G, Meyer MP. 2020.. Learning steers the ontogeny of an efficient hunting sequence in zebrafish larvae. . eLife 9::e55119
    [Crossref] [Google Scholar]
  63. Larsch J, Baier H. 2018.. Biological motion as an innate perceptual mechanism driving social affiliation. . Curr. Biol. 28::352332.e4
    [Crossref] [Google Scholar]
  64. Liu KS, Fetcho JR. 1999.. Laser ablations reveal functional relationships of segmental hindbrain neurons in zebrafish. . Neuron 23::32535
    [Crossref] [Google Scholar]
  65. Lowe AS, Nikolaou N, Hunter PR, Thompson ID, Meyer MP. 2013.. A systems-based dissection of retinal inputs to the zebrafish tectum reveals different rules for different functional classes during development. . J. Neurosci. 33::1394656
    [Crossref] [Google Scholar]
  66. Lucore EC, Connaughton VP. 2021.. Observational learning and irreversible starvation in first-feeding zebrafish larvae: Is it okay to copy from your friends?. Zoology 145::125896
    [Crossref] [Google Scholar]
  67. Ma M, Kler S, Pan YA. 2019.. Structural neural connectivity analysis in zebrafish with restricted anterograde transneuronal viral labeling and quantitative brain mapping. . Front. Neural Circuits 13::85
    [Crossref] [Google Scholar]
  68. Mancienne T, Marquez-Legorreta E, Wilde M, Piber M, Favre-Bulle I, et al. 2021.. Contributions of luminance and motion to visual escape and habituation in larval zebrafish. . Front. Neural Circuits 15::748535
    [Crossref] [Google Scholar]
  69. Marques JC, Lackner S, Felix R, Orger MB. 2018.. Structure of the zebrafish locomotor repertoire revealed with unsupervised behavioral clustering. . Curr. Biol. 28::18195.e5
    [Crossref] [Google Scholar]
  70. Marquez-Legorreta E, Constantin L, Piber M, Favre-Bulle IA, Taylor MA, et al. 2022.. Brain-wide visual habituation networks in wild type and fmr1 zebrafish. . Nat. Commun. 13::895
    [Crossref] [Google Scholar]
  71. Marquez-Legorreta E, Piber M, Scott EK. 2020.. Visual escape in larval zebrafish: stimuli, circuits, and behavior. . In Behavioral and Neural Genetics of Zebrafish, ed. ET Gerlai , pp. 4971. Cambridge, MA:: Academic
    [Google Scholar]
  72. Martorell N, Medan V. 2022.. Audiovisual integration in the Mauthner cell enhances escape probability and reduces response latency. . Sci. Rep. 12::1097
    [Crossref] [Google Scholar]
  73. Masland RH. 2012.. The neuronal organization of the retina. . Neuron 76::26680
    [Crossref] [Google Scholar]
  74. Matsuda K, Kubo F. 2021.. Circuit organization underlying optic flow processing in zebrafish. . Front. Neural Circuits 15::709048
    [Crossref] [Google Scholar]
  75. McClenahan P, Troup M, Scott EK. 2012.. Fin-tail coordination during escape and predatory behavior in larval zebrafish. . PLOS ONE 7::e32295
    [Crossref] [Google Scholar]
  76. McDiarmid TA, Yu AJ, Rankin CH. 2019.. Habituation is more than learning to ignore: multiple mechanisms serve to facilitate shifts in behavioral strategy. . BioEssays 41::e1900077
    [Crossref] [Google Scholar]
  77. McElligott MB, O'Malley DM. 2005.. Prey tracking by larval zebrafish: axial kinematics and visual control. . Brain Behav. Evol. 66::17796
    [Crossref] [Google Scholar]
  78. McHenry MJ, Feitl KE, Strother JA, Van Trump WJ. 2009.. Larval zebrafish rapidly sense the water flow of a predator's strike. . Biol. Lett. 5::47779
    [Crossref] [Google Scholar]
  79. Mearns DS, Donovan JC, Fernandes AM, Semmelhack JL, Baier H. 2020.. Deconstructing hunting behavior reveals a tightly coupled stimulus-response loop. . Curr. Biol. 30::5469.e9
    [Crossref] [Google Scholar]
  80. Migault G, van der Plas TL, Trentesaux H, Panier T, Candelier R, et al. 2018.. Whole-brain calcium imaging during physiological vestibular stimulation in larval zebrafish. . Curr. Biol. 28:(23):372335.e6
    [Crossref] [Google Scholar]
  81. Mu Y, Li X-q, Zhang B, Du J-l. 2012.. Visual input modulates audiomotor function via hypothalamic dopaminergic neurons through a cooperative mechanism. . Neuron 75::68899
    [Crossref] [Google Scholar]
  82. Muto A, Lal P, Ailani D, Abe G, Itoh M, Kawakami K. 2017.. Activation of the hypothalamic feeding centre upon visual prey detection. . Nat. Commun. 8::15029
    [Crossref] [Google Scholar]
  83. Nikolaou N, Lowe AS, Walker AS, Abbas F, Hunter PR, Thompson ID, et al. 2012.. Parametric functional maps of visual inputs to the tectum. . Neuron 76::31724
    [Crossref] [Google Scholar]
  84. Nikolaou N, Meyer MP. 2015.. Lamination speeds the functional development of visual circuits. . Neuron 88::9991013
    [Crossref] [Google Scholar]
  85. Oldfield CS, Grossrubatscher I, Chavez M, Hoagland A, Huth AR, et al. 2020.. Experience, circuit dynamics, and forebrain recruitment in larval zebrafish prey capture. . eLife 9::e56619
    [Crossref] [Google Scholar]
  86. Orger MB, Baier H. 2005.. Channeling of red and green cone inputs to the zebrafish optomotor response. . Vis. Neurosci. 22::27581
    [Crossref] [Google Scholar]
  87. Orger MB, Kampff AR, Severi KE, Bollmann JH, Engert F. 2008.. Control of visually guided behavior by distinct populations of spinal projection neurons. . Nat. Neurosci. 11::32733
    [Crossref] [Google Scholar]
  88. Orger MB, Smear MC, Anstis SM, Baier H. 2000.. Perception of Fourier and non-Fourier motion by larval zebrafish. . Nat. Neurosci. 3::112833
    [Crossref] [Google Scholar]
  89. Oteiza P, Odstrcil I, Lauder G, Portugues R, Engert F. 2017.. A novel mechanism for mechanosensory-based rheotaxis in larval zebrafish. . Nature 547::44548
    [Crossref] [Google Scholar]
  90. Patterson BW, Abraham AO, MacIver MA, McLean DL. 2013.. Visually guided gradation of prey capture movements in larval zebrafish. . J. Exp. Biol. 216::307183
    [Google Scholar]
  91. Poulsen RE, Scholz LA, Constantin L, Favre-Bulle I, Vanwalleghem GC, Scott EK. 2021.. Broad frequency sensitivity and complex neural coding in the larval zebrafish auditory system. . Curr. Biol. 31::197787.e4
    [Crossref] [Google Scholar]
  92. Preuss SJ, Trivedi CA, Vom Berg-Maurer CM, Ryu S, Bollmann JH. 2014.. Classification of object size in retinotectal microcircuits. . Curr. Biol. 24::237685
    [Crossref] [Google Scholar]
  93. Preuss T, Osei-Bonsu PE, Weiss SA, Wang C, Faber DS. 2006.. Neural representation of object approach in a decision-making motor circuit. . J. Neurosci. 26::345464
    [Crossref] [Google Scholar]
  94. Privat M, Romano SA, Pietri T, Jouary A, Boulanger-Weill J, et al. 2019.. Sensorimotor transformations in the zebrafish auditory system. . Curr. Biol. 29::401023.e4
    [Crossref] [Google Scholar]
  95. Rankin CH, Abrams T, Barry RJ, Bhatnagar S, Clayton DF, et al. 2009.. Habituation revisited: an updated and revised description of the behavioral characteristics of habituation. . Neurobiol. Learn. Mem. 92::13538
    [Crossref] [Google Scholar]
  96. Robles E, Filosa A, Baier H. 2013.. Precise lamination of retinal axons generates multiple parallel input pathways in the tectum. . J. Neurosci. 33::502739
    [Crossref] [Google Scholar]
  97. Robles E, Laurell E, Baier H. 2014.. The retinal projectome reveals brain-area-specific visual representations generated by ganglion cell diversity. . Curr. Biol. 24::208596
    [Crossref] [Google Scholar]
  98. Robles E, Smith SJ, Baier H. 2011.. Characterization of genetically targeted neuron types in the zebrafish optic tectum. . Front. Neural Circuits 5::1
    [Crossref] [Google Scholar]
  99. Roska B, Meister M. 2014.. The retina dissects the visual scene into distinct features. . In The New Visual Neurosciences, ed. JS Werner, LM Chalupa , pp. 16382. Cambridge, MA:: MIT Press
    [Google Scholar]
  100. Sankrithi NS, O'Malley DM. 2010.. Activation of a multisensory, multifunctional nucleus in the zebrafish midbrain during diverse locomotor behaviors. . Neuroscience 166::97093
    [Crossref] [Google Scholar]
  101. Santaca M, Agrillo C, Miletto Petrazzini ME, Bisazza A. 2020.. The ontogeny of continuous quantity discrimination in zebrafish larvae (Danio rerio). . Anim. Cogn. 23::73139
    [Crossref] [Google Scholar]
  102. Santaca M, Dadda M, Miletto Petrazzini ME, Bisazza A. 2021.. Stimulus characteristics, learning bias and visual discrimination in zebrafish (Danio rerio). . Behav. Process. 192::104499
    [Crossref] [Google Scholar]
  103. Sato T, Hamaoka T, Aizawa H, Hosoya T, Okamoto H. 2007.. Genetic single-cell mosaic analysis implicates ephrinB2 reverse signaling in projections from the posterior tectum to the hindbrain in zebrafish. . J. Neurosci. 27::527179
    [Crossref] [Google Scholar]
  104. Satou C, Neve RL, Oyibo HK, Zmarz P, Huang KH, et al. 2022.. A viral toolbox for conditional and transneuronal gene expression in zebrafish. . eLife 11::e77153
    [Crossref] [Google Scholar]
  105. Schlegel P, Yin Y, Bates AS, Dorkenwald S, Eichler K, et al. 2023.. Whole-brain annotation and multi-connectome cell typing quantifies circuit stereotypy in Drosophila. . bioRxiv 2023.06.27.546055. https://doi.org/10.1101/2023.06.27.546055
  106. Scott EK, Baier H. 2009.. The cellular architecture of the larval zebrafish tectum, as revealed by Gal4 enhancer trap lines. . Front. Neural Circuits 3::13
    [Crossref] [Google Scholar]
  107. Scott EK, Mason L, Arrenberg AB, Ziv L, Gosse NJ, et al. 2007.. Targeting neural circuitry in zebrafish using GAL4 enhancer trapping. . Nat. Methods 4::32326
    [Crossref] [Google Scholar]
  108. Semmelhack JL, Donovan JC, Thiele TR, Kuehn E, Laurell E, Baier H. 2014.. A dedicated visual pathway for prey detection in larval zebrafish. . eLife 3::e04878
    [Crossref] [Google Scholar]
  109. Severi KE, Portugues R, Marques JC, O'Malley DM, Orger MB, Engert F. 2014.. Neural control and modulation of swimming speed in the larval zebrafish. . Neuron 83::692707
    [Crossref] [Google Scholar]
  110. Shainer I, Kuehn E, Laurell E, Al Kassar M, Mokayes N, et al. 2023.. A single-cell resolution gene expression atlas of the larval zebrafish brain. . Sci. Adv. 9::eade9909
    [Crossref] [Google Scholar]
  111. Shallcross T, Diana G, Burrone J, Meyer M. 2023.. Spatial subdomains in the optic tectum for the encoding of visual information. . bioRxiv 2023.05.15.540762. https://doi.org/10.1101/2023.05.15.540762
  112. Sherman S, Arnold-Ammer I, Schneider MW, Kawakami K, Baier H. 2023.. Retina-derived signals control pace of neurogenesis in visual brain areas but not circuit assembly in zebrafish. . Nat. Commun. 14::1620
    [Crossref] [Google Scholar]
  113. Simoncelli EP, Olshausen BA. 2001.. Natural image statistics and neural representation. . Annu. Rev. Neurosci. 24::1193216
    [Crossref] [Google Scholar]
  114. Smear MC, Tao HW, Staub W, Orger MB, Gosse NJ, et al. 2007.. Vesicular glutamate transport at a central synapse limits the acuity of visual perception in zebrafish. . Neuron 53::6577
    [Crossref] [Google Scholar]
  115. Suli A, Watson GM, Rubel EW, Raible DW. 2012.. Rheotaxis in larval zebrafish is mediated by lateral line mechanosensory hair cells. . PLOS ONE 7::e29727
    [Crossref] [Google Scholar]
  116. Svara F, Förster D, Kubo F, Januszewski M, Dal Maschio M, et al. 2022.. Automated synapse-level reconstruction of neural circuits in the larval zebrafish brain. . Nat. Methods 19::135766
    [Crossref] [Google Scholar]
  117. Tanimoto M, Watakabe I, Higashijima SI. 2022.. Tiltable objective microscope visualizes selectivity for head motion direction and dynamics in zebrafish vestibular system. . Nat. Commun. 13::7622
    [Crossref] [Google Scholar]
  118. Temizer I, Donovan JC, Baier H, Semmelhack JL. 2015.. A visual pathway for looming-evoked escape in larval zebrafish. . Curr. Biol. 25::182334
    [Crossref] [Google Scholar]
  119. Thiele TR, Donovan JC, Baier H. 2014.. Descending control of swim posture by a midbrain nucleus in zebrafish. . Neuron 83::67991
    [Crossref] [Google Scholar]
  120. Thompson AW, Vanwalleghem GC, Heap LA, Scott EK. 2016.. Functional profiles of visual-, auditory-, and water flow-responsive neurons in the zebrafish tectum. . Curr. Biol. 26::74354
    [Crossref] [Google Scholar]
  121. Trivedi CA, Bollmann JH. 2013.. Visually driven chaining of elementary swim patterns into a goal-directed motor sequence: a virtual reality study of zebrafish prey capture. . Front. Neural Circuits 7::86
    [Crossref] [Google Scholar]
  122. Vanwalleghem GC, Ahrens MB, Scott EK. 2018.. Integrative whole-brain neuroscience in larval zebrafish. . Curr. Opin. Neurobiol. 50::13645
    [Crossref] [Google Scholar]
  123. Vanwalleghem GC, Heap LA, Scott EK. 2017.. A profile of auditory-responsive neurons in the larval zebrafish brain. . J. Comp. Neurol. 525::303143
    [Crossref] [Google Scholar]
  124. Vanwalleghem GC, Schuster K, Taylor MA, Favre-Bulle IA, Scott EK. 2020.. Brain-wide mapping of water flow perception in zebrafish. . J. Neurosci. 40::413044
    [Crossref] [Google Scholar]
  125. Vishwanathan A, Daie K, Ramirez AD, Lichtman JW, Aksay ERF, Seung HS. 2017.. Electron microscopic reconstruction of functionally identified cells in a neural integrator. . Curr. Biol. 27::213747.e3
    [Crossref] [Google Scholar]
  126. Wanner AA, Genoud C, Friedrich RW. 2016.. 3-Dimensional electron microscopic imaging of the zebrafish olfactory bulb and dense reconstruction of neurons. . Sci. Data 3::160100
    [Crossref] [Google Scholar]
  127. Westphal RE, O'Malley DM. 2013.. Fusion of locomotor maneuvers, and improving sensory capabilities, give rise to the flexible homing strikes of juvenile zebrafish. . Front. Neural Circuits 7::108
    [Crossref] [Google Scholar]
  128. White LE, Fitzpatrick D. 2007.. Vision and cortical map development. . Neuron 56::32738
    [Crossref] [Google Scholar]
  129. Winding M, Pedigo BD, Barnes CL, Patsolic HG, Park Y, et al. 2023.. The connectome of an insect brain. . Science 379::eadd9330
    [Crossref] [Google Scholar]
  130. Wu Y, Dal Maschio M, Kubo F, Baier H. 2020.. An optical illusion pinpoints an essential circuit node for global motion processing. . Neuron 108::72234.e5
    [Crossref] [Google Scholar]
  131. Xiao T, Baier H. 2007.. Lamina-specific axonal projections in the zebrafish tectum require the type IV collagen Dragnet. . Nat. Neurosci. 10::152937
    [Crossref] [Google Scholar]
  132. Xiao T, Staub W, Robles E, Gosse NJ, Cole GJ, Baier H. 2011.. Assembly of lamina-specific neuronal connections by slit bound to type IV collagen. . Cell 146::16476
    [Crossref] [Google Scholar]
  133. Xie J, Jusuf PR, Bui BV, Goodbourn PT. 2019.. Experience-dependent development of visual sensitivity in larval zebrafish. . Sci. Rep. 9::18931
    [Crossref] [Google Scholar]
  134. Yang C, Mammen L, Kim B, Li M, Robson DN, Li JM. 2023.. A population code for spatial representation in the larval zebrafish telencephalon. . bioRxiv 2023.11.12.566708. https://doi.org/10.1101/2023.11.12.566708
  135. Yao Y, Li X, Zhang B, Yin C, Liu Y, et al. 2016.. Visual cue-discriminative dopaminergic control of visuomotor transformation and behavior selection. . Neuron 89::598612
    [Crossref] [Google Scholar]
  136. Yashina K, Tejero-Cantero A, Herz A, Baier H. 2019.. Zebrafish exploit visual cues and geometric relationships to form a spatial memory. . iScience 19::11934
    [Crossref] [Google Scholar]
  137. Yildizoglu T, Riegler C, Fitzgerald JE, Portugues R. 2020.. A neural representation of naturalistic motion-guided behavior in the zebrafish brain. . Curr. Biol. 30::232133.e6
    [Crossref] [Google Scholar]
  138. Yin C, Li X, Du J. 2019.. Optic tectal superficial interneurons detect motion in larval zebrafish. . Protein Cell 10::23848
    [Crossref] [Google Scholar]
  139. Yokogawa T, Hannan MC, Burgess HA. 2012.. The dorsal raphe modulates sensory responsiveness during arousal in zebrafish. . J. Neurosci. 32::1520515
    [Crossref] [Google Scholar]
  140. Young MP, Yamane S. 1992.. Sparse population coding of faces in the inferotemporal cortex. . Science 256::132731
    [Crossref] [Google Scholar]
  141. Zaupa M, Nagaraj N, Sylenko A, Baier H, Sawamiphak S, Filosa A. 2024.. The calmodulin-interacting peptide Pcp4a regulates feeding state-dependent behavioral choice in zebrafish. . Neuron 112:(7):115064.e6
    [Crossref] [Google Scholar]
  142. Zhang Z, Bai L, Cong L, Yu P, Zhang T, et al. 2021.. Imaging volumetric dynamics at high speed in mouse and zebrafish brain with confocal light field microscopy. . Nat. Biotechnol. 39::7483
    [Crossref] [Google Scholar]
  143. Zhu SI, Goodhill GJ. 2023.. From perception to behavior: the neural circuits underlying prey hunting in larval zebrafish. . Front. Neural Circuits 17::1087993
    [Crossref] [Google Scholar]
  144. Zwaka H, McGinnis OJ, Pflitsch P, Prabha S, Mansinghka V, et al. 2022.. Visual object detection biases escape trajectories following acoustic startle in larval zebrafish. . Curr. Biol. 32::511625.e3
    [Crossref] [Google Scholar]
  145. Zylbertal A, Bianco IH. 2023.. Recurrent network interactions explain tectal response variability and experience-dependent behavior. . eLife 12::e78381
    [Crossref] [Google Scholar]
/content/journals/10.1146/annurev-neuro-111020-104854
Loading
/content/journals/10.1146/annurev-neuro-111020-104854
Loading

Data & Media loading...

Supplemental Materials

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error