1932

Abstract

The absolute mass scale of neutrinos is an intriguing open question in contemporary physics. The as-yet-unknown mass of the lightest and, at the same time, most abundant massive elementary particle species bears fundamental relevance to theoretical particle physics, astrophysics, and cosmology. The most model-independent experimental approach consists of precision measurements of the kinematics of weak decays, notably tritium β decay. With the KATRIN experiment, this direct neutrino-mass measurement has entered the sub-eV domain, recently pushing the upper limit on the electron-based neutrino mass down to 0.8 eV (90% CL) on the basis of first-year data out of ongoing, multiyear operations. Here, we review the experimental apparatus of KATRIN, the progress of data taking, and initial results. While KATRIN is heading toward the target sensitivity of 0.2 eV, other scientific goals are pursued. We discuss the search for light sterile neutrinos and an outlook on future keV-scale sterile-neutrino searches as well as further physics opportunities beyond the Standard Model.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-nucl-101920-113013
2022-09-26
2024-06-14
Loading full text...

Full text loading...

/deliver/fulltext/nucl/72/1/annurev-nucl-101920-113013.html?itemId=/content/journals/10.1146/annurev-nucl-101920-113013&mimeType=html&fmt=ahah

Literature Cited

  1. 1.
    Fukuda Y et al. Phys. Rev. Lett. 81:1562 1998.)
    [Google Scholar]
  2. 2.
    Ahmad QR et al. Phys. Rev. Lett. 89:011301 2002.)
    [Google Scholar]
  3. 3.
    Formaggio JA, de Gouvêa ALC, Robertson RGH. Phys. Rep. 914:1 2021.)
    [Google Scholar]
  4. 4.
    Abbott TMC et al. Phys. Rev. D 105:023520 2022.)
    [Google Scholar]
  5. 5.
    Loredo TJ, Lamb DQ. Phys. Rev. D 65:063002 2002.)
    [Google Scholar]
  6. 6.
    Dolinski MJ, Poon AWP, Rodejohann W. Annu. Rev. Nucl. Part. Sci. 69:219 2019.)
    [Google Scholar]
  7. 7.
    Agostini M et al. Phys. Rev. Lett. 125:252502 2020.)
    [Google Scholar]
  8. 8.
    Gando A et al. Phys. Rev. Lett. 117:082503 2016.)
    [Google Scholar]
  9. 9.
    Bodine LI, Parno DS, Robertson RGH. Phys. Rev. C 91:035505 2015.)
    [Google Scholar]
  10. 10.
    Braß M, Haverkort MW. New J. Phys. 22:093018 2020.)
    [Google Scholar]
  11. 11.
    Zyla PA et al. PTEP 2020:083C01 2020.)
    [Google Scholar]
  12. 12.
    Saenz A, Jonsell S, Froelich P. Phys. Rev. Lett. 84:242 2000.)
    [Google Scholar]
  13. 13.
    Otten EW, Weinheimer C. Rep. Prog. Phys. 71:086201 2008.)
    [Google Scholar]
  14. 14.
    Picard A et al. Nucl. Instrum. Methods B 63:345 1992.)
    [Google Scholar]
  15. 15.
    Lobashev VM, Spivak PE. Nucl. Instrum. Methods A 240:305 1985.)
    [Google Scholar]
  16. 16.
    Wilkerson JF et al. Phys. Rev. Lett. 58:2023 1987.)
    [Google Scholar]
  17. 17.
    Kraus C et al. Eur. Phys. J. C 40:447 2005.)
    [Google Scholar]
  18. 18.
    Aseev VN et al. Phys. Rev. D 84:112003 2011.)
    [Google Scholar]
  19. 19.
    Monreal B, Formaggio JA. Phys. Rev. D 80:051301 2009.)
    [Google Scholar]
  20. 20.
    Ashtari Esfahani A et al. J. Phys. G 44:054004 2017.)
    [Google Scholar]
  21. 21.
    De Rujula A, Lusignoli M. Phys. Lett. B 118:429 1982.)
    [Google Scholar]
  22. 22.
    Gastaldo L et al. Eur. Phys. J. Spec. Top. 226:1623 2017.)
    [Google Scholar]
  23. 23.
    Fleischmann A, Enss C, Seidel G. Cryogenic Particle Detection151–216 Berlin/Heidelberg: Springer 2005.)
    [Google Scholar]
  24. 24.
    Gastaldo L et al. AIP Conf. Proc. 1185:607 2009.)
    [Google Scholar]
  25. 25.
    Alpert B et al. Eur. Phys. J. C 75:112 2015.)
    [Google Scholar]
  26. 26.
    Puiu A et al. J. Low Temp. Phys. 199:716 2020.)
    [Google Scholar]
  27. 27.
    Velte C et al. Eur. Phys. J. C 79:1026 2019.)
    [Google Scholar]
  28. 28.
    Aker M et al. Phys. Rev. Lett. 123:221802 2019.)
    [Google Scholar]
  29. 29.
    Aker M et al. Nat. Phys. 18:160 2022.)
    [Google Scholar]
  30. 30.
    Osipowicz A et al. arXiv:hep-ex/0109033 2001.)
  31. 31.
    Aker M et al. J. Instrum. 16:T08015 2021.)
    [Google Scholar]
  32. 32.
    Aker M et al. Sensors 20:4827 2020.)
    [Google Scholar]
  33. 33.
    Röllig M et al. Fusion Eng. Des. 100:177 2015.)
    [Google Scholar]
  34. 34.
    Beglarian A et al. J. Instrum. 17:T03002 2022.)
    [Google Scholar]
  35. 35.
    Vénos D et al. J. Instrum. 9:P12010 2014.)
    [Google Scholar]
  36. 36.
    Bornschein B et al. Fusion Sci. Tech. 71:231 2017.)
    [Google Scholar]
  37. 37.
    Arenz M et al. J. Instrum. 11:P04011 2016.)
    [Google Scholar]
  38. 38.
    Wandkowsky N et al. J. Phys. G 40:085102 2013.)
    [Google Scholar]
  39. 39.
    Fraenkle FM. J. Phys. Conf. Ser. 888:012070 2017.)
    [Google Scholar]
  40. 40.
    Altenmüller K et al. Astropart. Phys. 108:40 2019.)
    [Google Scholar]
  41. 41.
    Altenmüller K et al. Eur. Phys. J. C 79:807 2019.)
    [Google Scholar]
  42. 42.
    Behrens JD. 2016. Design and commissioning of a mono-energetic photoelectron source and active background reduction by magnetic pulse at the KATRIN spectrometers PhD Thesis Westfälische Wilhelms–Universität Münster
    [Google Scholar]
  43. 43.
    Babutzka M et al. New J. Phys. 14:103046 2012.)
    [Google Scholar]
  44. 44.
    Grohmann S, Bode T, Schön H, Süßer M. Cryogenics 51:438 2011.)
    [Google Scholar]
  45. 45.
    Grohmann S et al. Cryogenics 55–56:5 2013.)
    [Google Scholar]
  46. 46.
    Arenz M et al. J. Instrum. 13:P04020 2018.)
    [Google Scholar]
  47. 47.
    Altenmüller K et al. J. Phys. G 47:065002 2020.)
    [Google Scholar]
  48. 48.
    Arenz M et al. Eur. Phys. J. C 78:368 2018.)
    [Google Scholar]
  49. 49.
    Rest O et al. Metrologia 56:045007 2019.)
    [Google Scholar]
  50. 50.
    Aker M et al. Eur. Phys. J. C 80:264 2020.)
    [Google Scholar]
  51. 51.
    Röttele C. 2019. Tritium suppression factor of the KATRIN transport section PhD Thesis Karlsruhe Institute of Technology
    [Google Scholar]
  52. 52.
    Klein M. 2018. Tritium ions in KATRIN: blocking, removal and detection PhD Thesis Karlsruhe Institute of Technology
    [Google Scholar]
  53. 53.
    Schlösser M et al. Fusion Sci. Tech. 76:170 2020.)
    [Google Scholar]
  54. 54.
    Friedel FR. 2020. Ion and plasma systematics during the first KATRIN neutrino mass measurements PhD Thesis Karlsruhe Institute of Technology
    [Google Scholar]
  55. 55.
    Vizcaya Hernández AP. 2021. Toward a measurement of the neutrino mass with tritium: ion studies for the KATRIN and TRIMS experiments PhD Thesis Carnegie Mellon University
    [Google Scholar]
  56. 56.
    Aker M et al. Eur. Phys. J. C 81:579 2021.)
    [Google Scholar]
  57. 57.
    Letnev J et al. J. Instrum. 13:T08010 2018.)
    [Google Scholar]
  58. 58.
    Furse D et al. New J. Phys. 19:053012 2017.)
    [Google Scholar]
  59. 59.
    Arenz M et al. J. Instrum. 13:T08005 2018.)
    [Google Scholar]
  60. 60.
    Angrik J et al. (KATRIN Collab.) 2005. KATRIN design report 2004 Rep., KATRIN Collab . https://doi.org/10.5445/IR/270060419
    [Google Scholar]
  61. 61.
    Harms F. 2015. Characterization and minimization of background processes in the KATRIN main spectrometer PhD Thesis Karlsruhe Institute of Technology
    [Google Scholar]
  62. 62.
    Fränkle F et al. Astropart. Phys. 138:102686 2022.)
    [Google Scholar]
  63. 63.
    Aker M et al. Eur. Phys. J. C 80:821 2020.)
    [Google Scholar]
  64. 64.
    Aker M et al. Phys. Rev. D 104:012005 2021.)
    [Google Scholar]
  65. 65.
    Amsbaugh JF et al. Nucl. Instrum. Methods A 778:40 2015.)
    [Google Scholar]
  66. 66.
    Kleesiek M et al. Eur. Phys. J. C 79:204 2019.)
    [Google Scholar]
  67. 67.
    Lokhov AV, Tkachov FV. Phys. Part. Nucl. 46:347 2015.)
    [Google Scholar]
  68. 68.
    Feldman GJ, Cousins RD. Phys. Rev. D 57:3873 1998.)
    [Google Scholar]
  69. 69.
    Sturm M et al. Fusion Eng. Des. 170:112507 2021.)
    [Google Scholar]
  70. 70.
    Abazajian KN et al. arXiv:1204.5379 [hep-ph] 2012.)
  71. 71.
    Giunti C, Lasserre T. Annu. Rev. Nucl. Part. Sci. 69:163 2019.)
    [Google Scholar]
  72. 72.
    Mention G et al. Phys. Rev. D 83:073006 2011.)
    [Google Scholar]
  73. 73.
    Almazán H et al. Phys. Rev. D 102:052002 2020.)
    [Google Scholar]
  74. 74.
    Andriamirado M et al. Phys. Rev. D 103:032001 2021.)
    [Google Scholar]
  75. 75.
    Danilov M Proc. Sci. EPS-HEP2019:401 2020.)
    [Google Scholar]
  76. 76.
    Barinov VV et al. arXiv:2109.11482 [hep-ph] 2021.)
  77. 77.
    Wilks SS. Ann. Math. Stat. 9:60 1938.)
    [Google Scholar]
  78. 78.
    Serebrov AP et al. Phys. Rev. D 104:032003 2021.)
    [Google Scholar]
  79. 79.
    Aker M et al. Phys. Rev. Lett. 126:091803 2021.)
    [Google Scholar]
  80. 80.
    Aker M et al. Phys. Rev. D 105:072004 2022.)
    [Google Scholar]
  81. 81.
    Lokhov A et al. Eur. J. Phys. C 82:258 2022.)
    [Google Scholar]
  82. 82.
    Aker M et al. Operation modes of the KATRIN experiment tritium loop system using 83m Kr. Work. Pap., KATRIN Collab. 2022.)
    [Google Scholar]
  83. 83.
    Sentkerestiová J et al. J. Instrum. 13:P04018 2018.)
    [Google Scholar]
  84. 84.
    Mertens S et al. J. Phys. G 46:065203 2019.)
    [Google Scholar]
  85. 85.
    Cocco AG, Mangano G, Messina M. J.Cosmol. Astropart. Phys. 0706:015 2007.)
    [Google Scholar]
  86. 86.
    Long AJ, Lunardini C, Sabancilar E. J.Cosmol. Astropart. Phys. 1408:038 2014.)
    [Google Scholar]
  87. 87.
    Ringwald A. arXiv:hep-ph/0505024 2005.)
  88. 88.
    Hodak R et al. arXiv:1102.1799 [hep-ph] 2011.)
  89. 89.
    de Salas P, Gariazzo S, Lesgourgues J, Pastor S. J.Cosmol. Astropart. Phys. 1709:034 2017.)
    [Google Scholar]
  90. 90.
    Aker M et al. arXiv:2202.04587 [nucl-ex] 2022.)
  91. 91.
    Díaz JS, Kostelecký VA, Lehnert R. Phys. Rev. D 88:071902 2013.)
    [Google Scholar]
  92. 92.
    Kostelecký VA, Mewes M. Phys. Rev. D 85:096005 2012.)
    [Google Scholar]
  93. 93.
    Lehnert R. Hyperfine Interact. 193:275 2009.)
    [Google Scholar]
  94. 94.
    Lehnert R. arXiv:2112.13803 [hep-ph] 2021.)
  95. 95.
    Aker M et al. Search for Lorentz violation with the first KATRIN data Work. Pap., KATRIN Collab. 2022.)
    [Google Scholar]
  96. 96.
    Drewes M et al. J. Cosmol. Astropart. Phys. 1701:025 2017.)
    [Google Scholar]
  97. 97.
    Mertens S et al. J. Cosmol. Astropart. Phys. 1502:020 2015.)
    [Google Scholar]
  98. 98.
    Mertens S et al. Phys. Rev. D 91:042005 2015.)
    [Google Scholar]
  99. 99.
    Mertens S et al. J. Phys. G 48:015008 2020.)
    [Google Scholar]
  100. 100.
    Arcadi G et al. J. High Energy Phys. 1901:206 2019.)
    [Google Scholar]
  101. 101.
    Ludl PO, Rodejohann W. J. High Energy Phys. 1606:40 2016.)
    [Google Scholar]
  102. 102.
    Rodejohann W, Zhang H. Phys. Lett. B 737:81 2014.)
    [Google Scholar]
  103. 103.
    Barry J, Heeck J, Rodejohann W. J. High Energy Phys. 1407:81 2014.)
    [Google Scholar]
  104. 104.
    Huang G, Rodejohann W. arXiv:2110.03718 [hep-ph] 2021.)
/content/journals/10.1146/annurev-nucl-101920-113013
Loading
/content/journals/10.1146/annurev-nucl-101920-113013
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error