1932

Abstract

We review the development of silicon-based calorimeters from the very first applications of small calorimeters used in collider experiments to the large-scale systems that are being designed today. We discuss silicon-based electromagnetic calorimeters for future + colliders and for the upgrade of the CMS experiment's endcap calorimeter to be used in the high-luminosity phase of the LHC. We present the intrinsic advantages of silicon as an active detector material and highlight the enabling technologies that have made calorimeters with very high channel densities feasible. We end by discussing the outlook for further extensions to the silicon calorimeter concept, such as calorimeters with fine-pitched pixel detectors.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-nucl-101917-021053
2018-10-19
2024-06-16
Loading full text...

Full text loading...

/deliver/fulltext/nucl/68/1/annurev-nucl-101917-021053.html?itemId=/content/journals/10.1146/annurev-nucl-101917-021053&mimeType=html&fmt=ahah

Literature Cited

  1. 1.  Knowles IG, Lafferty GD J. Phys. G 23:731 1997.
    [Google Scholar]
  2. 2.  Wigmans R Nucl. Instrum. Methods A 259:389 1987.
    [Google Scholar]
  3. 3.  Gabriel TA et al. Nucl. Instrum. Methods A 338:336 1994.
    [Google Scholar]
  4. 4.  Brient J-C, Orlando D TESLA tech. des. rep., DESY-2001-011, part IV, DESY Hamburg, Ger.: 2001.
  5. 5.  Brient J-C, Videau H arXiv:hep-ex/0202004 2002.
  6. 6.  Tran TH et al. Eur. Phys. J. C 76:468 2016.
    [Google Scholar]
  7. 7.  Thomson MA Nucl. Instrum. Methods A 611:25 2009.
    [Google Scholar]
  8. 8.  Marshall JS, Münnich A Thomson MA Nucl. Instrum. Methods A 700:153 2013.
    [Google Scholar]
  9. 9.  Seez C, Virdee T Tech. rep. CERN-LHCC-2017-023 CERN, Geneva: 2017.
  10. 10.  Nakamoto A et al. IEEE Trans Nucl. Sci. 27:74 1980.
    [Google Scholar]
  11. 11.  Nakamoto A et al. Nucl. Instrum. Methods A 238:53 1985.
    [Google Scholar]
  12. 12.  Barbeliellini G et al. Nucl. Instrum. Methods A 236:316 1985.
    [Google Scholar]
  13. 13.  Barbeliellini G et al. Nucl. Instrum. Methods A 240:289 1985.
    [Google Scholar]
  14. 14.  Bormann M et al. Nucl. Instrum. Methods A 240:63 1985.
    [Google Scholar]
  15. 15.  Barbeliellini G et al. Nucl. Instrum. Methods A 235:216 1985.
    [Google Scholar]
  16. 16.  Fretwurst E et al. Proceedings of the ECFA Study Week on Instrumentation Technology for High-Luminosity Hadron Colliders G Jarlskog, E Fernández 319 Geneva: CERN 1989.
    [Google Scholar]
  17. 17.  Cozzika G Proceedings of the the 3rd International Conference on Calorimetry in High Energy Physics P Hale, J Seigrist 143 River Edge, NJ: World Sci 1992.
    [Google Scholar]
  18. 18.  Fretwurst E et al. Nucl. Instrum. Methods A 372:368 1996.
    [Google Scholar]
  19. 19.  Bédérède D et al. Nucl. Instrum. Methods A 365:117 1995.
    [Google Scholar]
  20. 20.  Abbiendi G et al. Eur. Phys. J. C 14:373 2000.
    [Google Scholar]
  21. 21.  Beuville E et al. Nucl. Instrum. Methods A 288:157 1990.
    [Google Scholar]
  22. 22.  Gottlicher P (ZEUS Collab.) Proceedings of the 10th International Conference on Calorimetry in Particle Physics RY Zhu 296 River Edge, NJ: World Sci 2002.
    [Google Scholar]
  23. 23.  Bashindzhagyan G et al. Instrum. Exp. Tech. 45:167 2002.
    [Google Scholar]
  24. 24.  Behnke T et al. arXiv:1306.6329v1 [physics] 2013.
  25. 25.  Behnke T et al. arXiv:1306.6329 [physics.ins-det] 2013.
  26. 26.  Repond J et al. J. Instrum. 3:P08001 2008.
    [Google Scholar]
  27. 27.  Adloff C et al. Nucl. Instrum. Methods A 608:372 2009.
    [Google Scholar]
  28. 28.  Balagura V et al. J. Instrum. 12:C07013 2017.
    [Google Scholar]
  29. 29.  Brau J et al. Proceedings of the 2012 IEEE Nuclear Science Symposium and Medical Imaging Conference B Yu 1857 Piscataway, NJ: IEEE 2012.
    [Google Scholar]
  30. 30.  Steinhebel A, Brau J arXiv:1703.08605 [physics.ins-det] 2017.
  31. 31.  Ruan M Presented at the International Workshop on High Energy Circular Electron Positron Collider Beijing: 2017.
  32. 32.  Verlaat B, Van Lysebetten A, Van Beuzekom M Proceedings of the 8th IIF/IIR Gustav Lorentzen Conference on Natural Working Fluids pap. 16-T3-08 Copenhagen: Dan. Technol. Inst 2008.
    [Google Scholar]
  33. 33.  Jain S J. Instrum. 12:C03011 2017.
    [Google Scholar]
  34. 34.  Ackchurin N et al. Nucl. Instrum. Methods A 859:31 2017.
    [Google Scholar]
  35. 35.  Price T Phys. Proc. 37:932 2012.
    [Google Scholar]
  36. 36.  Nooren G et al. arXiv:1708.05164 [physics.ins-det] 2017.
  37. 37.  Barbeliellini G et al. Nucl. Instrum. Methods A 257:543 1987.
    [Google Scholar]
  38. 38.  Bloch P et al. Nucl. Instrum. Methods A 479:265 2002.
    [Google Scholar]
  39. 39. CMS Collab. J. Instrum. 3:S08004 2008.
    [Google Scholar]
  40. 40.  Irles A (CALICE Collab.) Presented at Calorimetry for the High Energy Frontier (CHEF2017) Lyon, Fr.: 2017.
  41. 41.  Giraud J Presented at Calorimetry for the High Energy Frontier (CHEF2017) Lyon, Fr: 2017.
  42. 42.  Contardo D et al. Tech. rep. CERN-LHCC-2015-010, LHCC-P-008, CMS-TDR-15-02 CERN, Geneva: 2015.
/content/journals/10.1146/annurev-nucl-101917-021053
Loading
/content/journals/10.1146/annurev-nucl-101917-021053
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error