1932

Abstract

In this review, we consider a general theoretical framework for fermionic color-singlet states—including a singlet, a doublet, and a triplet under the Standard Model SU(2) gauge symmetry, corresponding to the bino, higgsino, and wino in supersymmetric theories—generically dubbed electroweakinos for their mass eigenstates. Depending on the relations among these states’ three mass parameters and their mixing after the electroweak symmetry breaking, this sector leads to a rich phenomenology that may be accessible in current and near-future experiments. We discuss the decay patterns of electroweakinos and their observable signatures at colliders, review the existing bounds on the model parameters, and summarize the current statuses of the comprehensive searches by the ATLAS and CMS Collaborations at the Large Hadron Collider. We also comment on the prospects for future colliders. An important feature of the theory is that the lightest neutral electroweakino can be identified as a weakly interacting massive particle cold dark matter candidate. We take into account the existing bounds on the parameters from the dark matter direct detection experiments and discuss the complementarity of the electroweakino searches at colliders.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-nucl-031020-121031
2020-10-19
2024-06-18
Loading full text...

Full text loading...

/deliver/fulltext/nucl/70/1/annurev-nucl-031020-121031.html?itemId=/content/journals/10.1146/annurev-nucl-031020-121031&mimeType=html&fmt=ahah

Literature Cited

  1. 1. 
    Aad G et al. Phys. Lett. B 716:1 2012.
    [Google Scholar]
  2. 2. 
    Chatrchyan S et al. Phys. Lett. B 716:30 2012.
    [Google Scholar]
  3. 3. 
    Weinberg S. Phys. Rev. D 13:974 (1976). Addendum. Phys. Rev. D 19:1277 1979.
    [Google Scholar]
  4. 4. 
    Gildener E. Phys. Rev. D 14:1667 1976.
    [Google Scholar]
  5. 5. 
    Susskind L. Phys. Rev. D 20:2619 1979.
    [Google Scholar]
  6. 6. 
    ’t Hooft G et al. NATO Sci. Ser. B 59:1 1980.
    [Google Scholar]
  7. 7. 
    Ellis JR, Kelley S, Nanopoulos DV. Phys. Lett. B 260:131 1991.
    [Google Scholar]
  8. 8. 
    Amaldi U, de Boer W, Furstenau H. Phys. Lett. B 260:447 1991.
    [Google Scholar]
  9. 9. 
    Langacker P, Luo M. Phys. Rev. D 44:817 1991.
    [Google Scholar]
  10. 10. 
    Giunti C, Kim CW, Lee UW. Mod. Phys. Lett. A 6:1745 1991.
    [Google Scholar]
  11. 11. 
    Gol'fand YA, Likhtman EP JETP Lett. 13:323 1971. [Pisma Zh. Eksp. Teor. Fiz. 13:452 (1971)]
    [Google Scholar]
  12. 12. 
    Volkov DV, Akulov VP. Phys. Lett. B 46:109 1973.
    [Google Scholar]
  13. 13. 
    Wess J, Zumino B. Nucl. Phys. B 70:39 1974.
    [Google Scholar]
  14. 14. 
    Wess J, Zumino B. Nucl. Phys. B 78:1 1974.
    [Google Scholar]
  15. 15. 
    Ferrara S, Zumino B. Nucl. Phys. B 79:413 1974.
    [Google Scholar]
  16. 16. 
    Salam A, Strathdee JA. Phys. Lett. B 51:353 1974.
    [Google Scholar]
  17. 17. 
    Kaplan DB, Georgi H. Phys. Lett. B 136:183 1984.
    [Google Scholar]
  18. 18. 
    Kaplan DB, Georgi H, Dimopoulos S. Phys. Lett. B 136:187 1984.
    [Google Scholar]
  19. 19. 
    Georgi H, Kaplan DB. Phys. Lett. B 145:216 1984.
    [Google Scholar]
  20. 20. 
    Randall L, Sundrum R. Phys. Rev. Lett. 83:3370 1999.
    [Google Scholar]
  21. 21. 
    Randall L, Sundrum R. Phys. Rev. Lett. 83:4690 1999.
    [Google Scholar]
  22. 22. 
    Nilles HP. Phys. Rep. 110:1 1984.
    [Google Scholar]
  23. 23. 
    Haber HE, Kane GL. Phys. Rep. 117:75 1985.
    [Google Scholar]
  24. 24. 
    Martin SP arXiv:hep-ph/9709356 [hep-ph] (1997) [Martin SP. A supersymmetry primer. In Perspectives on Supersymmetry, ed. GL Kane, pp. 1–98. Singapore: World Sci. (1998)]
  25. 25. 
    Giudice GF Naturally speaking: the naturalness criterion and physics at the LHC. Perspectives on LHC Physics G Kane155–78 Singapore: World Sci. 2008.
    [Google Scholar]
  26. 26. 
    Feng JL. Annu. Rev. Nucl. Part. Sci. 63:351 2013.
    [Google Scholar]
  27. 27. 
    Jungman G, Kamionkowski M, Griest K. Phys. Rep. 267:195 1996.
    [Google Scholar]
  28. 28. 
    ATLAS Collab. ATLAS experiment—public results: supersymmetry searches Public data, ATLAS Collab., CERN, Geneva. https://twiki.cern.ch/twiki/bin/view/AtlasPublic/SupersymmetryPublicResults 2020.
    [Google Scholar]
  29. 29. 
    CMS Collab. CMS supersymmetry physics results Public data, CMS Collab., CERN, Geneva. https://twiki.cern.ch/twiki/bin/view/CMSPublic/PhysicsResultsSUS 2020.
    [Google Scholar]
  30. 30. 
    Sirunyan AM et al. J. High Energy Phys. 1910:244 2019.
    [Google Scholar]
  31. 31. 
    ATLAS Collab. Search for squarks and gluinos in final states with jets and missing transverse momentum using 139 fb−1 of= 13 TeV pp collision data with the ATLAS detector Tech. Rep. ATLAS-CONF-2019-040, CERN, Geneva 2019.
    [Google Scholar]
  32. 32. 
    Feng JL, Matchev KT, Moroi T. Phys. Rev. D 61:075005 2000.
    [Google Scholar]
  33. 33. 
    Hall LJ, Pinner D, Ruderman JT. J. High Energy Phys. 1204:131 2012.
    [Google Scholar]
  34. 34. 
    Baer H et al. Phys. Rev. Lett. 109:161802 2012.
    [Google Scholar]
  35. 35. 
    Baer H et al. arXiv:2002.03013 [hep-ph] 2020.
  36. 36. 
    Baer H, Chen C, Paige F, Tata X. Phys. Rev. D 50:4508 1994.
    [Google Scholar]
  37. 37. 
    Athron P et al. Eur. Phys. J. C 79:395 2019.
    [Google Scholar]
  38. 38. 
    Arkani-Hamed N, Delgado A, Giudice GF. Nucl. Phys. B 741:108 2006.
    [Google Scholar]
  39. 39. 
    Giudice GF, Han T, Wang K, Wang LT. Phys. Rev. D 81:115011 2010.
    [Google Scholar]
  40. 40. 
    Chamseddine AH, Arnowitt RL, Nath P. Phys. Rev. Lett. 49:970 1982.
    [Google Scholar]
  41. 41. 
    Barbieri R, Ferrara S, Savoy CA. Phys. Lett. B 119:343 1982.
    [Google Scholar]
  42. 42. 
    Ibánez LE. Phys. Lett. B 118:73 1982.
    [Google Scholar]
  43. 43. 
    Hall LJ, Lykken JD, Weinberg S. Phys. Rev. D 27:2359 1983.
    [Google Scholar]
  44. 44. 
    Ohta N. Prog. Theor. Phys. 70:542 1983.
    [Google Scholar]
  45. 45. 
    Ellis JR, Nanopoulos DV, Tamvakis K. Phys. Lett. B 121:123 1983.
    [Google Scholar]
  46. 46. 
    Alvarez-Gaumé L, Polchinski J, Wise MB. Nucl. Phys. B 221:495 1983.
    [Google Scholar]
  47. 47. 
    Randall L, Sundrum R. Nucl. Phys. B 557:79 1999.
    [Google Scholar]
  48. 48. 
    Giudice GF, Luty MA, Murayama H, Rattazzi R. J. High Energy Phys. 9812:027 1998.
    [Google Scholar]
  49. 49. 
    Gherghetta T, Giudice GF, Wells JD. Nucl. Phys. B 559:27 1999.
    [Google Scholar]
  50. 50. 
    Ibe M, Matsumoto S, Sato R. Phys. Lett. B 721:252 2013.
    [Google Scholar]
  51. 51. 
    Fukuda H, Nagata N, Otono H, Shirai S. Phys. Lett. B 781:306 2018.
    [Google Scholar]
  52. 52. 
    Chung DJH et al. Phys. Rep. 407:1 2005.
    [Google Scholar]
  53. 53. 
    Dine M, Fischler W. Phys. Lett. B 110:227 1982.
    [Google Scholar]
  54. 54. 
    Nappi CR, Ovrut BA. Phys. Lett. B 113:175 1982.
    [Google Scholar]
  55. 55. 
    Alvarez-Gaumé L, Claudson M, Wise MB. Nucl. Phys. B 207:96 1982.
    [Google Scholar]
  56. 56. 
    Dine M, Nelson AE. Phys. Rev. D 48:1277 1993.
    [Google Scholar]
  57. 57. 
    Dine M, Nelson AE, Shirman Y. Phys. Rev. D 51:1362 1995.
    [Google Scholar]
  58. 58. 
    Dine M, Nelson AE, Nir Y, Shirman Y. Phys. Rev. D 53:2658 1996.
    [Google Scholar]
  59. 59. 
    Giudice GF, Rattazzi R. Phys. Rep. 322:419 1999.
    [Google Scholar]
  60. 60. 
    Arbey A et al. Phys. Lett. B 708:162 2012.
    [Google Scholar]
  61. 61. 
    Ajaib MA, Gogoladze I, Nasir F, Shafi Q. Phys. Lett. B 713:462 2012.
    [Google Scholar]
  62. 62. 
    Kang Z et al. Phys. Rev. D 86:095020 2012.
    [Google Scholar]
  63. 63. 
    Craig N, Knapen S, Shih D, Zhao Y. J. High Energy Phys. 1303:154 2013.
    [Google Scholar]
  64. 64. 
    Albaid A, Babu KS. Phys. Rev. D 88:055007 2013.
    [Google Scholar]
  65. 65. 
    Cohen T, Lisanti M, Pierce A, Slatyer TR. J. Cosmol. Astropart. Phys. 1310:061 2013.
    [Google Scholar]
  66. 66. 
    Alwall J, Schuster P, Toro N. Phys. Rev. D 79:075020 2009.
    [Google Scholar]
  67. 67. 
    Alves D. J. Phys. G 39:105005 2012.
    [Google Scholar]
  68. 68. 
    Berger CF, Gainer JS, Hewett JL, Rizzo TG. J. High Energy Phys. 0902:023 2009.
    [Google Scholar]
  69. 69. 
    Lee BW, Weinberg S. Phys. Rev. Lett. 39:165 1977.
    [Google Scholar]
  70. 70. 
    Goldberg H. Phys. Rev. Lett. 50:1419 (1983). Erratum. Phys. Rev. Lett. 103:099905 2009.
    [Google Scholar]
  71. 71. 
    Steigman G, Dasgupta B, Beacom JF. Phys. Rev. D 86:023506 2012.
    [Google Scholar]
  72. 72. 
    Bramante J et al. Phys. Rev. D 93:063525 2016.
    [Google Scholar]
  73. 73. 
    Griest K, Seckel D. Phys. Rev. D 43:3191 1991.
    [Google Scholar]
  74. 74. 
    Mizuta S, Yamaguchi M. Phys. Lett. B 298:120 1993.
    [Google Scholar]
  75. 75. 
    Edsjo J, Gondolo P. Phys. Rev. D 56:1879 1997.
    [Google Scholar]
  76. 76. 
    Baer H, Balazs C, Belyaev A. J. High Energy Phys. 0203:042 2002.
    [Google Scholar]
  77. 77. 
    Boehm C, Djouadi A, Drees M. Phys. Rev. D 62:035012 2000.
    [Google Scholar]
  78. 78. 
    Ellis JR, Olive KA, Santoso Y. Astropart. Phys. 18:395 2003.
    [Google Scholar]
  79. 79. 
    Arnowitt RL, Dutta B, Santoso Y. Nucl. Phys. B 606:59 2001.
    [Google Scholar]
  80. 80. 
    Ellis JR, Falk T, Olive KA. Phys. Lett. B 444:367 1998.
    [Google Scholar]
  81. 81. 
    Ellis JR, Falk T, Olive KA, Srednicki M. Astropart. Phys. 13:181 (2000). Erratum. Astropart. Phys. 15:413 2001.
    [Google Scholar]
  82. 82. 
    Gómez ME, Lazarides G, Pallis C. Phys. Rev. D 61:123512 2000.
    [Google Scholar]
  83. 83. 
    Nihei T, Roszkowski L, Ruiz de Austri R. J. High Energy Phys. 07:024 2002.
    [Google Scholar]
  84. 84. 
    Baer H et al. J. High Energy Phys. 0512:011 2005.
    [Google Scholar]
  85. 85. 
    Berlin A, Gori S, Lin T, Wang LT. Phys. Rev. D 92:015005 2015.
    [Google Scholar]
  86. 86. 
    Freese K, López A, Shah NR, Shakya B. J. High Energy Phys. 1604:59 2016.
    [Google Scholar]
  87. 87. 
    Gilmore RC. Phys. Rev. D 76:043520 2007.
    [Google Scholar]
  88. 88. 
    Kar A, Mitra S, Mukhopadhyaya B, Choudhury TR. Phys. Rev. D 99:021302 2019.
    [Google Scholar]
  89. 89. 
    Ellis RK et al. (Eur. Strateg. Part. Phys. Prep. Group) arXiv:1910.11775 [hep-ex] 2019.
  90. 90. 
    Cushman P et al.Snowmass CF1 summary: WIMP dark matter direct detection. Presented at 2013 Community Summer Study on the Future of U.S. Particle Physics: Snowmass on the Mississippi (CSS2013), Minneapolis, MN, July 29–Aug. 6 2013.
  91. 91. 
    Hisano J, Ishiwata K, Nagata N. J. High Energy Phys. 1506:97 2015.
    [Google Scholar]
  92. 92. 
    Chen Q, Hill RJ. Phys. Lett. B 804:135364 2020.
    [Google Scholar]
  93. 93. 
    Cheung C, Hall LJ, Pinner D, Ruderman JT. J. High Energy Phys. 1305:100 2013.
    [Google Scholar]
  94. 94. 
    Han T, Kling F, Su S, Wu Y. J. High Energy Phys. 1702:57 2017.
    [Google Scholar]
  95. 95. 
    Huang P, Wagner CEM. Phys. Rev. D 90:015018 2014.
    [Google Scholar]
  96. 96. 
    Baum S, Carena M, Shah NR, Wagner CEM. J. High Energy Phys. 1804:69 2018.
    [Google Scholar]
  97. 97. 
    Han T, Liu H, Mukhopadhyay S, Wang X. J. High Energy Phys. 1903:80 2019.
    [Google Scholar]
  98. 98. 
    Choi SY et al. Eur. Phys. J. C 7:123 1999.
    [Google Scholar]
  99. 99. 
    Choi SY, Kalinowski J, Moortgat-Pick GA, Zerwas PM. Eur. Phys. J. C 22:563 (2001). Addendum. Eur. Phys. J. C 23:769 2002.
    [Google Scholar]
  100. 100. 
    Aarons G et al.arXiv:0709.1893 [hep-ph] 2007.
  101. 101. 
    Arbey A et al. Eur. Phys. J. C 75:371 2015.
    [Google Scholar]
  102. 102. 
    Carena M, Wagner CEM. Phys. Lett. B 195:599 1987.
    [Google Scholar]
  103. 103. 
    Chen CH, Drees M, Gunion JF. Phys. Rev. Lett. 76:2002 1996.
    [Google Scholar]
  104. 104. 
    Hensel C Search for nearly mass degenerate charginos and neutralinos in e+e collisions PhD Diss., Hamburg Univ., Hamburg, Ger. 2002.
    [Google Scholar]
  105. 105. 
    Berggren M et al. Eur. Phys. J. C 73:2660 2013.
    [Google Scholar]
  106. 106. 
    Birkedal A, Matchev K, Perelstein M. Phys. Rev. D 70:077701 2004.
    [Google Scholar]
  107. 107. 
    Dreiner H et al. Phys. Rev. D 87:075015 2013.
    [Google Scholar]
  108. 108. 
    Lebrun P et al.arXiv:1209.2543 [physics.ins-det] 2012.
  109. 109. 
    Tanabashi M et al. Phys. Rev. D 98:030001 2018.
    [Google Scholar]
  110. 110. 
    Dreiner HK et al. Eur. Phys. J. C 62:547 2009.
    [Google Scholar]
  111. 111. 
    de Filippis N et al. (LEP2 SUSY Work. Group) Combined LEP chargino results, up to 208 GeV: ALEPH, DELPHI, L3, OPAL experiments. Rep. LEPSUSYWG/02-04.1, CERN, Geneva. http://lepsusy.web.cern.ch/lepsusy/www/inoslowdmsummer02/charginolowdm_pub.html 2002.
  112. 112. 
    Han T, Padhi S, Su S. Phys. Rev. D 88:115010 2013.
    [Google Scholar]
  113. 113. 
    Lee BW, Quigg C, Thacker HB. Phys. Rev. D 16:1519 1977.
    [Google Scholar]
  114. 114. 
    Chanowitz MS, Gaillard MK. Nucl. Phys. B 261:379 1985.
    [Google Scholar]
  115. 115. 
    Bagger J, Schmidt C. Phys. Rev. D 41:264 1990.
    [Google Scholar]
  116. 116. 
    He HJ, Kuang YP, Li X. Phys. Rev. Lett. 69:2619 1992.
    [Google Scholar]
  117. 117. 
    Gori S, Liu Z, Shakya B. J. High Energy Phys. 1904:49 2019.
    [Google Scholar]
  118. 118. 
    Datta A, Konar P, Mukhopadhyaya B. Phys. Rev. D 65:055008 2002.
    [Google Scholar]
  119. 119. 
    Datta A, Konar P, Mukhopadhyaya B. Phys. Rev. Lett. 88:181802 2002.
    [Google Scholar]
  120. 120. 
    Cho GC et al. Phys. Rev. D 73:054002 2006.
    [Google Scholar]
  121. 121. 
    Dutta B et al. Phys. Rev. D 87:035029 2013.
    [Google Scholar]
  122. 122. 
    Cotta RC, Hewett JL, Le MP, Rizzo TG. Phys. Rev. D 88:116009 2013.
    [Google Scholar]
  123. 123. 
    Delannoy AG et al. Phys. Rev. Lett. 111:061801 2013.
    [Google Scholar]
  124. 124. 
    Cowan G, Cranmer K, Gross E, Vitells O. Eur. Phys. J. C 73:2501 2013.
    [Google Scholar]
  125. 125. 
    Junk T. Nucl. Instr. Meth. A 434:435 1999.
    [Google Scholar]
  126. 126. 
    Read AL. J. Phys. G 28:2693 2002.
    [Google Scholar]
  127. 127. 
    Cowan G, Cranmer K, Gross E, Vitells O. Eur. Phys. J. C 71:1554 (2011). Erratum. Eur. Phys. J. C 73:2501 2013.
    [Google Scholar]
  128. 128. 
    Aad G et al. (ATLAS Collab.) arXiv:1909.09226 [hep-ex] 2019.
  129. 129. 
    Aaboud M et al. Phys. Rev. D 100:012006 2019.
    [Google Scholar]
  130. 130. 
    Sirunyan AM et al. J. High Energy Phys. 1711:29 2017.
    [Google Scholar]
  131. 131. 
    Sirunyan AM et al. J. High Energy Phys. 1911:109 2019.
    [Google Scholar]
  132. 132. 
    Sirunyan AM et al. J. High Energy Phys. 1803:76 2018.
    [Google Scholar]
  133. 133. 
    Barr A, Lester C, Stephens P. J. Phys. G 29:2343 2003.
    [Google Scholar]
  134. 134. 
    Aaboud M et al. Phys. Rev. D 98:092012 2018.
    [Google Scholar]
  135. 135. 
    Aad G et al. Eur. Phys. J. C 80:123 2020.
    [Google Scholar]
  136. 136. 
    ATLAS Collab. Object-based missing transverse momentum significance in the ATLAS detector ATLAS Note ATLAS-CONF-2018-038, CERN, Geneva. https://cds.cern.ch/record/2630948 2018.
    [Google Scholar]
  137. 137. 
    Sirunyan AM et al. J. High Energy Phys. 1803:166 2018.
    [Google Scholar]
  138. 138. 
    Sirunyan AM et al. J. High Energy Phys. 1803:160 2018.
    [Google Scholar]
  139. 139. 
    Aaboud M et al. Eur. Phys. J. C 78:995 2018.
    [Google Scholar]
  140. 140. 
    Aad G et al. Phys. Rev. D 101:052005 2020.
    [Google Scholar]
  141. 141. 
    Han Z, Kribs GD, Martin A, Menon A. Phys. Rev. D 89:075007 2014.
    [Google Scholar]
  142. 142. 
    Baer H, Mustafayev A, Tata X. Phys. Rev. D 90:115007 2014.
    [Google Scholar]
  143. 143. 
    Barr A, Scoville J. J. High Energy Phys. 1504:147 2015.
    [Google Scholar]
  144. 144. 
    Jackson P, Rogan C. Phys. Rev. D 96:112007 2017.
    [Google Scholar]
  145. 145. 
    Sirunyan AM et al. Phys. Lett. B 782:440 2018.
    [Google Scholar]
  146. 146. 
    Sirunyan AM et al. J. High Energy Phys. 1908:150 2019.
    [Google Scholar]
  147. 147. 
    Sirunyan AM et al. Phys. Lett. B 806:135502 2020.
    [Google Scholar]
  148. 148. 
    Aaboud M et al. Phys. Rev. D 99:092007 2019.
    [Google Scholar]
  149. 149. 
    Aad G et al. Eur. Phys. J. C 75:407 2015.
    [Google Scholar]
  150. 150. 
    de Favereau J et al. J. High Energy Phys. 1402:57 2014.
    [Google Scholar]
  151. 151. 
    Aad G et al. Phys. Rev. D 93:052002 2016.
    [Google Scholar]
  152. 152. 
    Aad G et al. J. High Energy Phys. 1510:54 2015.
    [Google Scholar]
  153. 153. 
    Aad G et al. Eur. Phys. J. C 75:510 (2015). Erratum. Eur. Phys. J. C 76:153 2016.
    [Google Scholar]
  154. 154. 
    Aad G et al. J. High Energy Phys. 1510:134 2015.
    [Google Scholar]
  155. 155. 
    Khachatryan V et al. J. High Energy Phys. 1610:129 2016.
    [Google Scholar]
  156. 156. 
    Ellis JR et al. Phys. Rev. D 39:844 1989.
    [Google Scholar]
  157. 157. 
    Drees M. Int. J. Mod. Phys. A 4:3635 1989.
    [Google Scholar]
  158. 158. 
    Kim JE, Nilles HP. Phys. Lett. B 138:150 1984.
    [Google Scholar]
  159. 159. 
    Baer H, Choi KY, Kim JE, Roszkowski L. Phys. Rep. 555:1 2015.
    [Google Scholar]
/content/journals/10.1146/annurev-nucl-031020-121031
Loading
/content/journals/10.1146/annurev-nucl-031020-121031
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error