1932

Abstract

Since its recent discovery, the meningeal lymphatic system has reshaped our understanding of central nervous system (CNS) fluid exchange, waste clearance, immune cell trafficking, and immune privilege. Meningeal lymphatics have also been demonstrated to functionally modify the outcome of neurological disorders and their responses to treatment, including brain tumors, inflammatory diseases such as multiple sclerosis, CNS injuries, and neurodegenerative disorders such as Alzheimer's and Parkinson's diseases. In this review, we discuss recent evidence of the contribution of meningeal lymphatics to neurological diseases, as well as the available experimental methods for manipulating meningeal lymphatics in these conditions. Finally, we also provide a discussion of the pressing questions and challenges in utilizing meningeal lymphatics as a prime target for CNS therapeutic intervention and possibly drug delivery for brain disorders.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-neuro-113023-103045
2024-08-08
2025-02-13
Loading full text...

Full text loading...

/deliver/fulltext/neuro/47/1/annurev-neuro-113023-103045.html?itemId=/content/journals/10.1146/annurev-neuro-113023-103045&mimeType=html&fmt=ahah

Literature Cited

  1. Absinta M, Ha S-K, Nair G, Sati P, Luciano NJ, et al. 2017.. Human and nonhuman primate meninges harbor lymphatic vessels that can be visualized noninvasively by MRI. . eLife 6::e29738
    [Crossref] [Google Scholar]
  2. Ahn JH, Cho H, Kim J-H, Kim SH, Ham J-S, et al. 2019.. Meningeal lymphatic vessels at the skull base drain cerebrospinal fluid. . Nature 572::6266
    [Crossref] [Google Scholar]
  3. Aloisi F, Pujol-Borrell R. 2006.. Lymphoid neogenesis in chronic inflammatory diseases. . Nat. Rev. Immunol. 6::20517
    [Crossref] [Google Scholar]
  4. Andres KH, von Düring M, Muszynski K, Schmidt RF. 1987.. Nerve fibres and their terminals of the dura mater encephali of the rat. . Anat. Embryol. 175::289301
    [Crossref] [Google Scholar]
  5. Antila S, Karaman S, Nurmi H, Airavaara M, Voutilainen MH, et al. 2017.. Development and plasticity of meningeal lymphatic vessels. . J. Exp. Med. 214::364567
    [Crossref] [Google Scholar]
  6. Aspelund A, Antila S, Proulx ST, Karlsen TV, Karaman S, et al. 2015.. A dural lymphatic vascular system that drains brain interstitial fluid and macromolecules. . J. Exp. Med. 212::99199
    [Crossref] [Google Scholar]
  7. Aubert A, Vega C, Dantzer R, Goodall G. 1995.. Pyrogens specifically disrupt the acquisition of a task involving cognitive processing in the rat. . Brain Behav. Immun. 9::12948
    [Crossref] [Google Scholar]
  8. Bateman RJ, Xiong C, Benzinger TLS, Fagan AM, Goate A, et al. 2012.. Clinical and biomarker changes in dominantly inherited Alzheimer's disease. . N. Engl. J. Med. 367::795804
    [Crossref] [Google Scholar]
  9. Benakis C, Brea D, Caballero S, Faraco G, Moore J, et al. 2016.. Commensal microbiota affects ischemic stroke outcome by regulating intestinal γδ T cells. . Nat. Med. 22::51623
    [Crossref] [Google Scholar]
  10. Biswas L, Chen J, De Angelis J, Singh A, Owen-Woods C, et al. 2023.. Lymphatic vessels in bone support regeneration after injury. . Cell 186::38297.e24
    [Crossref] [Google Scholar]
  11. Bolay H, Reuter U, Dunn AK, Huang Z, Boas DA, Moskowitz MA. 2002.. Intrinsic brain activity triggers trigeminal meningeal afferents in a migraine model. . Nat. Med. 8::13642
    [Crossref] [Google Scholar]
  12. Bolte AC, Dutta AB, Hurt ME, Smirnov I, Kovacs MA, et al. 2020.. Meningeal lymphatic dysfunction exacerbates traumatic brain injury pathogenesis. . Nat. Commun. 11::4524
    [Crossref] [Google Scholar]
  13. Brierley JB, Field EJ. 1948.. The connexions of the spinal sub-arachnoid space with the lymphatic system. . J. Anat. 82::15366
    [Google Scholar]
  14. Brioschi S, Wang W-L, Peng V, Wang M, Shchukina I, et al. 2021.. Heterogeneity of meningeal B cells reveals a lymphopoietic niche at the CNS borders. . Science 373::eabf9277
    [Crossref] [Google Scholar]
  15. Bucchieri F, Farina F, Zummo G, Cappello F. 2015.. Lymphatic vessels of the dura mater: a new discovery?. J. Anat. 227::7023
    [Crossref] [Google Scholar]
  16. Cai R, Pan C, Ghasemigharagoz A, Todorov MI, Förstera B, et al. 2019.. Panoptic imaging of transparent mice reveals whole-body neuronal projections and skull-meninges connections. . Nat. Neurosci. 22::31727
    [Crossref] [Google Scholar]
  17. Castranova D, Samasa B, Venero Galanternik M, Jung HM, Pham VN, Weinstein BM. 2021.. Live imaging of intracranial lymphatics in the zebrafish. . Circ. Res. 128::4258
    [Crossref] [Google Scholar]
  18. Chen J, Wang L, Xu H, Xing L, Zhuang Z, et al. 2020.. Meningeal lymphatics clear erythrocytes that arise from subarachnoid hemorrhage. . Nat. Commun. 11::3159
    [Crossref] [Google Scholar]
  19. Chen X, Firulyova M, Manis M, Herz J, Smirnov I, et al. 2023.. Microglia-mediated T cell infiltration drives neurodegeneration in tauopathy. . Nature 615::66877
    [Crossref] [Google Scholar]
  20. Chiu IM, von Hehn CA, Woolf CJ. 2012.. Neurogenic inflammation and the peripheral nervous system in host defense and immunopathology. . Nat. Neurosci. 15::106367
    [Crossref] [Google Scholar]
  21. Choi C, Park J, Kim H, Chang KT, Park J, Min K-T. 2021.. DSCR1 upregulation enhances dural meningeal lymphatic drainage to attenuate amyloid pathology of Alzheimer's disease. . J. Pathol. 255::296310
    [Crossref] [Google Scholar]
  22. Choi D, Park E, Jung E, Seong YJ, Yoo J, et al. 2017.. Laminar flow downregulates Notch activity to promote lymphatic sprouting. . J. Clin. Investig. 127::122540
    [Crossref] [Google Scholar]
  23. Choi D, Park E, Yu RP, Cooper MN, Cho I-T, et al. 2022.. Piezo1-regulated mechanotransduction controls flow-activated lymphatic expansion. . Circ. Res. 131::e221
    [Crossref] [Google Scholar]
  24. Choudhury A, Magill ST, Eaton CD, Prager BC, Chen WC, et al. 2022.. Meningioma DNA methylation groups identify biological drivers and therapeutic vulnerabilities. . Nat. Genet. 54::64959
    [Crossref] [Google Scholar]
  25. Cohen M, Giladi A, Raposo C, Zada M, Li B, et al. 2020.. Meningeal lymphoid structures are activated under acute and chronic spinal cord pathologies. . Life Sci. Alliance 4::e202000907
    [Crossref] [Google Scholar]
  26. Courties G, Herisson F, Sager HB, Heidt T, Ye Y, et al. 2015.. Ischemic stroke activates hematopoietic bone marrow stem cells. . Circ. Res. 116::40717
    [Crossref] [Google Scholar]
  27. Cugurra A, Mamuladze T, Rustenhoven J, Dykstra T, Beroshvili G, et al. 2021.. Skull and vertebral bone marrow are myeloid cell reservoirs for the meninges and CNS parenchyma. . Science 373::eabf7844
    [Crossref] [Google Scholar]
  28. Da Mesquita S, Fu Z, Kipnis J. 2018a.. The meningeal lymphatic system: a new player in neurophysiology. . Neuron 100::37588
    [Crossref] [Google Scholar]
  29. Da Mesquita S, Herz J, Wall M, Dykstra T, de Lima KA, et al. 2021a.. Aging-associated deficit in CCR7 is linked to worsened glymphatic function, cognition, neuroinflammation, and β-amyloid pathology. . Sci. Adv. 7::eabe4601
    [Crossref] [Google Scholar]
  30. Da Mesquita S, Louveau A, Vaccari A, Smirnov I, Cornelison RC, et al. 2018b.. Functional aspects of meningeal lymphatics in ageing and Alzheimer's disease. . Nature 560::18591
    [Crossref] [Google Scholar]
  31. Da Mesquita S, Papadopoulos Z, Dykstra T, Brase L, Farias FG, et al. 2021b.. Meningeal lymphatics affect microglia responses and anti-Aβ immunotherapy. . Nature 593::25560
    [Crossref] [Google Scholar]
  32. Daneman R, Prat A. 2015.. The blood-brain barrier. . Cold Spring Harb. Perspect. Biol. 7::a020412
    [Crossref] [Google Scholar]
  33. Dantzer R, O'Connor JC, Freund GG, Johnson RW, Kelley KW. 2008.. From inflammation to sickness and depression: when the immune system subjugates the brain. . Nat. Rev. Neurosci. 9::4656
    [Crossref] [Google Scholar]
  34. das Neves SP, Delivanoglou N, Da Mesquita S. 2021.. CNS-draining meningeal lymphatic vasculature: roles, conundrums and future challenges. . Front. Pharmacol. 12::655052
    [Crossref] [Google Scholar]
  35. Dendrou CA, Fugger L, Friese MA. 2015.. Immunopathology of multiple sclerosis. . Nat. Rev. Immunol. 15::54558
    [Crossref] [Google Scholar]
  36. Ding X-B, Wang X-X, Xia D-H, Liu H, Tian H-Y, et al. 2021.. Impaired meningeal lymphatic drainage in patients with idiopathic Parkinson's disease. . Nat. Med. 27::41118
    [Crossref] [Google Scholar]
  37. Eide PK, Vatnehol SAS, Emblem KE, Ringstad G. 2018.. Magnetic resonance imaging provides evidence of glymphatic drainage from human brain to cervical lymph nodes. . Sci. Rep. 8::7194
    [Crossref] [Google Scholar]
  38. Ennerfelt H, Frost EL, Shapiro DA, Holliday C, Zengeler KE, et al. 2022.. SYK coordinates neuroprotective microglial responses in neurodegenerative disease. . Cell 185::413552.e22
    [Crossref] [Google Scholar]
  39. Esposito E, Ahn BJ, Shi J, Nakamura Y, Park JH, et al. 2019.. Brain-to-cervical lymph node signaling after stroke. . Nat. Commun. 10::5306
    [Crossref] [Google Scholar]
  40. Furtado GC, Marcondes MCG, Latkowski J-A, Tsai J, Wensky A, Lafaille JJ. 2008.. Swift entry of myelin-specific T lymphocytes into the central nervous system in spontaneous autoimmune encephalomyelitis. . J. Immunol. 181::464855
    [Crossref] [Google Scholar]
  41. Giasson BI, Duda JE, Quinn SM, Zhang B, Trojanowski JQ, Lee VM-Y. 2002.. Neuronal α-synucleinopathy with severe movement disorder in mice expressing A53T human α-synuclein. . Neuron 34::52133
    [Crossref] [Google Scholar]
  42. Godbout JP, Chen J, Abraham J, Richwine AF, Berg BM, et al. 2005.. Exaggerated neuroinflammation and sickness behavior in aged mice following activation of the peripheral innate immune system. . FASEB J. 19::132931
    [Crossref] [Google Scholar]
  43. Goldman DH, Dykstra T, Smirnov I, Blackburn SM, Da Mesquita S, et al. 2022.. Age-associated suppression of exploratory activity during sickness is linked to meningeal lymphatic dysfunction and microglia activation. . Nat. Aging 2::70413
    [Crossref] [Google Scholar]
  44. Goodwin CR, Liang L, Abu-Bonsrah N, Hdeib A, Elder BD, et al. 2016.. Extraneural glioblastoma multiforme vertebral metastasis. . World Neurosurg. 89::57882.e3
    [Crossref] [Google Scholar]
  45. Götz J, Chen F, van Dorpe J, Nitsch RM. 2001.. Formation of neurofibrillary tangles in P301l tau transgenic mice induced by Aβ42 fibrils. . Science 293::149195
    [Crossref] [Google Scholar]
  46. Gousopoulos E, Proulx ST, Scholl J, Uecker M, Detmar M. 2016.. Prominent lymphatic vessel hyperplasia with progressive dysfunction and distinct immune cell infiltration in lymphedema. . Am. J. Pathol. 186::2193203
    [Crossref] [Google Scholar]
  47. Gratuze M, Chen Y, Parhizkar S, Jain N, Strickland MR, et al. 2021.. Activated microglia mitigate Aβ-associated tau seeding and spreading. . J. Exp. Med. 218::e20210542
    [Crossref] [Google Scholar]
  48. Greenhalgh AD, David S, Bennett FC. 2020.. Immune cell regulation of glia during CNS injury and disease. . Nat. Rev. Neurosci. 21::13952
    [Crossref] [Google Scholar]
  49. Hadjikhani N, Albrecht DS, Mainero C, Ichijo E, Ward N, et al. 2020.. Extra-axial inflammatory signal in parameninges in migraine with visual aura. . Ann. Neurol. 87::93949
    [Crossref] [Google Scholar]
  50. Haider MN, Leddy JJ, Hinds AL, Aronoff N, Rein D, et al. 2018.. Intracranial pressure changes after mild traumatic brain injury: a systematic review. . Brain Inj. 32::80915
    [Crossref] [Google Scholar]
  51. Herisson F, Frodermann V, Courties G, Rohde D, Sun Y, et al. 2018.. Direct vascular channels connect skull bone marrow and the brain surface enabling myeloid cell migration. . Nat. Neurosci. 21::120917
    [Crossref] [Google Scholar]
  52. Hsu M, Rayasam A, Kijak JA, Choi YH, Harding JS, et al. 2019.. Neuroinflammation-induced lymphangiogenesis near the cribriform plate contributes to drainage of CNS-derived antigens and immune cells. . Nat. Commun. 10::229
    [Crossref] [Google Scholar]
  53. Hu X, Deng Q, Ma L, Li Q, Chen Y, et al. 2020.. Meningeal lymphatic vessels regulate brain tumor drainage and immunity. . Cell Res. 30::22943
    [Crossref] [Google Scholar]
  54. Hurtado DE, Molina-Porcel L, Iba M, Aboagye AK, Paul SM, et al. 2010.. Aβ accelerates the spatiotemporal progression of tau pathology and augments tau amyloidosis in an Alzheimer mouse model. . Am. J. Pathol. 177::197788
    [Crossref] [Google Scholar]
  55. Iadecola C, Buckwalter MS, Anrather J. 2020.. Immune responses to stroke: mechanisms, modulation, and therapeutic potential. . J. Clin. Investig. 130::277788
    [Crossref] [Google Scholar]
  56. Ito M, Komai K, Mise-Omata S, Iizuka-Koga M, Noguchi Y, et al. 2019.. Brain regulatory T cells suppress astrogliosis and potentiate neurological recovery. . Nature 565::24650
    [Crossref] [Google Scholar]
  57. Izen RM, Yamazaki T, Nishinaka-Arai Y, Hong Y-K, Mukouyama Y-S. 2018.. Postnatal development of lymphatic vasculature in the brain meninges. . Dev. Dyn. 247::74153
    [Crossref] [Google Scholar]
  58. Jacob L, Boisserand LSB, Geraldo LHM, de Brito Neto J, Mathivet T, et al. 2019.. Anatomy and function of the vertebral column lymphatic network in mice. . Nat. Commun. 10::4594
    [Crossref] [Google Scholar]
  59. Jacob L, de Brito Neto J, Lenck S, Corcy C, Benbelkacem F, et al. 2022.. Conserved meningeal lymphatic drainage circuits in mice and humans. . J. Exp. Med. 219::e20220035
    [Crossref] [Google Scholar]
  60. Joachim CL, Duffy LK, Morris JH, Selkoe DJ. 1988.. Protein chemical and immunocytochemical studies of meningovascular β-amyloid protein in Alzheimer's disease and normal aging. . Brain Res. 474::10011
    [Crossref] [Google Scholar]
  61. Karatas H, Erdener SE, Gursoy-Ozdemir Y, Lule S, Eren-Koçak E, et al. 2013.. Spreading depression triggers headache by activating neuronal Panx1 channels. . Science 339::109295
    [Crossref] [Google Scholar]
  62. Kataru RP, Park HJ, Shin J, Baik JE, Sarker A, et al. 2022.. Structural and functional changes in aged skin lymphatic vessels. . Front. Aging 3::864860
    [Crossref] [Google Scholar]
  63. Kim H, Kataru RP, Koh GY. 2014.. Inflammation-associated lymphangiogenesis: a double-edged sword?. J. Clin. Investig. 124::93642
    [Crossref] [Google Scholar]
  64. Kosaras B, Jakubowski M, Kainz V, Burstein R. 2009.. Sensory innervation of the calvarial bones of the mouse. . J. Comp. Neurol. 515::33148
    [Crossref] [Google Scholar]
  65. Kovacs MA, Cowan MN, Babcock IW, Sibley LA, Still K, et al. 2022.. Meningeal lymphatic drainage promotes T cell responses against Toxoplasma gondii but is dispensable for parasite control in the brain. . eLife 11::e80775
    [Crossref] [Google Scholar]
  66. Kwon S, Moreno-Gonzalez I, Taylor-Presse K, Edwards G III, Gamez N, et al. 2019.. Impaired peripheral lymphatic function and cerebrospinal fluid outflow in a mouse model of Alzheimer's disease. . J. Alzheimer's Dis. 69::58593
    [Crossref] [Google Scholar]
  67. Levy D, Kainz V, Burstein R, Strassman AM. 2012.. Mast cell degranulation distinctly activates trigemino-cervical and lumbosacral pain pathways and elicits widespread tactile pain hypersensitivity. . Brain Behav. Immun. 26::31117
    [Crossref] [Google Scholar]
  68. Levy D, Moskowitz MA. 2023.. Meningeal mechanisms and the migraine connection. . Annu. Rev. Neurosci. 46::3958
    [Crossref] [Google Scholar]
  69. Li X, Qi L, Yang D, Hao S, Zhang F, et al. 2022.. Meningeal lymphatic vessels mediate neurotropic viral drainage from the central nervous system. . Nat. Neurosci. 25::57787
    [Crossref] [Google Scholar]
  70. Li Z, Antila S, Nurmi H, Chilov D, Korhonen EA, et al. 2023.. Blockade of VEGFR3 signaling leads to functional impairment of dural lymphatic vessels without affecting autoimmune neuroinflammation. . Sci. Immunol. 8::eabq0375
    [Crossref] [Google Scholar]
  71. Liao J, Zhang M, Shi Z, Lu H, Wang L, et al. 2023.. Improving the function of meningeal lymphatic vessels to promote brain edema absorption after traumatic brain injury. . J. Neurotrauma 40::38394
    [Crossref] [Google Scholar]
  72. Liu X, Gao C, Yuan J, Xiang T, Gong Z, et al. 2020.. Subdural haematomas drain into the extracranial lymphatic system through the meningeal lymphatic vessels. . Acta Neuropathol. Commun. 8::16
    [Crossref] [Google Scholar]
  73. Liu Z, Huang Y, Wang X, Li J-Y, Zhang C, et al. 2023.. The cervical lymph node contributes to peripheral inflammation related to Parkinson's disease. . J. Neuroinflammation 20::93
    [Crossref] [Google Scholar]
  74. Lo Bianco C, Ridet J-L, Schneider BL, Deglon N, Aebischer P. 2002.. α-Synucleinopathy and selective dopaminergic neuron loss in a rat lentiviral-based model of Parkinson's disease. . PNAS 99::1081318
    [Crossref] [Google Scholar]
  75. Louveau A, Da Mesquita S, Kipnis J. 2016.. Lymphatics in neurological disorders: a neuro-lympho-vascular component of multiple sclerosis and Alzheimer's disease?. Neuron 91::95773
    [Crossref] [Google Scholar]
  76. Louveau A, Herz J, Alme MN, Salvador AF, Dong MQ, et al. 2018.. CNS lymphatic drainage and neuroinflammation are regulated by meningeal lymphatic vasculature. . Nat. Neurosci. 21::138091
    [Crossref] [Google Scholar]
  77. Louveau A, Smirnov I, Keyes TJ, Eccles JD, Rouhani SJ, et al. 2015.. Structural and functional features of central nervous system lymphatic vessels. . Nature 523::33741
    [Crossref] [Google Scholar]
  78. Ma L, Chang Q, Pei F, Liu M, Zhang W, et al. 2023.. Skull progenitor cell-driven meningeal lymphatic restoration improves neurocognitive functions in craniosynostosis. . Cell Stem Cell 30::147285.e7
    [Crossref] [Google Scholar]
  79. Ma Q, Decker Y, Müller A, Ineichen BV, Proulx ST. 2019a.. Clearance of cerebrospinal fluid from the sacral spine through lymphatic vessels. . J. Exp. Med. 216::2492502
    [Crossref] [Google Scholar]
  80. Ma Q, Ineichen BV, Detmar M, Proulx ST. 2017.. Outflow of cerebrospinal fluid is predominantly through lymphatic vessels and is reduced in aged mice. . Nat. Commun. 8::1434
    [Crossref] [Google Scholar]
  81. Ma Q, Schlegel F, Bachmann SB, Schneider H, Decker Y, et al. 2019b.. Lymphatic outflow of cerebrospinal fluid is reduced in glioma. . Sci. Rep. 9::14815
    [Crossref] [Google Scholar]
  82. Mäkinen T, Jussila L, Veikkola T, Karpanen T, Kettunen MI, et al. 2001.. Inhibition of lymphangiogenesis with resulting lymphedema in transgenic mice expressing soluble VEGF receptor-3. . Nat. Med. 7::199205
    [Crossref] [Google Scholar]
  83. Martin VT, Fanning KM, Serrano D, Buse DC, Reed ML, Lipton RB. 2016.. Asthma is a risk factor for new onset chronic migraine: results from the American migraine prevalence and prevention study. . Headache 56::11831
    [Crossref] [Google Scholar]
  84. Mascagni P. 1786.. Vasorum Lymphatcorum Corporis Humani Historia et Ichnographia. Siena, Italy:: Ex Typographia Pazzini Carli
    [Google Scholar]
  85. Matrongolo MJ, Ang PS, Wu J, Jain A, Thackray JK, et al. 2024.. Piezo1 agonist restores meningeal lymphatic vessels, drainage, and brain-CSF perfusion in craniosynostosis and aged mice. . J. Clin. Investig. 134:(4):e171468
    [Crossref] [Google Scholar]
  86. Mazzitelli JA, Smyth LCD, Cross KA, Dykstra T, Sun J, et al. 2022.. Cerebrospinal fluid regulates skull bone marrow niches via direct access through dural channels. . Nat. Neurosci. 22::55560
    [Crossref] [Google Scholar]
  87. Merlini A, Haberl M, Strauß J, Hildebrand L, Genc N, et al. 2022.. Distinct roles of the meningeal layers in CNS autoimmunity. . Nat. Neurosci. 25::88799
    [Crossref] [Google Scholar]
  88. Messlinger K, Hanesch U, Baumgärtel M, Trost B, Schmidt RF. 1993.. Innervation of the dura mater encephali of cat and rat: ultrastructure and calcitonin gene-related peptide-like and substance P-like immunoreactivity. . Anat. Embryol. 188::21937
    [Crossref] [Google Scholar]
  89. Mestre H, Du T, Sweeney AM, Liu G, Samson AJ, et al. 2020.. Cerebrospinal fluid influx drives acute ischemic tissue swelling. . Science 367::eaax7171
    [Crossref] [Google Scholar]
  90. Mikhailov N, Virenque A, Koroleva K, Eme-Scolan E, Teleman M, et al. 2022.. The role of the meningeal lymphatic system in local meningeal inflammation and trigeminal nociception. . Sci. Rep. 12::8804
    [Crossref] [Google Scholar]
  91. Miura M, Kato S, von Lüdinghausen M. 1998.. Lymphatic drainage of the cerebrospinal fluid from monkey spinal meninges with special reference to the distribution of the epidural lymphatics. . Arch. Histol. Cytol. 61::27786
    [Crossref] [Google Scholar]
  92. Møllgård K, Beinlich FRM, Kusk P, Miyakoshi LM, Delle C, et al. 2023.. A mesothelium divides the subarachnoid space into functional compartments. . Science 379::8488
    [Crossref] [Google Scholar]
  93. Moskowitz MA, Nozaki K, Kraig RP. 1993.. Neocortical spreading depression provokes the expression of c-fos protein-like immunoreactivity within trigeminal nucleus caudalis via trigeminovascular mechanisms. . J. Neurosci. 13::116777
    [Crossref] [Google Scholar]
  94. Nagai T, Bridenbaugh EA, Gashev AA. 2011.. Aging-associated alterations in contractility of rat mesenteric lymphatic vessels. . Microcirculation 18::46373
    [Crossref] [Google Scholar]
  95. Negro A, Seidel JL, Houben T, Yu ES, Rosen I, et al. 2020.. Acute sleep deprivation enhances susceptibility to the migraine substrate cortical spreading depolarization. . J. Headache Pain 21::86
    [Crossref] [Google Scholar]
  96. Oakley H, Cole SL, Logan S, Maus E, Shao P, et al. 2006.. Intraneuronal β-amyloid aggregates, neurodegeneration, and neuron loss in transgenic mice with five familial Alzheimer's disease mutations: potential factors in amyloid plaque formation. . J. Neurosci. 26::1012940
    [Crossref] [Google Scholar]
  97. Oliver G, Kipnis J, Randolph GJ, Harvey NL. 2020.. The lymphatic vasculature in the 21st century: novel functional roles in homeostasis and disease. . Cell 182::27096
    [Crossref] [Google Scholar]
  98. Ostrom QT, Price M, Neff C, Cioffi G, Waite KA, et al. 2022.. CBTRUS statistical report: primary brain and other central nervous system tumors diagnosed in the United States in 2015–2019. . Neuro-Oncology 24:(Suppl. 5):v195
    [Crossref] [Google Scholar]
  99. Pappolla M, Sambamurti K, Vidal R, Pacheco-Quinto J, Poeggeler B, Matsubara E. 2014.. Evidence for lymphatic Aβ clearance in Alzheimer's transgenic mice. . Neurobiol. Dis. 71::21519
    [Crossref] [Google Scholar]
  100. Park J-M, Shin Y-J, Cho JM, Choi J-Y, Jeun S-S, et al. 2013.. Upregulation of vascular endothelial growth factor receptor-3 in the spinal cord of Lewis rats with experimental autoimmune encephalomyelitis. . J. Histochem. Cytochem. 61::3144
    [Crossref] [Google Scholar]
  101. Patel TK, Habimana-Griffin L, Gao X, Xu B, Achilefu S, et al. 2019.. Dural lymphatics regulate clearance of extracellular tau from the CNS. . Mol. Neurodegener. 14::11
    [Crossref] [Google Scholar]
  102. Perla M, Caretti V, Moro MA, McCullough LD. 2023.. Role of the meningeal lymphatics in stroke. . Stroke 54::167073
    [Crossref] [Google Scholar]
  103. Petrova TV, Koh GY. 2020.. Biological functions of lymphatic vessels. . Science 369::eaax4063
    [Crossref] [Google Scholar]
  104. Planas AM, Gómez-Choco M, Urra X, Gorina R, Caballero M, Chamorro Á. 2012.. Brain-derived antigens in lymphoid tissue of patients with acute stroke. . J. Immunol. 188::215663
    [Crossref] [Google Scholar]
  105. Pulous FE, Cruz-Hernández JC, Yang C, Kaya Ζ, Paccalet A, et al. 2022.. Cerebrospinal fluid can exit into the skull bone marrow and instruct cranial hematopoiesis in mice with bacterial meningitis. . Nat. Neurosci. 25::56776
    [Crossref] [Google Scholar]
  106. Ringstad G, Eide PK. 2020.. Cerebrospinal fluid tracer efflux to parasagittal dura in humans. . Nat. Commun. 11::354
    [Crossref] [Google Scholar]
  107. Rustenhoven J, Drieu A, Mamuladze T, de Lima KA, Dykstra T, et al. 2021.. Functional characterization of the dural sinuses as a neuroimmune interface. . Cell 184::100016.e27
    [Crossref] [Google Scholar]
  108. Rustenhoven J, Kipnis J. 2022.. Brain borders at the central stage of neuroimmunology. . Nature 612::41729
    [Crossref] [Google Scholar]
  109. Rustenhoven J, Pavlou G, Storck SE, Dykstra T, Du S, et al. 2023.. Age-related alterations in meningeal immunity drive impaired CNS lymphatic drainage. . J. Exp. Med. 220::e20221929
    [Crossref] [Google Scholar]
  110. Salvador AFM, Dykstra T, Rustenhoven J, Gao W, Blackburn SM, et al. 2023.. Age-dependent immune and lymphatic responses after spinal cord injury. . Neuron 111::215569.e9
    [Crossref] [Google Scholar]
  111. Salvador AFM, Kipnis J. 2022.. Immune response after central nervous system injury. . Semin. Immunol. 59::101629
    [Crossref] [Google Scholar]
  112. Sandrone S, Moreno-Zambrano D, Kipnis J, van Gijn J. 2019.. A (delayed) history of the brain lymphatic system. . Nat. Med. 25::53840
    [Crossref] [Google Scholar]
  113. Sato Y, Silina K, van den Broek M, Hirahara K, Yanagita M. 2023.. The roles of tertiary lymphoid structures in chronic diseases. . Nat. Rev. Nephrol. 19::52537
    [Crossref] [Google Scholar]
  114. Schwager S, Detmar M. 2019.. Inflammation and lymphatic function. . Front. Immunol. 10::308
    [Crossref] [Google Scholar]
  115. Sevigny J, Chiao P, Bussière T, Weinreb PH, Williams L, et al. 2016.. The antibody aducanumab reduces Aβ plaques in Alzheimer's disease. . Nature 537::5056
    [Crossref] [Google Scholar]
  116. Shibata-Germanos S, Goodman JR, Grieg A, Trivedi CA, Benson BC, et al. 2020.. Structural and functional conservation of non-lumenized lymphatic endothelial cells in the mammalian leptomeninges. . Acta Neuropathol. 139::383401
    [Crossref] [Google Scholar]
  117. Song E, Mao T, Dong H, Boisserand LSB, Antila S, et al. 2020.. VEGF-C-driven lymphatic drainage enables immunosurveillance of brain tumours. . Nature 577::68994
    [Crossref] [Google Scholar]
  118. Steiner TJ, Stovner LJ, Jensen R, Uluduz D, Katsarava Z. 2020.. Migraine remains second among the world's causes of disability, and first among young women: findings from GBD2019. . J. Headache Pain 21::137
    [Crossref] [Google Scholar]
  119. Strassman AM, Raymond SA, Burstein R. 1996.. Sensitization of meningeal sensory neurons and the origin of headaches. . Nature 384::56064
    [Crossref] [Google Scholar]
  120. Stromnes IM, Goverman JM. 2006.. Active induction of experimental allergic encephalomyelitis. . Nat. Protoc. 1::181019
    [Crossref] [Google Scholar]
  121. Tarasoff-Conway JM, Carare RO, Osorio RS, Glodzik L, Butler T, et al. 2015.. Clearance systems in the brain-implications for Alzheimer disease. . Nat. Rev. Neurol. 11::45770
    [Crossref] [Google Scholar]
  122. Tavares GA, Louveau A. 2021.. Meningeal lymphatics: an immune gateway for the central nervous system. . Cells 10::3385
    [Crossref] [Google Scholar]
  123. Thaunat O, Kerjaschki D, Nicoletti A. 2006.. Is defective lymphatic drainage a trigger for lymphoid neogenesis?. Trends Immunol. 27::44145
    [Crossref] [Google Scholar]
  124. Tsai H-H, Hsieh Y-C, Lin JS, Kuo Z-T, Ho C-Y, et al. 2022.. Functional investigation of meningeal lymphatic system in experimental intracerebral hemorrhage. . Stroke 53::98798
    [Crossref] [Google Scholar]
  125. van Zwam M, Huizinga R, Heijmans N, van Meurs M, Wierenga-Wolf AF, et al. 2009a.. Surgical excision of CNS-draining lymph nodes reduces relapse severity in chronic-relapsing experimental autoimmune encephalomyelitis. . J. Pathol. 217::54351
    [Crossref] [Google Scholar]
  126. van Zwam M, Huizinga R, Melief M-J, Wierenga-Wolf AF, van Meurs M, et al. 2009b.. Brain antigens in functionally distinct antigen-presenting cell populations in cervical lymph nodes in MS and EAE. . J. Mol. Med. 87::27386
    [Crossref] [Google Scholar]
  127. Virenque A, Balin R, Noe FM. 2021.. Dorsal skull meningeal lymphatic vessels drain blood-solutes after intracerebral hemorrhage. . bioRxiv 2021.03.09.434530. https://doi.org/10.1101/2021.03.09.434530
  128. Wang L, Zhang Y, Zhao Y, Marshall C, Wu T, Xiao M. 2019.. Deep cervical lymph node ligation aggravates AD-like pathology of APP/PS1 mice. . Brain Pathol. 29::17692
    [Crossref] [Google Scholar]
  129. Wang S, Sudan R, Peng V, Zhou Y, Du S, et al. 2022.. TREM2 drives microglia response to amyloid-β via SYK-dependent and -independent pathways. . Cell 185::415369.e19
    [Crossref] [Google Scholar]
  130. Wen Y-R, Yang J-H, Wang X, Yao Z-B. 2018.. Induced dural lymphangiogenesis facilities soluble amyloid-beta clearance from brain in a transgenic mouse model of Alzheimer's disease. . Neural Regen. Res. 13::70916
    [Crossref] [Google Scholar]
  131. Wojciechowski S, Virenque A, Vihma M, Galbardi B, Rooney EJ, et al. 2020.. Developmental dysfunction of the central nervous system lymphatics modulates the adaptive neuro-immune response in the perilesional cortex in a mouse model of traumatic brain injury. . Front. Immunol. 11::559810
    [Crossref] [Google Scholar]
  132. Xie L, Kang H, Xu Q, Chen MJ, Liao Y, et al. 2013.. Sleep drives metabolite clearance from the adult brain. . Science 342::37377
    [Crossref] [Google Scholar]
  133. Yanev P, Poinsatte K, Hominick D, Khurana N, Zuurbier KR, et al. 2020.. Impaired meningeal lymphatic vessel development worsens stroke outcome. . J. Cereb. Blood Flow Metab. 40::26375
    [Crossref] [Google Scholar]
  134. Zenker W, Bankoul S, Braun JS. 1994.. Morphological indications for considerable diffuse reabsorption of cerebrospinal fluid in spinal meninges particularly in the areas of meningeal funnels. An electronmicroscopical study including tracing experiments in rats. . Anat. Embryol. 189::24358
    [Crossref] [Google Scholar]
  135. Zhang X, Burstein R, Levy D. 2012.. Local action of the proinflammatory cytokines IL-1β and IL-6 on intracranial meningeal nociceptors. . Cephalalgia 32::6672
    [Crossref] [Google Scholar]
  136. Zhang X, Kainz V, Burstein R, Levy D. 2011.. Tumor necrosis factor-α induces sensitization of meningeal nociceptors mediated via local COX and p38 MAP kinase actions. . Pain 152::14049
    [Crossref] [Google Scholar]
  137. Zhang X, Strassman AM, Burstein R, Levy D. 2007.. Sensitization and activation of intracranial meningeal nociceptors by mast cell mediators. . J. Pharmacol. Exp. Ther. 322::80612
    [Crossref] [Google Scholar]
  138. Zhao J, Harrison S, Levy D. 2023.. Meningeal P2X7 signaling mediates migraine-related intracranial mechanical hypersensitivity. . J. Neurosci. 43:(33):597585
    [Crossref] [Google Scholar]
  139. Zhou C, Ma L, Xu H, Huo Y, Luo J. 2022.. Meningeal lymphatics regulate radiotherapy efficacy through modulating anti-tumor immunity. . Cell Res. 32::54354
    [Crossref] [Google Scholar]
  140. Zou W, Pu T, Feng W, Lu M, Zheng Y, et al. 2019.. Blocking meningeal lymphatic drainage aggravates Parkinson's disease-like pathology in mice overexpressing mutated α-synuclein. . Transl. Neurodegener. 8::7
    [Crossref] [Google Scholar]
/content/journals/10.1146/annurev-neuro-113023-103045
Loading
/content/journals/10.1146/annurev-neuro-113023-103045
Loading

Data & Media loading...

Supplemental Materials

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error