1932

Abstract

Colliders, among the most successful tools of particle physics, have revealed much about matter. This review describes how colliders contribute to the search for particle dark matter, focusing on the highest-energy collider currently in operation, the Large Hadron Collider (LHC) at CERN. In the absence of hints about the character of interactions between dark matter and standard matter, this review emphasizes what could be observed in the near future, presents the main experimental challenges, and discusses how collider searches fit into the broader field of dark matter searches. Finally, it highlights a few areas to watch for the future LHC program.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-nucl-101917-021008
2018-10-19
2024-10-10
Loading full text...

Full text loading...

/deliver/fulltext/nucl/68/1/annurev-nucl-101917-021008.html?itemId=/content/journals/10.1146/annurev-nucl-101917-021008&mimeType=html&fmt=ahah

Literature Cited

  1. 1.  Bertone G, Hooper D, Silk J Phys. Rep. 405:279 2005.
    [Google Scholar]
  2. 2.  Cohen T et al. Phys. Rev. Lett. 119:021102 2017.
    [Google Scholar]
  3. 3.  Ellis JR, Falk T, Olive KA, Srednicki M Astropart. Phys. 13:181 2000. Erratum Astropart. Phys. 15:413 2001.
    [Google Scholar]
  4. 4.  Ade PAR et al. Astron. Astrophys. 594:A13 2016.
    [Google Scholar]
  5. 5.  Undagoitia TM, Rauch L J. Phys. G 43:013001 2016.
    [Google Scholar]
  6. 6.  Gaskins JM Contemp. Phys. 57:496 2016.
    [Google Scholar]
  7. 7. ATLAS Collab J. Instrum. 3:S08003 2008.
    [Google Scholar]
  8. 8. CMS Collab J. Instrum. 3:S08004 2008.
    [Google Scholar]
  9. 9. LHCb Collab J. Instrum. 3:S08005 2008.
    [Google Scholar]
  10. 10.  Steigman G, Dasgupta B, Beacom JF Phys. Rev. D 86:023506 2012.
    [Google Scholar]
  11. 11.  Bernal N et al. Int. J. Mod. Phys. A 32:1730023 2017.
    [Google Scholar]
  12. 12.  Brooijmans G et al. arXiv:1803.10379 [hep-ph] 2018.
  13. 13.  Evans JA, Gori S, Shelton J J. High Energy Phys. 1802:100 2018.
    [Google Scholar]
  14. 14.  D’Ambrosio G, Giudice GF, Isidori G, Strumia A Nucl. Phys. B 645:155 2002.
    [Google Scholar]
  15. 15.  Abercrombie D et al. arXiv:1507.00966 [hep-ex] 2015.
  16. 16.  Patt B, Wilczek F arXiv:hep-ph/0605188 2006.
  17. 17.  Djouadi A, Lebedev O, Mambrini Y, Quevillon J Phys. Lett. B 709:65 2012.
    [Google Scholar]
  18. 18.  Escudero M, Berlin A, Hooper D, Lin MX J. Cosmol. Astropart. Phys. 1612:029 2016.
    [Google Scholar]
  19. 19.  Goodman J et al. Phys. Rev. D 82:116010 2010.
    [Google Scholar]
  20. 20.  Bai Y, Fox PJ, Harnik R J. High Energy Phys. 1012:048 2010.
    [Google Scholar]
  21. 21.  Fox PJ, Harnik R, Kopp J, Tsai Y Phys. Rev. D 85:056011 2012.
    [Google Scholar]
  22. 22.  Beltran M et al. J. High Energy Phys. 1009:037 2010.
    [Google Scholar]
  23. 23.  Shoemaker IM, Vecchi L Phys. Rev. D 86:015023 2012.
    [Google Scholar]
  24. 24.  Racco D, Wulzer A, Zwirner F J. High Energy Phys. 1505:009 2015.
    [Google Scholar]
  25. 25.  Busoni G, De Simone A, Morgante E, Riotto A Phys. Lett. B 728:412 2014.
    [Google Scholar]
  26. 26.  Alwall J, Schuster P, Toro N Phys. Rev. D 79:075020 2009.
    [Google Scholar]
  27. 27.  LHC New Phys. Work. Group J. Phys. G 39:105005 2012.
    [Google Scholar]
  28. 28.  DiFranzo A, Nagao KI, Rajaraman A, Tait TMP J. High Energy Phys. 1311:014 2013. Erratum J. High Energy Phys. 1401:162 2014.
    [Google Scholar]
  29. 29.  Abdallah J et al. Phys. Dark Univ. 9/10:8 2015.
    [Google Scholar]
  30. 30.  Kahlhoefer F, Schmidt-Hoberg K, Schwetz T, Vogl S J. High Energy Phys. 02:016 2016.
    [Google Scholar]
  31. 31.  Backovic M et al. Eur. Phys. J. C 75:482 2015.
    [Google Scholar]
  32. 32.  Papucci M, Vichi A, Zurek KM J. High Energy Phys. 1411:024 2014.
    [Google Scholar]
  33. 33.  An H, Wang LT, Zhang H Phys. Rev. D 89:115014 2014.
    [Google Scholar]
  34. 34.  Bell NF et al. Phys. Rev. D 86:096011 2012.
    [Google Scholar]
  35. 35.  Han C, Lee HM, Park M, Sanz V Phys. Lett. B 755:371 2016.
    [Google Scholar]
  36. 36.  Albert A et al. arXiv:1703.05703 [hep-ex] 2017.
  37. 37.  Berlin A, Lin T, Wang LT J. High Energy Phys. 1406:078 2014.
    [Google Scholar]
  38. 38.  Carpenter L et al. Phys. Rev. D 89:075017 2014.
    [Google Scholar]
  39. 39.  Chala M et al. J. High Energy Phys. 1507:089 2015.
    [Google Scholar]
  40. 40.  Boveia A et al. arXiv:1603.04156 [hep-ex] 2016.
  41. 41.  Buckley MR, Feld D, Goncalves D Phys. Rev. D 91:015017 2015.
    [Google Scholar]
  42. 42.  Haisch U, Re E J. High Energy Phys. 1506:078 2015.
    [Google Scholar]
  43. 43.  Bell NF, Busoni G, Sanderson IW J. Cosmol. Astropart. Phys. 1703:015 2017.
    [Google Scholar]
  44. 44.  Albert A et al. Phys. Dark Univ. 16:49 2017.
    [Google Scholar]
  45. 45.  Englert C, McCullough M, Spannowsky M Phys. Dark Univ. 14:48 2016.
    [Google Scholar]
  46. 46.  Bai Y, Berger J J. High Energy Phys. 11:171 2013.
    [Google Scholar]
  47. 47.  Ko P, Natale A, Park M, Yokoya H J. High Energy Phys. 01:086 2017.
    [Google Scholar]
  48. 48.  Blanke M, Kast S J. High Energy Phys. 05:162 2017.
    [Google Scholar]
  49. 49.  Boucheneb I, Cacciapaglia G, Deandrea A, Fuks B J. High Energy Phys. 01:017 2015.
    [Google Scholar]
  50. 50.  Buschmann M et al. J. High Energy Phys. 09:033 2016.
    [Google Scholar]
  51. 51.  Khoze VV, Plascencia AD, Sakurai K J. High Energy Phys. 06:041 2017.
    [Google Scholar]
  52. 52.  Bauer M, Haisch U, Kahlhoefer F J. High Energy Phys. 05:138 2017.
    [Google Scholar]
  53. 53.  Goncalves D, Machado PAN, No JM Phys. Rev. D 95:055027 2017.
    [Google Scholar]
  54. 54.  Pich A, Tuzon P Phys. Rev. D 80:091702 2009.
    [Google Scholar]
  55. 55.  Duerr M et al. J. High Energy Phys. 09:042 2016.
    [Google Scholar]
  56. 56.  Feng JL Annu. Rev. Astron. Astrophys. 48:495 2010.
    [Google Scholar]
  57. 57.  Ellis J et al. Nucl. Phys. B 238:453 1984.
    [Google Scholar]
  58. 58.  Farrar GR, Fayet P Phys. Lett. B 76:575 1978.
    [Google Scholar]
  59. 59.  Dimopoulos S, Dine M, Raby S, Thomas SD Phys. Rev. Lett. 76:3494 1996.
    [Google Scholar]
  60. 60.  Masiero A, Profumo S, Ullio P Nucl. Phys. B 712:86 2005.
    [Google Scholar]
  61. 61.  Pospelov M, Ritz A, Voloshin MB Phys. Lett. B 662:53 2008.
    [Google Scholar]
  62. 62.  Das S, Sigurdson K Phys. Rev. D 85:063510 2012.
    [Google Scholar]
  63. 63.  Co RT, D’Eramo F, Hall LJ, Pappadopulo D J. Cosmol. Astropart. Phys. 1512:024 2015.
    [Google Scholar]
  64. 64.  Kahlhoefer F Phys. Lett. B 779:388 2018.
    [Google Scholar]
  65. 65.  Holdom B Phys. Lett. B 166:196 1986.
    [Google Scholar]
  66. 66.  Curtin D, Essig R, Gori S, Shelton J J. High Energy Phys. 02:157 2015.
    [Google Scholar]
  67. 67.  Battaglieri M et al. arXiv:1707.04591 [hep-ph] 2017.
  68. 68.  El Hedri S, Kaminska A, de Vries M, Zurita J J. High Energy Phys. 04:118 2017.
    [Google Scholar]
  69. 69.  Strassler MJ, Zurek KM Phys. Lett. B 651:374 2007.
    [Google Scholar]
  70. 70.  Zurek KM Phys. Rep. 537:91 2014.
    [Google Scholar]
  71. 71.  Craig N, Knapen S, Longhi P Phys. Rev. Lett. 114:061803 2015.
    [Google Scholar]
  72. 72.  Hochberg Y, Kuflik E, Volansky T, Wacker JG Phys. Rev. Lett. 113:171301 2014.
    [Google Scholar]
  73. 73.  Schael S et al. Phys. Rep. 427:257 2006.
    [Google Scholar]
  74. 74.  Carena M, de Gouvea A, Freitas A, Schmitt M Phys. Rev. D 68:113007 2003.
    [Google Scholar]
  75. 75. ATLAS Collab Eur. Phys. J. C 77:765 2017.
    [Google Scholar]
  76. 76. ATLAS Collab., CMS Collab J. High Energy Phys. 08:045 2016.
    [Google Scholar]
  77. 77. ATLAS Collab J. High Energy Phys. 11:206 2015.
    [Google Scholar]
  78. 78.  Dobrescu BA, Lykken JD J. High Energy Phys. 1302:073 2013.
    [Google Scholar]
  79. 79. CMS Collab J. High Energy Phys. 02:135 2017.
    [Google Scholar]
  80. 80.  Fox PJ, Harnik R, Kopp J, Tsai Y Phys. Rev. D 84:014028 2011.
    [Google Scholar]
  81. 81.  Birkedal A, Matchev K, Perelstein M Phys. Rev. D 70:077701 2004.
    [Google Scholar]
  82. 82. ATLAS Collab Eur. Phys. J. C 77:241 2017.
    [Google Scholar]
  83. 83. CMS Collab Performance of missing energy reconstruction in 13 TeV pp collision data using the CMS detector Report CMS-PAS-JME-16-004 CERN Geneva: 2016.
    [Google Scholar]
  84. 84. ATLAS Collab Pile-up suppression in missing transverse momentum reconstruction in the ATLAS experiment in proton–proton collisions at TeV Report ATLAS-CONF-2014-019 CERN Geneva: 2014.
    [Google Scholar]
  85. 85. ATLAS Collab Selection of jets produced in 13 TeV proton–proton collisions with the ATLAS detector Report ATLAS-CONF-2015-029 CERN Geneva: 2015.
    [Google Scholar]
  86. 86. ATLAS Collab Phys. Rev. D 94:032005 2016.
    [Google Scholar]
  87. 87.  Haisch U, Kahlhoefer F, Re E J. High Energy Phys. 1312:007 2013.
    [Google Scholar]
  88. 88.  Smith WH Annu. Rev. Nucl. Part. Sci. 66:123 2016.
    [Google Scholar]
  89. 89.  Aaij R et al. J. Instrum. 8:P04022 2013.
    [Google Scholar]
  90. 90. ATLAS Collab J. High Energy Phys. 1801:126 2018.
    [Google Scholar]
  91. 91. CMS Collab Phys. Rev. D 97:092005 2018.
    [Google Scholar]
  92. 92. ATLAS Collab Eur. Phys. J. C 77:317 2017.
    [Google Scholar]
  93. 93. CMS Collab J. Instrum. 12:P01020 2017.
    [Google Scholar]
  94. 94. CMS Collab Phys. Rev. Lett. 117:031802 2016.
    [Google Scholar]
  95. 95. LHCb Collab Comput. Phys. Commun. 208:35 2016.
    [Google Scholar]
  96. 96. ATLAS Collab arXiv:1804.03496 [hep-ex] 2018.
  97. 97. CMS Collab Pileup removal algorithms Report CMS-PAS-JME-14-001 CERN Geneva: 2014.
    [Google Scholar]
  98. 98. ATLAS Collab Fast TracKer (FTK) technical design report Report CERN-LHCC-2013-007/ATLAS-TDR-021 CERN Geneva: 2013.
    [Google Scholar]
  99. 99. CMS Collab J. Instrum. 6:C12065 2011.
    [Google Scholar]
  100. 100.  Lindert JM et al. Eur. Phys. J. C 77:829 2017.
    [Google Scholar]
  101. 101.  Maguire E, Heinrich L, Watt G J. Phys. Conf. Ser. 898:102006 2017.
    [Google Scholar]
  102. 102. CMS Collab Simplified likelihood for the re-interpretation of public CMS results Report CMS-NOTE-2017-001 CERN Geneva: 2017.
    [Google Scholar]
  103. 103. CMS Collab Eur. Phys. J. C 78:291 2018.
    [Google Scholar]
  104. 104. ATLAS Collab Phys. Lett. B 776:318 2018.
    [Google Scholar]
  105. 105.  Gershtein Y, Petriello F, Quackenbush S, Zurek KM Phys. Rev. D 78:095002 2008.
    [Google Scholar]
  106. 106.  Petriello FJ, Quackenbush S, Zurek KM Phys. Rev. D 77:115020 2008.
    [Google Scholar]
  107. 107. ATLAS Collab Eur. Phys. J. C 77:393 2017.
    [Google Scholar]
  108. 108. CMS Collab Search for new physics in final states with a single photon plus missing transverse momentum in proton-proton collisions at TeV using 2016 data. Report CMS-PAS-EXO-16-053 CERN Geneva: 2016.
    [Google Scholar]
  109. 109. ATLAS Collab Search for dark matter in events with a hadronically decaying vector boson and missing transverse momentum in pp collisions at TeV with the ATLAS detector Report ATLAS-CONF-2018-005 CERN Geneva: 2016.
    [Google Scholar]
  110. 110.  Larkoski AJ, Moult I, Nachman B arXiv:1709.04464 [hep-ph] 2017.
  111. 111. CMS Collab arXiv:1806.04771 [hep-ex] 2018.
  112. 112. ATLAS Collab Phys. Rev. D 96:112004 2017.
    [Google Scholar]
  113. 113. ATLAS Collab Phys. Rev. Lett. 119:181804 2017.
    [Google Scholar]
  114. 114. CMS Collab Search for associated production of dark matter with a Higgs boson that decays to a pair of bottom quarks Report CMS-PAS-EXO-16-050 CERN Geneva: 2018.
    [Google Scholar]
  115. 115. ATLAS Collab Eur. Phys. J. C 78:18 2018.
    [Google Scholar]
  116. 116. ATLAS Collab J. High Energy Phys. 06:108 2018.
    [Google Scholar]
  117. 117. CMS Collab Phys. Rev. D 97:032009 2018.
    [Google Scholar]
  118. 118.  Agrawal P, Batell B, Hooper D, Lin T Phys. Rev. D 90:063512 2014.
    [Google Scholar]
  119. 119. CMS Collab J. High Energy Phys. 06:027 2018.
    [Google Scholar]
  120. 120. ATLAS Collab Eur. Phys. J. C 75:79 2015.
    [Google Scholar]
  121. 121.  Lester CG, Summers DJ Phys. Lett. B 463:99 1999.
    [Google Scholar]
  122. 122. ATLAS Collab Phys. Rev. D 96:112010 2017.
    [Google Scholar]
  123. 123. CMS Collab J. High Energy Phys. 12:142 2017.
    [Google Scholar]
  124. 124. CMS Collab J. High Energy Phys. 10:005 2017.
    [Google Scholar]
  125. 125. ATLAS Collab J. High Energy Phys. 09:175 2016.
    [Google Scholar]
  126. 126. CMS Collab J. High Energy Phys. 160:1803 2018.
    [Google Scholar]
  127. 127. ATLAS Collab Search for electroweak production of supersymmetric particles in the two and three lepton final state at TeV with the ATLAS detector Report ATLAS-CONF-2017-039 CERN Geneva: 2017.
    [Google Scholar]
  128. 128. ATLAS Collab Phys. Rev. D 97:052010 2018.
    [Google Scholar]
  129. 129. CMS Collab J. High Energy Phys. 11:029 2017.
    [Google Scholar]
  130. 130. ATLAS Collab Search for direct pair production of higgsinos by the reinterpretation of the disappearing track analysis with 36.1 fb−1 of TeV data collected with the ATLAS experiment Report ATL-PHYS-PUB-2017-019 2017.
    [Google Scholar]
  131. 131. CMS Collab J. High Energy Phys. 05:025 2018.
    [Google Scholar]
  132. 132.  Conley JA et al. Eur. Phys. J. C 71:1697 2011.
    [Google Scholar]
  133. 133. ATLAS Collab J. High Energy Phys. 10:134 2015.
    [Google Scholar]
  134. 134. CMS Collab J. High Energy Phys. 10:129 2016.
    [Google Scholar]
  135. 135. GAMBIT Collab Eur. Phys. J. C 77:784 2017.
    [Google Scholar]
  136. 136. Mastercode Collab Eur. Phys. J. C 78:256 2018.
    [Google Scholar]
  137. 137. ATLAS Collab J. High Energy Phys. 06:022 2018.
    [Google Scholar]
  138. 138. CMS Collab J. High Energy Phys. 01:096 2015.
    [Google Scholar]
  139. 139.  Ball A et al. arXiv:1607.04669 [physics.ins-det] 2016.
  140. 140.  Chou JP, Curtin D, Lubatti HJ Phys. Lett. B 767:29 2017.
    [Google Scholar]
  141. 141. LHCb Collab Phys. Rev. Lett. 120:061801 2018.
    [Google Scholar]
  142. 142. BaBar Collab Phys. Rev. Lett. 113:201801 2014.
    [Google Scholar]
  143. 143. BaBar Collab Phys. Rev. Lett. 119:131804 2017.
    [Google Scholar]
  144. 144. LHCb Collab Phys. Rev. D 95:071101 2017.
    [Google Scholar]
  145. 145. ATLAS Collab Search for long-lived neutral particles decaying into displaced lepton jets in proton–proton collisions at TeV with the ATLAS detector Report ATLAS-CONF-2016-042 CERN Geneva: 2016.
    [Google Scholar]
  146. 146. CMS Collab A search for beyond Standard Model light bosons decaying into muon pairs Report CMS-PAS-HIG-16-035 CERN Geneva: 2016.
    [Google Scholar]
  147. 147.  Liew SP, Papucci M, Vichi A, Zurek KM J. High Energy Phys. 06:082 2017.
    [Google Scholar]
  148. 148. ATLAS Collab Phys. Rev. D 96:052004 2017.
    [Google Scholar]
  149. 149. CMS Collab arXiv:1806.00843 [hep-ex] 2018.
  150. 150. CMS Collab Search for new physics with dijet angular distributions in proton–proton collisions at TeV and constraints on dark matter and other models Report CMS-PAS-EXO-16-046 CERN Geneva: 2017.
    [Google Scholar]
  151. 151.  An H, Huo R, Wang LT Phys. Dark Univ. 2:50 2013.
    [Google Scholar]
  152. 152.  Dobrescu BA, Yu F Phys. Rev. D 88:035021 2013. Erratum Phys. Rev. D 90:079901 2014.
    [Google Scholar]
  153. 153. ATLAS Collab Search for new light resonances decaying to jet pairs and produced in association with a photon or a jet in proton–proton collisions at TeV with the ATLAS detector Report ATLAS-CONF-2016-070 CERN Geneva: 2016.
    [Google Scholar]
  154. 154. CMS Collab J. High Energy Phys. 01:097 2018.
    [Google Scholar]
  155. 155. ATLAS Collab arXiv:1801.08769 [hep-ex] 2018.
  156. 156. CMS Collab Search for a narrow heavy decaying to bottom quark pairs in the 13 TeV data sample Report CMS-PAS-HIG-16-025 CERN Geneva: 2016.
    [Google Scholar]
  157. 157. ATLAS Collab Phys. Rev. Lett. 119:191803 2017.
    [Google Scholar]
  158. 158. ATLAS Collab arXiv:1805.09299 [hep-ex] 2018.
  159. 159. ATLAS Collab J. High Energy Phys. 10:182 2017.
    [Google Scholar]
  160. 160. CMS Collab Phys. Lett. B 768:57 2017.
    [Google Scholar]
  161. 161.  Backovic M et al. Phys. Dark Univ. 9/10:37 2015.
    [Google Scholar]
  162. 162. ATLAS Collab Summary plots from the ATLAS exotic physics group CERN Geneva: https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/CombinedSummaryPlots/EXOTICS/index.html#ATLAS_DarkMatter_Summary 2018.
    [Google Scholar]
  163. 163.  Acharya BS et al. arXiv:0901.3367 [hep-ph] 2009.
  164. 164. GAMBIT Collab Eur. Phys. J. C 77:568 2017.
    [Google Scholar]
  165. 165.  Banerjee S et al. J. High Energy Phys. 07:080 2017.
    [Google Scholar]
  166. 166.  Carpenter LM, Colburn R, Goodman J, Linden T Phys. Rev. D 94:055027 2016.
    [Google Scholar]
  167. 167. PICO Collab Phys. Rev. Lett. 118:251301 2017.
    [Google Scholar]
  168. 168.  Balazs C et al. Phys. Rev. D 96:083002 2017.
    [Google Scholar]
  169. 169.  Aartsen MG et al. Eur. Phys. J. C 77:146 2017.
    [Google Scholar]
  170. 170.  Cahill-Rowley M, Hewett JL, Ismail A, Rizzo TG Phys. Rev. D 91:055002 2015.
    [Google Scholar]
  171. 171.  D’Eramo F, Procura M J. High Energy Phys. 04:054 2015.
    [Google Scholar]
  172. 172. CRESST Collab Eur. Phys. J. C 76:25 2016.
    [Google Scholar]
  173. 173. CDMS Collab Phys. Rev. Lett. 116:071301 2016.
    [Google Scholar]
  174. 174. PandaX-II Collab Phys. Rev. Lett. 119:181302 2017.
    [Google Scholar]
  175. 175. LUX Collab Phys. Rev. Lett. 118:021303 2017.
    [Google Scholar]
  176. 176. XENON Collab arXiv:1805.12562 [hep-ex] 2018.
  177. 177. CMS Collab Dark matter summary plots CERN Geneva: https://twiki.cern.ch/twiki/bin/view/CMSPublic/SummaryPlotsEXO13TeV#Dark_Matter_Summary_plots 2018.
    [Google Scholar]
  178. 178.  Busoni G et al. J. Cosmol. Astropart. Phys. 1503:022 2015.
    [Google Scholar]
  179. 179.  Catena R, Conrad J, Krauss MB Phys. Rev. D 97:103002 2017.
    [Google Scholar]
  180. 180.  Barducci D et al. Comput. Phys. Commun. 222:327 2018.
    [Google Scholar]
  181. 181.  Steigman G Annu. Rev. Nucl. Part. Sci. 29:313 1979.
    [Google Scholar]
  182. 182. CMS Collab Estimated sensitivity for new particle searches at the HL-LHC Tech. rep. CMS-PAS-FTR-16-005 CERN Geneva: 2017.
    [Google Scholar]
  183. 183.  Campana P, Klute M, Wells P Annu. Rev. Nucl. Part. Sci. 66:273 2016.
    [Google Scholar]
  184. 184.  Buchmueller O et al. J. High Energy Phys. 09:076 2017.
    [Google Scholar]
  185. 185.  Blumenschein U et al. arXiv:1802.02100 [hep-ex] 2018.
  186. 186.  Alves A et al. J. High Energy Phys. 04:164 2017.
    [Google Scholar]
  187. 187.  Ilten P et al. Phys. Rev. Lett. 116:251803 2016.
    [Google Scholar]
  188. 188.  Golling T et al. CERN Yellow Report ML Mangano441 Geneva: CERN 2017.
    [Google Scholar]
  189. 189.  Feldstein B, Kahlhoefer F J. Cosmol. Astropart. Phys. 1412:052 2014.
    [Google Scholar]
  190. 190.  Auchettl K, Balazs C Uncertainties in dark matter indirect detection. Open Questions in Cosmology GJ Olmo87–110 London: IntechOpen 2012.
    [Google Scholar]
  191. 191.  Buckley MR, Peter AHG arXiv:1712.06615 [astro-ph.CO] 2017.
  192. 192. CMS Collab. Phys. Rev. D 91:052009 2015.
    [Google Scholar]
/content/journals/10.1146/annurev-nucl-101917-021008
Loading
/content/journals/10.1146/annurev-nucl-101917-021008
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error